1. Field of the Invention
The present disclosure generally relates to amusement attractions and rides. More particularly, the disclosure generally relates to a system and method for an amusement ride. Further, the disclosure generally relates to an amusement ride featuring a rollable carrier in which one or more participants may ride. The amusement ride may include water features and/or elements.
2. Description of the Relevant Art
The 80's decade has witnessed phenomenal growth in the participatory family water recreation facility, i.e., the waterpark, and in water oriented ride attractions in the traditional themed amusement parks. The main current genre of water ride attractions, e.g., waterslides, river rapid rides, and log flumes, and others, require participants to walk or be mechanically lifted to a high point, wherein, gravity enables water, participant(s), and riding vehicle (if appropriate) to slide down a chute or incline to a lower elevation splash pool, whereafter the cycle repeats.
Generally speaking, the traditional downhill water rides are short in duration (normally measured in seconds of ride time) and have limited throughput capacity. The combination of these two factors quickly leads to a situation in which patrons of the parks typically have long queue line waits of up to two or three hours for a ride that, although exciting, lasts only a few seconds. Additional problems like hot and sunny weather, wet patrons, and other difficulties combine to create a very poor overall customer feeling of satisfaction or perceived entertainment value in the waterpark experience. Poor entertainment value in waterparks as well as other amusement parks is rated as the biggest problem of the waterpark industry and is substantially contributing to the failure of many waterparks and threatens the entire industry.
Water parks also suffer intermittent closures due to inclement weather. Depending on the geographic location of a water park, the water park may be open less than half of the year. Water parks may be closed due to uncomfortably low temperatures associated with winter. Water parks may be closed due to inclement weather such as rain, wind storms, and/or any other type of weather conditions which might limit participant enjoyment and/or participant safety. Severely limiting the number of days a water park may be open naturally limits the profitability of that water park.
The phenomenal growth of water parks in the past few decades has witnessed an evolution in water-based attractions. In the '70s and early '80s, these water attractions took the form of slides from which a participant started at an upper pool and slid by way of gravity passage down a serpentine slide upon recycled water to a lower landing pool. U.S. Pat. No. 3,923,301 to Meyers discloses such a slide dug into the side of a hill. U.S. Pat. No. 4,198,043 to Timbes and U.S. Pat. No. 4,196,900 to Becker et al. disclose such slides supported on a structure. Each of these slides only allowed essentially one-dimensional movement from the upper pool, down the slide to the lower pool. Consequently, the path taken down the slide always remained the same thus limiting the sense of novelty and the unexpected for the participant after multiple uses.
Cognizant of this limitation in traditional water slides, new water attractions were developed which inserted a little more of the element of chance during the ride. One such attraction has up to twelve people seated within a circular floating ring being propelled down a flume comprising a series of man-made rapids, water falls and timed water spouts. As the floating ring moves down the path of the water attraction, contact with the sides of the flume cause the ring to rotate thus moving certain people in closer proximity to the “down-river” side of the rapids, the water falls and the spouts. Those people who were closest to such features of the water ride tended to get the most wet. Since such movement was determined mostly by chance, each participant had an equal chance of getting drenched throughout the ride by any one of the many water ride features.
This later type of ride, though an improvement over the traditional water slide, was still essentially a one-dimensional travel from an upper start area down to a lower start area where all features came into play. Furthermore, each of these features were either continuously active (such as the water fall) or automatically activated by the proximity of the floating ring to the feature.
The popularity of these types of rides has resulted in very long lines at such water parks. Observers, such as those waiting in line for the water ride, could not interact (except verbally) with those participants on the ride. Consequently, the lasting memory at such parks may not be about the rides at the park, but the long lines and waiting required to use the rides.
Traditional floatation devices used in amusement/water parks include such vehicles as inner tubes, floating boards, and/or other floatation devices upon which one or more riders may float. Unfortunately the traditional floatation devices do not translate well to rides or portions of rides, which do not incorporate water as a means for propelling a vehicle and/or at least decreasing the coefficient of friction between the vehicle and the track. It would be advantageous to incorporate a vehicle into amusement rides which moved equally as well along tracks/courses incorporating water as well as tracks/courses which do not incorporate water. This might reduce costs associated with using water in amusement park rides as well as add additional dimensions to the enjoyment of the ride.
Vehicles typically used for amusements rides and especially water-based amusement rides are typically mere modes of transportation. The track (e.g., channel) typically provides the preponderance of enjoyment or amusement associated with a ride. The shape and/or design of the vehicle itself do not typically add any aspect of enjoyment to the ride. Vehicles which allowed, and even encouraged, participants within the vehicle to interact with the amusement ride environment would add another dimension to amusement rides in general and water amusement ride specifically.
For the reasons stated above and more, it is desirable to create a natural and exciting amusement ride system to transport participants between rides as well as between parks that will interconnect many of the presently diverse and stand-alone water park rides. An amusement ride system and method are described. In some embodiments, an amusement ride system may be generally related to water amusement attractions and rides. Further, the disclosure generally relates to water-powered rides and to a system and method in which participants may be more involved in a water attraction.
In some embodiments, an amusement ride system may include a rollable carrier. The rollable carrier may include an exterior rollable surface and an inner area. The inner area may include a participant container. In some embodiments, an amusement ride system may include a path system. The path system may function to substantially contain the rollable carrier such that the rollable carrier will remain in the path system while rolling. In some embodiments, a rollable carrier may function to roll in a path system while containing a participant in the participant container.
In some embodiments, a rollable carrier may be inflatable. The rollable carrier may include an inflatable area positioned between a participant container and an exterior rollable surface. The inflatable area may at least partially protect a participant. The rollable carrier may be freely rollable. The rollable carrier may allow water from a water path system to contact a participant. The rollable carrier may roll over while in a water path system, thereby causing the participant container to also roll over. The rollable carrier may be substantially transparent.
The rollable carrier may include at least one restraint positioned in the participant container and coupled to the rollable carrier. The restraint may inhibit movement of the participant relative to the participant container. Generally restraints are used herein to describe any system or mechanism which inhibits movement of one body relative to another body.
The rollable carrier may include an opening allowing the participant to access the inside of the participant container. The rollable carrier may include a positionable stop configured to close the opening. The rollable carrier may be formed at least in part from a flexible material.
In some embodiments, a path system may include a first elevation and a second elevation, wherein the first elevation and the second elevation are different. The path system may include a continuous loop. At least one portion of the path system may include a loop that allows the rollable carrier to traverse a full vertical circle. The path system may include a waterfall configured to allow the rollable carrier to drop from a first higher elevation to a second lower elevation. The difference between the elevations may be between about 2 ft. to about 12 ft.
In some embodiments, a portion of a path system may include special effects. The special effects may include visual effects (e.g., lighting displays). Path systems may include a conduit through which a rollable carrier may be conveyed. A portion of the conduit may be enclosed and pressurized fluids may assist conveying the rollable carrier the enclosed conduit. The path system may inhibit the rollable carrier from exiting a portion of the path system.
An amusement ride system may include an elevation system to convey a rollable carrier from a first elevation to a second elevation. The elevation system may include, for example, a fluid jet, a conveyor belt system, an uphill water slide, a wind tunnel or a vertical jet to elevate the rollable carrier to a predetermined height. A horizontal fluid jet may be coupled to a vertical jet to move the rollable carrier off of the vertical jet. Wind tunnels and fluid jets may fall under a broad category of elevation systems referred to as fluid assisted elevation systems. Wind tunnels may use reduced air pressure within a conduit to pull a rollable carrier through the conduit. Wind tunnels may use increased air pressure within a conduit to push a rollable carrier through the conduit.
In some embodiments, an amusement ride system may include a floating queue line. The floating queue line may be coupled to a portion of a path system. The floating queue line may include a channel. The channel may hold water at a depth sufficient to allow a rollable carrier and/or a participant to float within the channel. The floating queue line may be coupled to a water ride such that a participant remains in the water while being transferred from the channel along the floating queue line to the water ride.
A portion of a water path system may include a substantially horizontal channel segment including a first portion and a second portion. The portion may include a water inlet positioned at the first portion and a water outlet positioned at the second portion. Water may be transferred into the channel at the first portion and transferred out of the channel at the second portion in sufficient quantities to create a hydraulic gradient between the first portion and the second portion.
A portion of a path system may include a substantially angled channel segment including a high elevation end and a low elevation end. The angled channel segment may function such that a participant moves in a direction from the upper elevation end toward the lower elevation end. The path system may include a water inlet at the high elevation end. A predetermined amount of water may be transferred into the angled channel segment at the high elevation end such that friction between a rollable carrier and the angled channel segment is reduced. A flowing body of water may have a depth sufficient to allow a participant and/or a rollable carrier to float within the channel during use
In some embodiments, a path system may include a plurality of fluid jets spaced apart. The fluid jets may be positioned along the path system at predetermined locations. The fluid jets may be oriented tangentially with respect to the path system surface so as to contact a participant and/or rollable carrier as a participant and/or rollable carrier passes by each of the locations. Each of the fluid jets may produce a fluid stream having a predetermined velocity that is selectively greater, less than, or the same as the velocity of the participant and/or rollable carrier at each of the fluid jet locations.
A portion of a path system may be coupled to a walkway. A segment of the portion of the path system is at substantially the same height as a portion of the walkway such that a participant walks from the walkway into the water within the path system.
A portion of a path system may be coupled to a stairway. The stairway may function such that a participant walks along the stairway into the water within the path system.
A path system may include a docking station coupled to at least a portion of the path system. The docking station may receive and inhibit movement of rollable carriers to allow participants to exit or enter the rollable carriers.
An amusement ride system may include at least one overflow pool coupled to a path system. The overflow pool may collect water overflowing from the path system.
In some embodiments, an amusement ride may form a portion of a transportation system. The transportation system would itself be a main attraction with water and situational effects while incorporating into itself other specialized or traditional water rides and events. The system, though referred to herein as a transportation system, would be an entertaining and enjoyable part of the waterpark experience.
In certain embodiments, an amusement ride system may include a continuous water ride. Amusement ride systems may include a system of individual water rides connected together. The system may include two or more water rides connected together. Water rides may include downhill water slides, uphill water slides, single tube slides, multiple participant tube slides, space bowls, sidewinders, interactive water slides, water rides with falling water, themed water slides, dark water rides, and accelerator sections in water slides. Connecting water rides may reduce long queue lines normally associated with individual water rides. Connecting water rides may allow participants to remain in the water and/or a vehicle (e.g., a floatation device) during transportation from a first portion of the continuous water ride to a second portion of the continuous water ride.
In some embodiments, an amusement ride system may include an elevation system to transport a participant and/or rollable carrier from a first elevation to a second elevation. The first elevation may be at a different elevational level than a second elevation. The first elevation may include an exit point of a first water amusement ride. The second elevation may include an entry point of a second water amusement ride. In some embodiments, a first and second elevation may include an exit and entry points of a single water amusement ride. Elevation systems may include any number of water and non-water based systems capable of safely increasing the elevation of a participant and/or vehicle. Elevation systems may include, but are not limited to, spiral transports, water wheels, ferris locks, conveyor belt systems, water lock systems, uphill water slides, and/or tube transports.
In some embodiments, an elevation system may include a system based on an Archimedes screw. However, while the Archimedes screw lifts fluids trapped within cavities formed by its inclined blades, the screw conveyor propels dry bulk materials (powders, pellets, flakes, crystals, granules, grains, etc.) through the pushing action of its rotating blades. A screw conveyor system may be used to convey one or more rollable carriers from a first elevation to a second elevation.
In some embodiments, a water amusement ride may include an angled field area. The angled field area may include a high elevation end and a low elevation end. A water amusement ride may include at least one rollable carrier comprising an exterior rollable surface and an inner area. The inner area may include a participant container. The angled field area may be configured to substantially contain the rollable carrier such that the rollable carrier will remain in the angled field area while rolling. The rollable carrier may function to roll in the angled field area from the high elevation end of the angled field area to the low elevation end of the field area while containing a participant in the participant container.
In some embodiments, a water amusement ride may include a plurality of amusement elements associated with the angled field area. The amusement elements may function to affect the movement of the rollable carrier. A water amusement ride may include an elevation system which functions to convey at least one of the rollable carriers from the low elevation end of the angled field to the high elevation end of the angled field.
In some embodiments, an amusement ride conveyor may include a path system. A portion of the path system may include a conduit. A pressure adjustment mechanism coupled to the conduit may function to adjust the pressure in at least a portion of the conduit. The pressure adjustment mechanism may adjust the pressure such that at least one rollable carrier is conveyed through at least a portion of the conduit in response to the change in pressure. The rollable carrier may include an exterior rollable surface and an inner area. The inner area may include a participant container which functions to contain a participant.
In some embodiments, an amusement ride conveyor may include an elevation system. The elevation system may function to elevate at least one participant from a lower first elevation to a higher second elevation. The elevation system may include a vertical fluid jet which functions to elevate the participant to the higher second elevation. The elevation system may include a horizontal fluid jet which functions to move the participant off of the vertical fluid jet when the participant has reached the higher second elevation. An amusement ride conveyor may include a water path system coupled to the elevation system. The water path system may function to receive the participant from the elevation system. The water path system may function such that water flows in the water path system.
In some embodiments, a system for conveying a participant from a first source of water to a second source of water may include a belt; wherein the belt is coupled to the first source of water and to the second source of water. The system may include a belt movement system which functions to move the belt in a loop during use. The system may include one or more fluid jets functioning to produce a fluid stream having a predetermined velocity which is selectively greater, less than, or the same as a velocity of a participant at each of the fluid jet locations. At least some of the fluid jets may be positioned along a portion of the first source of water and/or a portion of the second source of water substantially adjacent to a portion of the belt. The fluid jets may be oriented tangentially with respect to the surface of the source of water so as to contact a participant and/or participant vehicle as a participant and/or participant vehicle passes by each of the locations.
In some embodiments, a system for controlling a participant flow rate through a multi path water amusement ride system may include a first belt; wherein the first belt is coupled to a first source of water and to a second source of water. The system may include a second belt; wherein the second belt is coupled to the first source of water and to a third source of water. A first portion of the first and second belts may be positioned substantially adjacent to each other. The system may include a first belt movement system, which functions to move at least the first belt in a loop. The system may include a second belt movement system, which functions to move at least the second belt in a loop. The system may include at least one gate mechanism positioned substantially adjacent the first portions of the first and second belts. At least one of the gate mechanisms may function upon activation, to inhibit a participant from entering the first or second belt.
In some embodiments, a system for facilitating entry of a participant on a floatation device may include a belt; wherein the belt is coupled to a first source of water and to a second source of water. The system may include a belt movement system which functions to move the belt in a loop. The first source of water and/or the second source of water may include a portion substantially adjacent the belt, wherein the portion of the first and/or second source of water comprises a depth of water which allows a participant to more easily enter a floatation device.
Depending on a water amusement parks geographic location, the waterpark may only be open for less than half of the year due to inclement weather (e.g., cold weather, rain, etc.). What is needed is a way to enclose portions or substantially all of the waterpark when weather threatens to shut down the park. However, it would be beneficial to have some type of enclosure that may be at least partially removed or retracted to open up at least a portion of the waterpark to the environment during good weather.
Positionable screens may be used to substantially enclose a portion of a waterpark during inclement weather. A multitude of positionable screens may be retractable/extendable within one another. The screens may also serve other functions in addition to protecting participants from uncomfortable weather conditions. The screens may be used to trap and recirculate heat lost from, for example, the water enclosed within the screens. The positioning of the screens may be automated, manual, or a combination of both. The screens may be formed from materials that allow most of the visible light spectrum through while inhibiting transmission of potentially harmful radiation.
Other components which may be incorporated into the system are disclosed in the following U.S. patents, herein incorporated by reference: an appliance for practicing aquatic sports as disclosed in U.S. Pat. No. 4,564,190; a tunnel-wave generator as disclosed in U.S. Pat. No. 4,792,260; a low rise water ride as disclosed in U.S. Pat. No. 4,805,896; a water sports apparatus as disclosed in U.S. Pat. No. 4,905,987; a surfing-wave generator as disclosed in U.S. Pat. No. 4,954,014; a waterslide with uphill run and floatation device therefore as disclosed in U.S. Pat. No. 5,011,134; a coupleable floatation apparatus forming lines and arrays as disclosed in U.S. Pat. No. 5,020,465; a surfing-wave generator as disclosed in U.S. Pat. No. 5,171,101; a method and apparatus for improved water rides by water injection and flume design as disclosed in U.S. Pat. No. 5,213,547; an endoskeletal or exoskeletal participatory water play structure whereupon participants can manipulate valves to cause controllable changes in water effects that issue from various water forming devices as disclosed in U.S. Pat. No. 5,194,048; a waterslide with uphill run and floatation device therefore as disclosed in U.S. Pat. No. 5,230,662; a method and apparatus for improving sheet flow water rides as disclosed in U.S. Pat. No. 5,236,280; a method and apparatus for a sheet flow water ride in a single container as disclosed in U.S. Pat. No. 5,271,692; a method and apparatus for improving sheet flow water rides as disclosed in U.S. Pat. No. 5,393,170; a method and apparatus for containerless sheet flow water rides as disclosed in U.S. Pat. No. 5,401,117; an action river water attraction as disclosed in U.S. Pat. No. 5,421,782; a controllable waterslide weir as disclosed in U.S. Pat. No. 5,453,054; a non-slip, non-abrasive coated surface as disclosed in U.S. Pat. No. 5,494,729; a method and apparatus for injected water corridor attractions as disclosed in U.S. Pat. No. 5,503,597; a method and apparatus for improving sheet flow water rides as disclosed in U.S. Pat. No. 5,564,859; a method and apparatus for containerless sheet flow water rides as disclosed in U.S. Pat. No. 5,628,584; a boat activated wave generator as disclosed in U.S. Pat. No. 5,664,910; a jet river rapids water attraction as disclosed in U.S. Pat. No. 5,667,445; a method and apparatus for a sheet flow water ride in a single container as disclosed in U.S. Pat. No. 5,738,590; a wave river water attraction as disclosed in U.S. Pat. No. 5,766,082; a water amusement ride as disclosed in U.S. Pat. No. 5,433,671; and, a waterslide with uphill runs and progressive gravity feed as disclosed in U.S. Pat. No. 5,779,553. The system is not, however, limited to only these components.
All of the above devices may be equipped with controller mechanisms to be operated remotely and/or automatically. For large water transportation systems measuring miles in length, a programmable logic control system may be used to allow park owners to operate the system effectively and cope with changing conditions in the system. During normal operating conditions, the control system may coordinate various elements of the system to control water flow. A pump shutdown will have ramifications both for water handling and guest handling throughout the system and will require automated control systems to manage efficiently. The control system may have remote sensors to report problems and diagnostic programs designed to identify problems and signal various pumps, gates, or other devices to deal with the problem as needed.
Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description of the preferred embodiments and upon reference to the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawing and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
Typically today's amusement ride vehicles found in amusement parks (e.g., water parks) are passive and merely follow a predetermined path (e.g., a track, channel, and/or directed flow of water). Most vehicles only require a participant to sit in a prone position and be carried along a predetermined route. Typically movements of a vehicle (and any participants associated with the vehicle) are determined solely by the course and layout of the predetermined route.
Most amusement ride vehicles are designed to either function in a wet or dry environment and not both. The few amusement rides incorporating vehicles which function in a wet and dry environment are based on vehicles which move along tracks and in which water is merely an effect of the ride and not part of any type of propulsion means.
An alternate type of amusement ride vehicle was developed to address the problems and issues stated above associated with amusement rides and vehicles in particular. In some embodiments, a vehicle may include a rollable carrier. Within the context of the embodiments described herein, a rollable carrier may be generally defined as having a substantially rounded shape and is not limited by any means to a spherical shape, and furthermore rollable merely implies at least that the object so described is capable of rolling along a surface.
A rollable carrier may function to carry one or more participants inside of the confines of the rollable carrier. A rollable carrier may be designed so that it may float in water with or without participants inside. Such a design would allow a rollable carrier to traverse dry or wet based amusement rides. The rollable carrier may be able to float along a water channel and/or roll along a dry path system.
In some embodiments, a path system may include, for example, conduits, channels, portions of natural rivers, portions of natural bodies of water, rails, and/or tracks. Path systems may include paths that split into two or more paths. Paths, which have split, may subsequently rejoin at a later point in the path system.
In some embodiments, a “dry” path system may include any path system through which a rollable carrier does not float, but may include path systems upon which water flows (e.g., for effect and/or for reducing friction).
In some embodiments, a rollable carrier may not float. It may not be necessary for the rollable carrier to float if water is not incorporated as part of the ride or if water is not present in any portion of the ride to a depth requiring the rollable carrier to float.
In some embodiments, a rollable carrier may include a participant container encased in an exterior rollable surface. The participant container and/or exterior rollable surface may be substantially hollow. The participant container may be coupled to the exterior rollable surface. The participant container may be coupled to the exterior rollable surface such that the participant container is inhibited from contacting the exterior rollable surface. The participant container may be designed to temporarily contain one or more participants.
The participant container may be coupled to the exterior rollable surface using elongated members. A first end of the elongated member may be coupled to the participant container and a second end of the elongated member may be coupled to the exterior rollable surface. Multiple elongated members may be used to couple the participant container to the exterior rollable surface. In some embodiments, elongated members may be substantially equally distributed about the outer surface of the participant container and the interior surface of the exterior rollable surface. Equally distributing elongated members about the surface of the two spheres may inhibit the participant container from contacting the exterior rollable surface (e.g., even when an unrestrained participant enclosed within the participant container is being thrown around while the rollable carrier is moving). The elongated members may be composed of a flexible material (e.g., cords).
In some embodiments, a rollable carrier may be inflatable. A rollable carrier may include a participant container encased in an exterior rollable surface. The participant container may be coupled to the exterior rollable surface such that the participant container is inhibited from contacting the exterior rollable surface. Portions of the rollable carrier may be at least partially formed from pliable materials. At least a portion of the area between the participant container and the exterior rollable surface may form a sealed compartment. The sealed compartment may include a resealable opening. The sealed compartment may be inflated with a fluid. Fluids may include liquids (e.g., water) and/or gases (e.g., air). Inflating the sealed compartment with fluids may provide shape to a rollable carrier composed primarily of pliable materials (e.g., PVC). An inflated sealed compartment may provide a means of cushioning a participant enclosed in the participant container. The inflated sealed compartment may inhibit an enclosed participant from injury. The inflated sealed compartment may provide buoyancy to the rollable carrier. The inflated sealed compartment may allow the rollable carrier and any participants enclosed therein to float substantially above the surface of a body of water.
In some embodiments, a rollable carrier may be formed from a material which is substantially transparent. In an embodiment, at least a portion of a rollable carrier may be formed from a material which is substantially transparent. Transparency of a rollable carrier may allow a participant enclosed within the rollable carrier to see outside of the rollable carrier, potentially improving the enjoyment of the participant's use of the rollable carrier/amusement ride.
In some embodiments, a rollable carrier may include an opening allowing participants to more easily access the interior of the rollable carrier (e.g., the exterior rollable surface). The opening may be a fixed size. The opening may allow an average sized adult to easily enter and exit the rollable carrier. Openings may be adjustable. For example an opening may be adjusted so it is smaller so that a child may enter easily but not prematurely exit accidentally during an amusement ride.
The rollable carrier may include some means for temporarily closing the opening during the amusement ride. The closing mechanism may include a flexible netting which allows air to easily flow through the rollable carrier. The closing mechanism may include a mechanism which is substantially water tight so that any water injected into the rollable carrier with participants will remain in the rollable carrier during the ride.
In some embodiment, a rollable carrier may include more than one opening. More than one opening in the rollable carrier may facilitate airflow through the rollable carrier. Facilitating airflow through a rollable carrier may be advantageous for several reasons. Advantages of increasing airflow in a rollable carrier may include increasing the comfort and/or safety of participant(s) within the rollable carrier. Increasing airflow may assist in cooling down the interior of the participant container, heated from solar energy and/or participants contained therein. Increasing airflow may reduce build up of gases (e.g., CO2) to potentially dangerous levels.
Rollable carriers which include multiple openings may include openings of various sizes. One or more openings may be appropriately sized to allow participants to enter/exit the rollable carrier. One or more openings may be relatively small and may primarily function to increase airflow through the rollable carrier. Rollable carriers may include multiple openings while still be capable of floating with one or more participants inside the participant container.
Examples of rollable carriers which may be adapted for the herein described purposes are illustrated in New Zealand Patent No. 270146 to Akers et al. which is incorporated by reference as if fully set forth herein.
In some embodiments, a rollable carrier may comprise one or more restraints.
In some embodiments, a rollable carrier may include more than one set of restraints. Multiple sets of restraints may be employed for when more than one participant rides within the rollable carrier. When more than one participant uses the rollable carrier during an amusement ride it may be prudent for safety reasons for all of the participants within the rollable carrier to wear restraints. When multiple participants use the same rollable carrier at once restraining their movement may help to avoid the participants bumping into each other and injuring themselves.
In some embodiments, a rollable carrier may not float. It may not be necessary for the rollable carrier to float if water is not incorporated as part of the ride, or if water is not present in any portion of the ride to a depth requiring the rollable carrier to float. An example of such an embodiment may include a rollable carrier. The rollable carrier may be formed from a rigid or semi-rigid cage like material. The rollable carrier may be formed from a substantially transparent material. In some embodiments, the rollable carrier may be formed from a material which is substantially not transparent; however, a participant riding within the rollable carrier may still have good visibility of his surrounding outside of the rollable carrier due to the openings in the cage like material. The rollable carrier may include some type of padding surrounding the material forming the cage to protect the participant. The inside of the cage may include padding material (e.g., at least for the safety of the participant). The outside of the cage may include padding material (e.g., at least for the safety of the participant, at least in as much as to protect the participants extremities from becoming pinched or injured or from being run over by the rollable carrier during use).
A rollable carrier including perforations (e.g., as in a cage structure) may allow water to enter the rollable carrier. Water may be present during at least a portion of an amusement ride, but only used in minimal amounts when the rollable carrier used for the ride is not sufficiently buoyant. However, minimal amounts of water used in such a situation may be helpful. Water used in minimal amounts may add to the enjoyment of the amusement ride for the participant. A perforated rollable carrier may allow water to enter the rollable carrier adding to the enjoyment and fun of the amusement ride. Minimal amounts of water may reduce friction along the surface of the amusement ride.
In some embodiments, an amusement ride may include a rollable carrier. The rollable carrier may include a participant container and an exterior rollable surface. The participant container may be positioned in the rollable carrier. The participant container may move independently of the exterior rollable surface. For example when the exterior rollable surface is rolling/revolving as the rollable carrier moves along a path system of an amusement ride the participant container may not revolve with the exterior rollable surface.
Examples of rollable carriers which may be adapted for the herein described purposes are illustrated in U.S. Pat. No. 4,501,434 to Dupois; U.S. Pat. No. 5,791,254 to Mares et al.; U.S. Pat. No. 3,066,951 to Gray; and U.S. Pat. No. 4,545,574 to Sassak all of which are incorporated by reference as if fully set forth herein.
Rollable carriers described herein may be used in amusement rides. The amusement ride may include so called “water” amusement rides. Water amusement rides typically include water as an effect at least in some portion of the amusement ride. The amusement ride may include multiple different elevation points coupled to one another with some type of path system. A path system may include, for example, a conduit or channel. Channels typically include a water element and may include water deep enough for a buoyant rollable carrier to float along the channel. The channel may include sides that are high enough to inhibit water within the channels from inadvertently spilling over the sides. The channel may include sides that are high enough to inhibit a rollable carrier from exiting over the sides prematurely and/or in an uncontrolled manner.
In some embodiments, a path system may include a conduit (e.g., a tube). The conduit may not include water or any type of water element. The conduit as the term implies is a fully enclosed path system which may inhibit a rollable carrier from exiting over the sides prematurely and/or in an uncontrolled manner. “Fully enclosed” is not necessarily limited to a seamless and/or continuous sheet forming the conduit. The conduit may be formed out of a rigid material in a cage or net like formation. A perforated conduit may allow participants in rollable carriers greater visibility and/or enjoyment during an amusement ride. The conduit may be formed from substantially transparent materials. In some embodiments, portions of the conduit may be formed from substantially transparent materials. Forming portions of a conduit from transparent materials may allow a participant greater visibility (and consequently greater enjoyment) during an amusement ride.
In some embodiments, substantially parallel bars coupled together may form a conduit. In some embodiments, mixtures of different materials and methods for forming conduits may be employed.
Elevation system 124 may include any elevation system capable of safely transporting rollable carriers to a higher elevation. The elevation system depicted in
Body of water 122 (e.g., a pool) is merely one example of a receiving area for incoming rollable carriers. The receiving area does not necessarily have to include a water element. A body of water, such as the one depicted in
Participants may enter/exit the rollable carrier/ride at various access points 126 along the amusement ride depicted in
The amusement park ride depicted in
Amusement element 128a includes a “360° loop.” The general concept of a 360° loop is well known to one skilled in the art of amusement rides, and is especially associated with roller coasters. However water based amusement rides, heretofore, are not known to have ever incorporated a 360° loop. A 360° loop may include a fully enclosed conduit, unlike most roller coasters. A fully enclosed conduit may be necessary because, unlike traditional roller coasters, rollable carriers as described herein are typically not coupled to a track.
Amusement element 128b includes two successive hills. A fully enclosed conduit may not be necessary. It may however be desirable to employ enclosed conduits for at least portions of amusement element 128b (e.g., portions including at least the highest points of elevation, 360° loop) for reasons discussed herein.
In some embodiments, amusement elements may include a “waterfall.” The waterfall may be configured to allow the rollable carrier to drop from a first higher elevation to a second lower elevation. In certain embodiments, the difference between the elevations is between about 2 ft. to about 12 ft. A waterfall may allow a rollable carrier to experience free fall over a predetermined distance to add enjoyment to the amusement ride.
Almost all water park rides require substantial waiting periods in a queue line due to the large number of participants at the park. This waiting period is typically incorporated into the walk from the bottom of the ride back to the top, and can measure hours in length, while the ride itself lasts a few short minutes, if not less than a minute. A series of corrals are typically used to form a meandering line of participants that extends from the starting point of the ride toward the exit point of the ride. Besides the negative and time-consuming experience of waiting in line, the guests are usually wet, exposed to varying amounts of sun and shade, and are not able to stay physically active, all of which contribute to physical discomfort for the guest and lowered guest satisfaction. Additionally, these queue lines are difficult if not impossible for disabled guests to negotiate.
The concept of a continuous water ride was developed to address the problems and issues stated above associated with water amusement parks. Continuous water rides may assist in eliminating and/or reducing many long queue lines. Continuous water rides may eliminate and/or reduce participants having to walk back up to an entry point of a water ride. Continuous water rides may also allow the physically handicapped or physically challenged to take advantage of water amusement parks. Where before that may have been difficult if not impossible due to many flights of stairs typically associated with water amusement parks. Amusement rides employing the rollable carriers described herein may be incorporated into a continuous water ride.
In some embodiments, continuous water rides may include a system of individual water rides connected together. The system may include two or more water rides connected together. Amusement rides employing the rollable carriers described herein may include downhill water slides, uphill water slides, single tube slides, multiple participant tube slides, space bowls, sidewinders, interactive water slides, water rides with falling water, themed water slides, dark water rides, and/or accelerator sections in water slides. Connections may reduce long queue lines normally associated with individual water rides. Connections may allow participants to remain in the water and/or a rollable carrier (e.g., a floatation device) during transportation from a first portion of the continuous water ride to a second portion of the continuous water ride.
In some embodiments, an exit point of a first water ride may be connected to an entry point of a second water ride forming at least a portion of a continuous water ride. The exit point of the first water ride and the entry point of the second water ride may be at different elevation levels. An elevation system may be used to connect the exit point of the first water ride and the entry point of the second water ride. In some embodiments, an entry point of a second water ride may have a higher elevation than an exit point of a first water ride coupled to the entry point of the second water ride.
In some embodiments, elevation systems may include any system capable of transporting one or more participants and/or one or more rollable carriers from a first point at one elevation level to a second point at a different elevation level. Elevation systems may include a conveyor belt system. Elevation systems may include a water lock system. Elevation systems may include an uphill water slide, a spiral transport system, and/or a water wheel.
In some embodiments, bodies of water 122 may include multiple elevation systems 124 and multiple water rides connecting each other. In some embodiments, floating queue lines and/or channels may couple water rides and elevation systems. Floating queue lines may help control the flow of participants more efficiently than without using floating queue lines.
In some embodiments, elevation systems may include a conveyor belt system. Conveyor belt systems may be more fully described in U.S. patent application Ser. No. 09/952,036 (Publication No. US-2002-0082097-A1), herein incorporated by reference. This system may include a conveyor belt system positioned to allow participants to naturally float up or swim up onto the conveyor and be carried up and deposited at a higher level. Such a system may also be modified to convey rollable carriers.
The conveyor belt system may also be used to take participants and rollable carriers out of the water flow at stations requiring entry and/or exit from the amusement ride. Participants and rollable carriers float to and are carried up on a moving conveyor on which participants may exit the rollable carriers. New participants may enter the rollable carriers and be transported into the amusement ride at a desired location and velocity. The conveyor may extend below the surface of the water so as to more easily allow participants to naturally float or swim up onto the conveyor. Extending the conveyor below the surface of the water may allow for a smoother entry into the water when exiting the conveyor belt. Typically the conveyor belt takes participants and rollable carriers from a lower elevation to a higher elevation, however it may be important to first transport the participants to an elevation higher than the elevation of their final destination. Upon reaching this apex the participants then may be transported down to the elevation of their final destination on a water slide, rollers, or on a continuation of the original conveyor that transported them to the apex. This serves the purpose of using gravity to push the participant off and away from the belt, slide, or rollers into a second water ride of the continuous water ride and/or a floating queue. The endpoint of a conveyor may be near a first end of a horizontal hydraulic head channel wherein input water is introduced through a first conduit. This current of flowing may move the participants away from the conveyor endpoint in a quick and orderly fashion so as not to cause increase in participant density at the conveyor endpoint. Further, moving the participants quickly away from the conveyor endpoint may act as a safety feature reducing the risk of participants becoming entangled in any part of the conveyor belt or its mechanisms. A deflector plate may also extend from one or more ends of the conveyor and may extend to the bottom of the channel. When the deflector plate extends at an angle away from the conveyor it may help to guide the participants up onto the conveyor belt as well as inhibit access to the rotating rollers underneath the conveyor. These conveyors may be designed to lift participants from one level to a higher one, or may be designed to lift participants and rollable carriers out of the water, onto a horizontal moving platform and then return the rollable carrier with a new participant to the water.
The conveyor belt speed may also be adjusted in accordance with several variables. The belt speed may be adjusted depending on the participant density; for example, the speed may be increased when participant density is high to reduce participant waiting time. The speed of the belt may be varied to match the velocity of the water, reducing changes in velocity experienced by the participant moving from one medium to another (for example from a current of water to a conveyor belt). Conveyor belt speed may be adjusted so participants are discharged at predetermined intervals, which may be important where participants are launched from a conveyor to a water ride that requires safety intervals between the participants.
Several safety concerns should be addressed in connection with the conveyor system. The actual belt of the system should be made of a material and designed to provide good traction to participants and rollable carriers without proving uncomfortable to the participants touch. Detection devices or sensors for safety purposes may also be installed at various points along the conveyor belt system. These detection devices may be variously designed to determine if any participant on the conveyor violating safety parameters. Gates may also be installed at the top or bottom of a conveyor, arranged mechanically or with sensors wherein the conveyor stops when the participant collides with the gate so there is no danger of the participant being caught in and pulled under the conveyor. Runners may cover the outside edges of the conveyor belt covering the space between the conveyor and the outside wall of the conveyor so that no part of a participant may be caught in this space. All hardware (electrical, mechanical, and otherwise) should be able to withstand exposure to water, sunlight, and various chemicals associated with water treatment (including chlorine or fluorine) as well as common chemicals associated with the participants themselves (such as the various components making up sunscreen or cosmetics).
In some embodiments, a conveyor belt system may include restraining devices and/or gripping devices. Restraining devices may be used to inhibit rollable carriers and/or participants from moving while on the conveyor belt (other than the movement associated with the movement of the conveyor belt itself when activated). Many of the rollable carriers described herein may have a tendency to move on their own in a direction opposite that of the conveyor belt if the conveyor belt is moving from a first lower elevation to a second higher elevation. Restraining devices may be used to inhibit movement of a rollable carrier and/or participants relative to a conveyor belt.
Restraining members may include paddle type embodiments coupled to a conveyor belt. Paddles may include solid members. Paddles may include supported netting. Some type of netting (e.g., any materials which may allow fluids to pass through) may be used to form restraining members. Materials which allow fluids (e.g., water and/or air) to pass through may decrease resistance as the restraining members travel around the conveyor belt system, especially when unoccupied by a rollable carrier. Decreasing resistance may be advantageous in that the elevation system may require less energy to operate.
In some embodiments, end 124a of elevation system 124 may be positioned above beginning 124b of a second portion of the elevation system at a sufficient height to allow restraining members 114 to more easily pass around end restraining members 114a without interference from beginning restraining members 114b. As depicted in
Various sensors may also be installed along the conveyor belt system to monitor the number of people using the system in addition to their density at various points along the system. Sensors may also monitor the actual conveyor belt system itself for breakdowns or other problems. Problems include, but are not limited to, the conveyor belt not moving when it should be or sections broken or in need of repair in the belt itself. All of this information may be transferred to various central or local control stations where it may be monitored so adjustments may be made to improve efficiency of transportation of the participants. Some or all of these adjustments may be automated and controlled by a programmable logic control system.
Various embodiments of the conveyor lift station include widths allowing only one or several participants side by side to ride on the conveyor according to ride and capacity requirements. The conveyor may also include entry and exit lanes in the incoming and outgoing stream so as to better position participants onto the conveyor belt and into the outgoing stream.
More embodiments of conveyor systems are shown in
In some embodiments, a conveyor belt system may be oriented substantially vertically. A vertical conveyor belt system may decrease the time required to convey a participant over a particular elevational distance relative to a conveyor belt system disposed at an angle. The use of vertical conveyor belts may also reduce the amount of land required by an amusement ride.
A vertical conveyor belt may function much like an elevator, in so far as it may start and stop to load and unload participants. A vertical conveyor belt may include a restraining system. The restraining system may function to inhibit rollable carriers from moving relative to the conveyor belt. Restraining systems may include any type of restraint system known to one skilled in the art.
Restraining systems may include container systems coupled to the conveyor belt. A container may be coupled to the conveyor belt and may be open on one side such that as the container travels around with the conveyor belt a rollable carrier may enter the container at a first elevation (e.g., a lower elevation). The belt may carry the container to a second elevation (e.g., a higher elevation relative to the first elevation). A programmable control system may stop whenever a container reaches the first and second elevation allowing rollable carriers to enter and exit the container. The conveyor belt system may include a programmable control system which is partially or fully automated. The conveyor belt system may include sensors which detect whether or not a container is occupied by a rollable carrier and/or if a rollable carrier is waiting to board a container. Such a sensor system may be coupled to a programmable control system allowing the conveyor belt system to work more efficiently (e.g., containers will not stop at a particular elevation if there exists no rollable carrier to enter or exit the container.
A vertical conveyor belt may include restraining systems. Restraining systems may include a container with a roof and a gate. The gate may be opened and closed automatically in response to signals from a sensor system triggered by participants and/or rollable carriers. Gates may be opened/closed by amusement park employees. In some embodiments, Vertical conveyor belts may use a combination of programmable control systems, sensor systems, and amusement park employees to ensure the safety of participants.
In some embodiments, an elevation system may include fluid enhanced elevation system. A fluid enhanced elevation system may include a water jet which functions to increase the elevation of a participant and/or rollable carrier. The fluid enhanced elevation system may function by projecting a volume of water/air at a high pressure in order to elevate a participant and/or rollable carrier. In some embodiments, an elevation system using pressurized fluids may be used to elevate a participant/rollable carrier only a few feet (e.g., the elevation system may only be used as an amusement effect for the enjoyment of the participant). In some embodiments, a horizontally directed fluid jet, or some other means, may be used to displace a participant/rollable carrier off of a fluid enhanced elevation system. The participant/rollable carrier may already be in an elevated state due to an activated vertically directed fluid jet upon displacement using the horizontally directed fluid jet.
The gate mechanism may function such that few or no pinch points are accessible to a participant. The gate mechanism may be driven by outboard actuators (e.g., hydraulic or pneumatic). The gate mechanism may include a pivot shaft, actuators, and local drive unit. The gate mechanism may include sensors. Some of the sensors may communicate the position of the gate to a programmable controller. Some of the sensors may detect when participants approach the gate. Some of the sensors may detect when participants have safely cleared the gate. Sub-framework of the gate may be mounted directly to the path system flooring (e.g., concrete).
In some embodiments, gate mechanisms may be used to direct participants toward one or more paths when there exists two or more alternative path choices built into a water amusement park ride system. The gate mechanism may be coupled to a control system. The control system and/or gate mechanism may be coupled to sensors. The control system may be at least partially automated.
In some embodiments, participants may signal which path option they prefer and a gate mechanism may comply appropriately with the participant's choice. For example, a participant may signal manually (e.g., vocally or using hand signals) which path option the participant prefers. Using motion detectors and/or voice recognition software may allow a control system to automatically position a gate mechanism such that a participant enters the desired path option. In some embodiments, a gate mechanism may be manually controlled by an operator. In some embodiments, a participant may use a personal electronic signally device to indicate which path option they prefer. For example a participant identifier may be used as described in U.S. patent application Ser. No. 10/693,654 entitled “CONTINUOUS WATER RIDE,” herein incorporated by reference.
In some embodiments, a gate mechanism may function to regulate the flow of participants between a multi-path option such that participants are distributed appropriately to maintain a maximum participant flow rate reducing participant waiting times. Appropriately distributing participants between path options of a water amusement ride and/or elevation system may include substantially evenly distributing participants between path options. Appropriately distributing participants between path options of a water amusement ride and/or elevation system may include distributing participants between path options based on each paths particular participant flow capacity.
One skilled in the art may use and/or modify common methods and devises to act as or accomplish similar ends of the gate mechanism (e.g., diverting participants between path options and/or controlling the flow of participants through a particular section of a water amusement ride and/or system).
In some embodiments, floating queue system 160 may include fluid jets. Floating queue system 160 may be designed as depicted in
Fluid jets within a floating queue system may assist in controlling the flow of participants onto a conveyor system and/or amusement park ride. Control systems may be coupled to the fluid jets to control the velocity of fluids exiting the jets to control the flow of participants onto a conveyor system and/or amusement park ride. In some embodiments, control systems may be at least partially automated. For example, control systems may include sensors coupled to the control system. Sensors may assist the control system in keeping track of participant flow rate through a floating queue system such that a control system may adjust the participant flow rate accordingly. In some embodiments, a floating queue system may assist in controlling the flow of participants off a conveyor system and/or amusement park ride.
In some embodiments, an amusement park system may include portions of a body of water (e.g., channels, pools, etc.) wherein the portions are shallower than the rest of the body of water. Shallower portions of a body of water may allow participants to more easily enter the amusement park system at this point. Shallower portions may allow a participant to more easily enter a water amusement ride and/or more easily mount/access a vehicle (e.g., an inflatable vehicle such as an inner tube). Shallower portions of a body of water may also be referred to as participant/vehicle access or entrance points. These shallower portions may be shallow enough to facilitate participants entrance into a ride/vehicle while still allowing the participant/vehicle to float. In some embodiments, shallower portions of a body of water may range from 1 to 4 feet in depth. In some embodiments, shallower portions of a body of water may range from 1 to 3 feet in depth. In some embodiments, shallower portions of a body of water may range from 1 to 2 feet in depth. In some embodiments, shallower portions of a body of water may range from 2 to 3 feet in depth.
In some embodiments, shallower portions of a body of water may be positioned adjacent a beginning point and/or end point of an elevation system (e.g., a conveyor belt elevation system). Shallower portions may be positioned in conjunction with or instead of floating queue system 160 as depicted in
In some embodiments, shallower portions of a body of water may be positioned before/adjacent a beginning point of a conveyor belt elevation system. The shallower portion may be used in combination with means for conveying water from a beginning of a conveyor belt elevation system to the end of the conveyor belt elevation system, described more fully in U.S. patent application Ser. No. 09/952,036 (Publication No. US-2002-0082097-A1). Water conveyed from a beginning point of a conveyor belt elevation system to an end point of a conveyor belt elevation system may be used to create a hydraulic gradient to assist in pushing a participant onto the conveyor belt and/or assist in pulling a participant off of the conveyor belt. The hydraulic gradient used in such a manner may assist in regulating the flow of participants through a conveyor belt elevation system as well as any water amusement park system to which the conveyor belt elevation system is a part of.
In some embodiments, path 116a and/or path 116b may include a queue line which funnel participants in a controlled manner to conveyor belt elevation system 124. Using two or more queue lines to funnel participants to an elevation system (especially an elevation system which may handle several participants at a time (e.g., wide enough to handle two participants next to each other)) may increase the loading efficiency of an amusement ride.
In some embodiments, a high velocity low volume jet 136 as depicted in
Examples of systems which may be modified for use to elevate and/or move a participant and/or rollable carrier with fluids (e.g., air) are illustrated in U.S. Pat. No. 6,083,110 to Kitchen et al., which is incorporated by reference as if fully set forth herein.
Fluid enhanced elevation systems, in some embodiments, may include “wind tunnels.”
Rollable carrier may be blown through a portion of a path system in some embodiments. In some embodiments, a rollable carrier may pulled through a portion of a path system using a reduced pressure system. Reducing the air pressure in one end of an enclosed conduit may pull a rollable carrier through the conduit towards the end of the enclosed conduit. A reduced pressure system may function as an elevation system. The reduced pressure system may pull one or more rollable carriers through a portion of a path system which includes going from a lower elevation to a relatively higher elevation.
A wind tunnel and a reduced pressure system may be designed based on similar mechanical systems and principals. One or more motorized fans may be used to generate winds up to 200 mph to push and/or pull a rollable carrier through a path system. Either embodiment may function more efficiently if a portion of the path system through which a rollable carrier is conveyed using air pressure includes a substantially enclosed conduit. An enclosed conduit (one or more ends of the conduit may be open) may assist in more efficiently channeling the energy produced from a pressure controlling system (e.g., motorized fans).
In some embodiments, a cross section of a conduit forming a portion of a path system may substantially correspond to a cross section of a portion of a rollable carrier. A shape and/or size of the cross section of a portion of the rollable carrier may correspond to a cross section of a conduit forming a portion of a path system. Cross sections of a rollable carrier and a portion of a path system may correspond such that when the rollable carrier enters the portion of the path system (e.g., a conduit) the rollable carrier substantially forms a seal between the rollable carrier and the portion of the path system. Advantages of corresponding cross sections of a rollable carrier and a portion of a path system sealing off at least one end of the portion of the path system such that airflow between the outer surface of the rollable carrier and the inner surface of the portion of the path system is reduced. It is not necessary for airflow between the rollable carrier and the portion of the path system to be eliminated. Reducing the airflow may increase the efficiency of a pressure based elevation system.
It may be counterproductive to manufacture the portion of the path system with an inner cross section which so closely matches the outer cross section of the rollable carrier such that airflow between the two is substantially eliminated. Such an embodiment may lead to increased friction between the surfaces of the rollable carrier and the path system. Friction may increase to a point such that the disadvantages of the increasing friction over the advantages of restricting airflow between the surfaces of the rollable carrier and the path system.
Airflow between the inner surface of a portion of the path system and the outer surface of a rollable carrier may decrease the efficiency of a pressure based elevation system. Airflow may be inhibited between the inner surface of a portion of the path system and the outer surface of a rollable carrier while still allowing a rollable carrier sufficient room to roll through the path system.
It should be noted that although amusement ride embodiments described herein are designed with a rollable carrier in mind, the rollable carrier may in some instances not roll along portions of the path system. For example, the rollable carrier may not roll while being conveyed from a lower elevation to a relatively higher elevation using an elevation system. In one example, a pressure based elevation system may effectively pull/push a rollable carrier through a portion of a path system in such a manner so that the rollable carrier may actually slide along a surface of the path system at least for portions of the amusement ride. This phenomenon may not be attributed so much to the particular design of the rollable carrier but to particular conveying force applied to the rollable carrier used to propel the rollable carrier. For example, a rollable carrier may be pulled or pushed through a portion of the path system using a pressure based elevation system with enough force such that at times the rollable carrier does not actually roll end over end.
In some embodiments, a motorized fan may be coupled to a path system. The motorized fan may be oriented with respect to the path system such that the fan blows air through at least a portion of the path system. One or more fans may combine to blow gusts of wind which may reach up to 200 mph through a portion of the path system. The speed of the fan blades and consequently the winds generated may be controlled by remote systems. Systems used to control motorized fans may be at least partially or fully automated.
In some embodiments, only one rollable carrier may be allowed to travel through a portion of a path system using a pressure based elevation system. Allowing more than one rollable carrier to enter the portion of the path system may inhibit winds generated from a fan from applying pressure to a first rollable carrier already traveling through the portion. In a system where a fan generates winds to push rollable carriers through the portion of the path system, more than one rollable carrier may be pushed through at a time, however attempting to push more than one rollable carrier through the portion of the path system may greatly increase the load requirements of the fans powering the system.
In some embodiments, a pressure based elevation system may “pull” a rollable carrier through a portion of a path system. In such an embodiment pressure ahead of the rollable carrier may be reduced along the path system in order to pull the rollable carrier through the path system. The portion of the path which incorporates the pressure based elevation system may be substantially enclosed to increase the efficiency of the pressure based elevation system.
In some embodiments, a motorized fan may be coupled to at least one end of a portion of a path system. The fan may remove air from the portion of the path system in order to reduce pressure within the portion of the path system. As a rollable carrier enters a beginning of the portion of the path system the rollable carrier may substantially seal the beginning of the portion of the path system increasing the vacuum created by the fan.
A “gate” may temporarily seal an end of the portion of the path system. Sealing the end of the portion of the path system may increase the force of the vacuum created by the fan within the portion of the path system. When a rollable carrier enters the beginning of the portion of the path system it creates a substantially sealed chamber when used in combination with a gate system. The chamber is sealed except for an opening coupled to the fan which is removing air and reducing pressure within the created “chamber.”
In some embodiments, an elevation system may include a system based on an Archimedes screw. The “screw conveyor” is a direct descendant of the Archimedes screw. However, while the Archimedes screw lifts fluids trapped within cavities formed by its inclined blades, the screw conveyor propels dry bulk materials (powders, pellets, flakes, crystals, granules, grains, etc.) through the pushing action of its rotating blades. Also, most screw conveyers in use today have a single blade, while modern Archimedes screws typically have two or three blades.
Greek mathematician and physicist Archimedes is acknowledged as the inventor of the screw conveyor in 235-240 B.C., and essentially his design has not changed since then.
Screw conveyors are one of the oldest and simplest methods for moving bulk materials and consist primarily of a conveyor screw rotating in a stationary trough. Material placed in the trough is moved along its length by rotation of the screw which is supported by hanger bearings. Inlets, outlets, gates, and other accessories control the material and its disposition.
Screw conveyors are compact, easily adapted to congested locations and can be mounted horizontal, vertical, and in inclined configurations. Their supports are simple and easily installed.
When an Archimedes screw is tilted, “buckets” that can trap water are formed between the blades. These buckets appear to move upward when the screw is rotated, carrying the water within them. The screw collects water from the lower reservoir, where the buckets are formed, and empties it into the upper reservoir, where the buckets are unformed. When operated manually it is rotated by a crank or by a man walking around the circumference of the outer cylinder in a treadmill manner.
In modern industrial screws, the outer cylinder is usually fixed and the blades attached to the inner cylinder are rotated within it. This allows the top half of the outer cylinder to be eliminated so that a stationary trough is formed from the bottom half of the outer cylinder. Such a construction permits easy access to the interior of the screw, in order to remove debris and for routine maintenance. In addition, the stationary outer cylinder relieves the moving blades and inner cylinder of some of the weight of the water. A disadvantage of this design is that water can leak down through the small gap between the moving blades and the stationary trough. However, this leakage can be considered an advantage in that it allows the screw to drain when it stops rotating.
The Archimedes screw has had a resurgence in recent years because of its proven trouble-free design and its ability to lift wastewater and debris-laden water effectively. It has also proved valuable in installations where damage to aquatic life must be minimized.
The amount of water lifted per unit time can also be increased by increasing the rotational velocity of the screw. However, there is a practical limit to how fast one can rotate the screw. A handbook on the design and operation of Archimedes screws states that, based on field experience, the rotational velocity of a screw in revolutions per minute should be no larger than 50/D2/3, where D is the diameter of the outer cylinder in meters. Thus a screw with an outside diameter of 1 m should have a maximum rotational velocity of 50 rpm. If the screw is rotated much faster, turbulence and sloshing prevent the buckets from being filled and the screw simply churns the water in the lower reservoir rather than lifting it.
A discussion of ways in which to optimize the design of an Archimedes screw may be found in Rorres; “The Turn of the Screw: Optimal Design of an Archimedes Screw”; January, 2000; Journal of Hyrdraulic Engineering, pgs. 72-80, which is incorporated by reference as if fully set forth herein. Examples of hydraulic screw pumps are illustrated in U.S. Pat. No. 5,073,082 to Radlik, which is incorporated by reference as if fully set forth herein.
Within the context of amusement rides screw conveyors may be used to convey participant carriers (e.g., rollable carriers) from a first lower elevation to a second higher elevation. Within the context of water based amusement rides screw conveyors may be used to convey participant carriers (e.g., rollable carriers) and/or water from a first lower elevation to a second higher elevation.
In some embodiments, a screw conveyor may transport participant carriers and not transport water. Advantages of not transporting water along with participant carriers may at least include increased safety for a participant within the participant carrier. Water transported with a participant carrier could increase drowning risks, especially if an outer casing or enclosure is not transparent allowing amusement park workers to observe participants. Another advantage is that an inner screw of the screw conveyor would not need to provide a watertight seal if water were not being transported.
Not requiring a watertight seal within a screw conveyor elevation system may reduce construction costs of the system. “Blades” of the screw may be formed of a porous material including grids formed from rods or bands of material (e.g., much like a rigid, semi-rigid, or flexible net). This would decrease construction materials and cost, as well as decreasing the weight of inner screw of the elevations system. Decreasing the weight of the inner screw of the system would concurrently decrease energy required by the system to turn the inner screw of the elevation system. Forming the blades of the screw from porous materials may facilitate airflow through the elevation system. Increasing airflow may increase the comfort and safety of participants.
In some embodiments, a screw conveyor elevation system may convey participant carriers and water. In this way an elevation system may provide a dual function. Conveying water from a first lower elevation to a second higher elevation within a water amusement ride is a major concern with water amusement parks. An elevation system capable of conveying participants as well as water is advantageous.
In some embodiments, a screw conveyor elevation system may include blades where the outer portion of the blades is non porous and forms a substantially watertight seal with an outer cylinder of the elevation system.
In some embodiments, an elevation system may include a water lock system. These systems may be used to increase elevation and/or decrease elevation. In certain embodiments, an exit point of a first water ride of a continuous water ride may have an elevation below an entry point of a second water ride of the continuous water ride. In some embodiments, the water lock system includes a chamber for holding water coupled to the exit point of the first water ride and the entry point of the second water ride. A chamber is herein defined as an at least partially enclosed space. The chamber includes at least one outer wall, or a series of outer walls that together define the outer perimeter of the chamber. The chamber may also be at least partially defined by natural features such as the side of a hill or mountain. The walls may be substantially watertight. The outer wall of the chamber, in certain embodiments, extends below an upper surface of the first water ride and above the upper surface of the second water ride. The chamber may have a shape that resembles a figure selected from the group consisting of a square, a rectangle, a circle, a star, a regular polyhedron, a trapezoid, an ellipse, a U-shape, an L-shape, a Y-shape or a figure eight, when seen from an overhead view.
A first movable member may be formed in the outer wall of the chamber. The first movable member may be positioned to allow participants and water to move between the exit point of the first water ride and the chamber when the first movable member is open during use. A second movable member may be formed in the wall of the chamber. The second movable member may be positioned to allow participants and water to move between the entry point of the second water ride and the chamber when the second movable member is open during use. The second movable member may be formed in the wall at an elevation that differs from that of the first movable member.
In certain embodiments, the first and second movable members may be configured to swing away from the chamber wall when moving from a closed position to an open position during use. In certain embodiments, the first and second movable members may be configured to move vertically into a portion of the wall when moving from a closed position to an open position. In certain embodiments, the first and second movable members may be configured to move horizontally along a portion of the wall when moving from a closed position to an open position.
A bottom member may also be positioned within the chamber. The bottom member may be configured to float below the upper surface of water within the chamber during use. The bottom member may be configured to rise when the water in the chamber rises during use. In certain embodiments, the bottom member is substantially water permeable such that water in the chamber moves freely through the bottom member as the bottom member is moved within the chamber during use. The bottom member may be configured to remain at a substantially constant distance from the upper surface of the water in the chamber during use. The bottom member may include a wall extending from the bottom member to a position above the upper surface of the water. The wall may be configured to prevent participants from moving to a position below the bottom member. A floatation member may be positioned upon the wall at a location proximate the upper surface of the water. A ratcheted locking system may couple the bottom member to the inner surface of the chamber wall. The ratcheted locking system may be configured to inhibit the bottom member from sinking when water is suddenly released from the chamber. The ratcheted locking system may also include a motor to allow the bottom member to be moved vertically within the chamber. There may be one or more bottom members positioned within a single chamber. The bottom member may incorporate fluid jets to direct and/or propel participants in or out of the chamber.
The lock system may also include a substantially vertical first ladder coupled to the wall of the bottom member and a substantially vertical second ladder coupled to a wall of the chamber. The first and second ladders, in certain embodiments, are positioned such that the ladders remain substantially aligned as the bottom member moves vertically within the chamber. The second ladder may extend to the top of the outer wall of the chamber. The ladders may allow participants to exit from the chamber if the lock system is not working properly.
In certain embodiments, water may be transferred into and out of the water lock system via the movable members formed within the chamber wall. Opening of the movable members may allow water to flow into the chamber from the second water ride or out of the chamber into the first water ride.
The lock system may also include a controller for operating the system. The automatic controller may be a computer, programmable logic controller, or any other control device. The controller may be coupled to the first movable member, the second movable member, and the first water control system. The controller may allow manual, semi-automatic, or automatic control of the lock system. The automatic controller may be connected to sensors positioned to detect if people are in the lock or not, blocking the gate, or if the gate is fully opened or fully closed or the water levels within the chambers.
In certain embodiments, the participants may be floating in water during the entire transfer from the first water ride to the second water ride. The participants may be swimming in the water or floating upon a floatation device. Preferably, the participants are floating on an inner tube, a floatation board, raft, or other floatation devices used by participants on water rides.
In certain embodiments, the lock system may include multiple movable members formed within the outer wall of the chamber. These movable members may lead to multiple water rides and/or continuous water ride systems coupled to the chamber. The additional movable members may be formed at the same elevational level or at different elevations.
In some embodiments, a first and second movable members formed in the outer wall of a chamber of a lock system may be configured to move vertically into a portion of the wall when moving from a closed position to an open position. The members may be substantially hollow, and have holes in the bottom configured to allow fluid flow in and out of the member. In an open position, the hollow member may be substantially filled with water. To move the member to a closed position, compressed air from a compressed air source may be introduced into the top of the hollow member through a valve, forcing water out of the holes in the bottom of the member. As the water is forced out and air enters the member, the buoyancy of the member may increase and the. member may float up until it reaches a closed position. In this closed position, the holes in the bottom of the member may remain submerged, thereby preventing the air from escaping through the holes. To move the member back to an open position, a valve in the top of the member may be opened, allowing the compressed air to escape and allowing water to enter through the holes in the bottom. As water enters and compressed air escapes, the gate may lose buoyancy and sink until it reaches the open position, when the air valve may be closed again.
An advantage to the pneumatic gate system may be that water may be easily transferred from a higher lock to a lower one over the top of the gate. This system greatly simplifies and reduces the cost of valves and pumping systems between lock levels. The water that progressively spills over the top of the gate as it is lowered is at low, near-surface pressures in contrast to water pouring forth at various pressures in a swinging gate lock system. This advantage makes it feasible to eliminate some of the valves and piping required to move water from a higher lock to a lower lock.
In certain embodiments a pneumatic or hydraulic cylinder may be used to vertically move a gate system. An advantage to this system may be that the operator has much more control over the gate than with a gate system operating on a principle of increasing and decreasing the buoyancy. More control of the gate system may allow the gates to be operated in concert with one another, as well as increasing the safety associated with the system. The gate may be essentially hollow and filled with air or other floatation material such as Styrofoam, decreasing the power needed to move the gate.
While described as having only a single chamber coupled to two water rides forming an amusement ride, it should be understood that multiple chambers may be interlocked to couple two or more water rides of a first amusement ride and/or a second amusement ride. By using multiple chambers, a series of smaller chambers may be built rather than a single large chamber. In some situations it may be easier to build a series of chambers rather than a single chamber. For example, use of a series of smaller chambers may better match the slope of an existing hill. Another example is to reduce water depths and pressures operating in each chamber so as to improve safety and reduce structural considerations resulting from increased water pressure differentials. Another example is the use of multiple chambers to increase aesthetics or ride excitement. Another is the use of multiple chambers to increase overall speed and participant throughput of the lock.
The participants may be transferred from the first water ride to the second water ride by entering the chamber and altering the level of water within the chamber. The first movable member, coupled to the first water ride is opened to allow the participants to move into the chamber. The participants may propel themselves by pulling themselves along by use of rope or other accessible handles or be pushed directly with fluid jets or be propelled by a current moving from the lower water ride toward the chamber. The current may be generated using fluid jets positioned along the inner surface of the chamber. Alternatively, a current may be generated by altering the level of water in the first water ride. For example, by raising the level of water in the first water ride a flow of water from the first water ride into the chamber may occur.
After the participants have entered the chamber, the first movable member is closed and the level of water in the chamber is altered. The level may be raised or lowered, depending on the elevation level of the second water ride with respect to the first water ride. If the second water ride is higher than the first water ride, the water level is raised. If the first water ride is at a higher elevation than the second water ride, the water level is lowered. As the water level in the chamber is altered, the participants are moved to a level commensurate with the upper surface of the second water ride. While the water level is altered within the chamber, the participants remain floating proximate the surface of the water. A bottom member preferably moves with the upper surface of the water in the chamber to maintain a relatively constant and safe depth of water beneath the participants. The water level in the chamber, in certain embodiments, is altered until the water level in the chamber is substantially equal to the water level of the second water ride. The second movable member may now be opened, allowing the participants to move from the chamber to the second water ride. In certain embodiments, a current may be generated by filling the chamber with additional water after the level of water in the chamber is substantially equal to the level of water outside the chamber. As the water is pumped in the chamber, the resulting increase in water volume within the chamber may cause a current to be formed flowing from the chamber to the water ride. When the movable member is open, the formed current may be used to propel the participants from the chamber to a water ride. Thus, the participants may be transferred from a first water ride to a second water ride without having to leave the water forming an amusement ride. The participants are thus relieved of having to walk up a hill. The participants may also be relieved from carrying any floatation devices necessary for the amusement ride.
Outer wall 148 of chamber 142 may be coupled to both lower body of water 138 and upper body of water 140. Outer wall 148 may extend from a point below upper surface 154 of lower body of water 138 to a point above upper surface 158 of upper body of water 140. Water lock systems may be more fully described in U.S. patent application Ser. No. 09/952,036 and U.S. Pat. No. 6,475,095 which are all incorporated by reference herein.
In some embodiments, elevation systems may be designed to be entertaining and an enjoyable part of the water ride as well as the water rides of the amusement ride which the elevation system is connecting. For example, when the elevation system includes an uphill water slide, the entertainment value may be no less for the elevation system of the continuous water ride than for the connected water rides.
In some embodiments, an exit point of a second water ride of an amusement ride may be coupled to an entry point of a first water ride. Coupling the exit point of the second water ride to the entry point of the first water ride may form a true continuous water ride loop. The continuous water ride may include a second elevation system coupling the exit point of the second water ride to the entry point of the first water ride. The second elevation system may include any of the elevation systems described for use in coupling an exit point of the first water ride to the entry point of the second water ride. The second elevation system may be a different elevation system than the first elevation system. For example, the first elevation system may be an uphill water slide and the second water elevation system may be a conveyor belt system.
In some embodiments, a continuous water ride may include one or more floating queue lines. Floating queue lines may be more fully described in U.S. Patent Publication No. 20020082097. Floating queue lines may assist in coupling different portions of a continuous water ride. Floating queue line systems may be used for positioning participants in an orderly fashion and delivering them to the start of a ride at a desired time. In certain embodiments, this system may include a channel (horizontal or otherwise) coupled to a ride on one end and an elevation system on the other end. It should be noted, however, that any of the previously described elevation systems may be coupled to the water ride by the floating queue line system. Alternatively, a floating queue line system may be used to control the flow of participants into the continuous water ride from a dry position within a station.
In use, participants desiring to participate on a water ride may leave the body of water and enter the floating queue line. The floating queue line may include pump inlets and outlets similar to those in a horizontal channel but configured to operate intermittently to propel participants along the queue line, or the inlet and outlet may be used solely to keep a desired amount of water in the queue line. In the latter case, the channel may be configured with high velocity low volume jets that operate intermittently to deliver participants to the end of the queue line at the desired time.
In certain embodiments, the water moves participants along the floating queue line down a hydraulic gradient or bottom slope gradient. The hydraulic gradient may be produced by out-flowing the water over a weir at one end of the queue after the participant enters the ride to which the queue line delivers them, or by out-flowing the water down a bottom slope that starts after the point that the participant enters the ride. In certain embodiments, the water moves through the queue channel by means of a sloping floor. The water from the outflow of the queue line in any method can reenter the main channel, another ride or water feature/s, or return to the system sump. Preferably the water level and width of the queue line are minimized for water depth safety, participant control and water velocity. These factors combined deliver the participants to the ride in an orderly and safe fashion, at the preferred speed, with minimal water volume usage. The preferred water depth, channel width and velocity would be set by adjustable parameters depending on the type of riding rollable carrier, participant comfort and safety, and water usage. Decreased water depth may also be influenced by local ordinances that determine level of operator or lifeguard assistance, the preferred being a need for minimal operator assistance consistent with safety.
In some embodiments, amusement rides may include exits or entry points at different portion of the amusement ride. Floating queue lines coupling different portions and/or rides forming an amusement ride may include exit and/or entry points onto the continuous water ride. Exit/entry points may be used for emergency purposes in case of, for example, an unscheduled shutdown of the amusement water ride. Exit/entry points may allow participants to enter/exit the amusement water ride at various designated points along the ride during normal use of the amusement water ride. Participants entering/exiting the continuous water ride during normal use of the ride may not disrupt the normal flow of the ride depending on where the entry/exit points are situated along the course of the ride.
Embodiments disclosed herein provide an interactive control system for an amusement ride and/or portions of the amusement ride. In certain embodiments, the control system may include a programmable logic controller. The control system may be coupled to one or more activation points, participant detectors, and/or flow control devices. In addition, one or more other sensors may be coupled to the control system. The control system may be utilized to provide a wide variety of interactive and/or automated water features. In some embodiments, participants may apply a participant signal to one or more activation points. The activation points may send activation signals to the control system in response to the participant signals. The control system may be configured to send control signals to a water system, a light system, and/or a sound system in response to a received activation signal from an activation point. A water system may include, for example, a water effect generator, a conduit for providing water to the water effect generator, and a flow control device. The control system may send different control signals depending on which activation point sent an activation signal. The participant signal may be applied to the activation point by the application of pressure, moving a movable activating device, a gesture (e.g., waving a hand), interrupting a light beam, a participant identifier and/or by voice activation. Examples of activation points include, but are not limited to, hand wheels, push buttons, optical touch buttons, pull ropes, paddle wheel spinners, motion detectors, sound detectors, and levers.
The control system may be coupled to sensors to detect the presence of a participant proximate to the activation point. The control system may be configured to produce one or more control systems to active a water system, sound system, and/or light system in response to a detection signal indicating that a participant is proximate to an activation point. The control system may also be coupled to flow control devices, such as, but not limited to: valves and pumps. Valves may includes air valves and water valves configured to control the flow air or water, respectively, through a water feature. The control system may also be coupled to one or more indicators located proximate to one or more activation points. The control system may be configured to generate and send indicator control signals to turn an indicator on or off. The indicators may signal a participant to apply a participant signal to an activation point associated with each indicator. An indicator may signal a participant via a visual, audible, and/or tactile signal. For example, an indicator may include an image projected onto a screen.
In some embodiments, the control system may be configured to generate and send one or more activation signals in the absence of an activation signal. For example, if no activation signal is received for a predetermined amount of time, the control system may produce one or more control signals to activate a water system, sound system, and/or light system.
Throughout the system electronic signs or monitors may be positioned to notify participants or operators of various aspect of the system including, but not limited to: operational status of any part of the system described herein above; estimated waiting time for a particular ride; and possible detours around non operational rides or areas of high participant density.
In some embodiments, a water amusement park may include a cover or a screen. Screens may be used to substantially envelope or cover a portion of a water amusement park. Portions of the screen may be positionable. Positionable screen portions may allow portions of the park to be covered or uncovered. The decision to cover or uncover a portion of the water amusement park may be based on the weather. Inclement weather may prompt operators to cover portions of the water park with the positionable screens. While clear warm weather may allow operators to move the positionable screen so portions of the water amusement park remain uncovered. In some embodiments, amusement rides using rollable carriers may employ moveable screens even when there are clear skies if there exists a threat of high winds.
In some embodiments, positionable screens may be formed from substantially translucent materials. Translucent materials may allow a portion of the visible light spectrum to pass through the positionable screens. Translucent materials may inhibit transmittance of certain potentially harmful portions of the light spectrum (e.g., ultraviolet light). Filtering out a potentially harmful portion of the light spectrum may provide added health benefits to the water amusement park relative to uncovered water amusement parks. A non-limiting example of possible screen material may include Foiltech. Foiltech has an R protective value of about 2.5. A non-limiting example of possible screen material may include polycarbonates. Polycarbonates may have an R protective value of about 2. In some embodiments, multiple layers of screen material (e.g., polycarbonate) may be used. Using multiple layers of screen material may increase a screen materials natural thermal insulating abilities among other things. Portions of the screening system described herein may be purchased commercially at Arqualand in the United Kingdom.
In some embodiments, portions of the positionable screen may assist in collecting solar radiation. Solar radiation collected by portions of the positionable screen may be used to increase the ambient temperature in the area enclosed by the screen. Increasing the ambient temperature in enclosed portions of the water amusement park using collected solar radiation may allow the water amusement park to remain open to the public even when the outside temperature is uncomfortably cold and unconducive to typical outside activities.
In some embodiments, positionable screens may be used to enclose portions of a water amusement park. Enclosed areas of the water amusement park may function as a heat sink. Heat emanating from bodies of water within the enclosed area of the water amusement park may be captured within the area between the body of water and the positionable screens. Heat captured under the positionable screens may be recirculated back into the water. Captured heat may be recirculated back into the water using heat pumps and/or other common methods known to one skilled in the art.
In some embodiments, screens may be mounted on wheels and/or rollers. Screen may be formed from relatively light but strong materials. For example, panels may be formed from polycarbonate for other reasons described herein, while structural frameworks supporting these panels may be formed from, for example, aluminum. Lightweight, well-balanced, support structures on wheels/rollers might allow screens to be moved manually by only a few operators. Operators might simply push screens into position. Mechanisms may installed to assist operators in manually positioning screens, (e.g., tracks, pulley mechanisms).
Examples of systems which facilitate movement of screens over bodies of water and/or channels (e.g., track based systems) are illustrated in U.S. Pat. No. 4,683,686 to Ozdemir and U.S. Pat. No. 5,950,253 to Last, each of which is incorporated by reference as if fully set forth herein.
In some embodiments, some water amusement park areas may include immovable screens substantially enclosing the water amusement area (e.g., a dome structure). While other water amusement areas may remain uncovered year round. Channels may connect different water amusement areas. Channels may include portions of a natural river. Channels may include portions of man-made rivers or reservoirs. Channels may include portions of a natural or man-made body of water (e.g., a lake). The portions of the natural or man-made body of water may include artificial or natural barriers to form a portion of the channel in the body of water. Channels may include positionable screens as described herein. In some embodiments, an entire waterpark may include permanent and/or positionable screens covering the waterpark. In some embodiments, only portions of a waterpark may include permanent and/or positionable screens.
There are advantages to covering the channels and/or portions of the park connected by the channels as opposed to covering the entire park in, for example, one large dome. One advantage may be financial, wherein enclosing small portions and/or channels of a park is far easier from an engineering standpoint and subsequently much cheaper than building a large dome. Channels that extend for relatively long distances may be covered far more easily than a large dome structure extending over the same distance which covers the channel and much of the surrounding area. It is also far easier to retract portions of the screens described herein to selectively expose portions of a waterpark than it is to selectively retract portions of a dome.
Screen systems may be more fully described in U.S. patent application Ser. No. 10/693,654 to Henry et al. which is incorporated by reference as if fully set forth herein.
In some embodiments, water amusement parks may include participant identifiers. Participant identifiers may be used to locate and/or identify one or more participants at least inside the confines of the water amusement park. Participant identifiers may assist control systems in the water amusement park. Participant identifiers may be considered as one portion of a water amusement park control system in some embodiments. Participant identifiers may be used for a variety of functions in the water amusement park.
In some embodiments, a plurality of personal identifiers may be used in combination with a water amusement park. Personal identifiers may be provided to each individual participant of the water amusement park. Personal identifiers may be provided for each member of staff working at the water amusement park. Within the context of this application the term “participant” may include anyone located in the confines of the water amusement park including, but not limited to, staff and/or patrons. A plurality of sensors may be used in combination with the personal identifiers. Personal identifiers may function as personal transmitters. Sensors may function as receiver units. Sensors may be positioned throughout the water amusement park. Sensor may be positioned, for example, at particular junctions (i.e., coupling points) along, for example, a continuous water ride. Sensors may be placed along, for example, floating queue lines, channels, entry/exit points along water rides, and/or entry/exit points between portions of the water amusement park. Personal identifiers working in combination with sensors may be used to locate and/or identify participants.
In some embodiments, personal identifiers and/or sensors may be adapted for ultrasonic, or alternatively, for radio frequency transmission. Personal identifiers and/or sensors may operate on the same frequency. Identification of individual personal identifiers may be achieved by a pulse timing technique whereby discrete time slots are assigned for pulsing by individual units on a recurring basis. Pulses received from sensors may be transmitted to decoder logic which identifies the locations of the various transmitter units in accordance with the time interval in which pulses are received from various sensors throughout the water amusement park. A status board or other display device may display the location and/or identity of the participant in the water amusement park. Status of a participant may be displayed in a number of ways. Status of a participant may be displayed as some type of icon on a multi-dimensional map. Status of a participant may be displayed as part of a chart displaying throughput for a portion of the water amusement park.
In some embodiments, programming means may be provided for a participant identifier. Participant identifiers may be substantially identical in construction and electronic adjustment. Participant identifiers may be programmed to predetermined pulse timing slots by the programming means. Any participant may use any participant identifier. The particular pulse timing slot may be identified as corresponding with a particular participant using a programmer. Participant identifiers may be associated with a particular participant by positioning the participant identifier in a receptacle. The receptacle may be coupled to the programmer. Receptacles may function to recharge a power source powering the participant identifier. In some embodiments, a receptacle may not be necessary and the personal identifier may be associated in the water amusement park with a particular participant via wireless communication between the personal identifier and a programmer.
In some embodiments, participant identifiers may be removably coupled to a participant. The participant identifier may be band which may be coupled around an appendage of a participant. The band may be attached around, for example, an arm and/or leg of a participant. In some embodiments, identifiers may include any shape. Identifiers may be worn around the neck of a participant much like a medallion. In some embodiments, an identifier may be substantially attached directly to the skin of a participant using an appropriate adhesive. In some embodiments, an identifier may be coupled to an article of clothing worn by a participant. The identifier may be coupled to the article of clothing using, for example, a “safety pin”, a plastic clip, a spring clip, and/or a magnetic based clip. In some embodiments, identifiers may be essentially “locked” after coupling the identifier to a participant. A lock may inhibit the identifier from being removed from the participant by anyone other than a staff member except under emergency circumstances. Locking the identifier to the participant may inhibit loss of identifiers during normal use of identifiers. In some embodiments, a participant identifier may be designed to detach from a participant under certain conditions. Conditions may include, for example, when abnormal forces are exerted on the participant identifier. Abnormal forces may result from the participant identifier becoming caught on a protrusion, which could potentially endanger the participant.
In some embodiments, circuitry and/or a power source may be positioned substantially in the personal identifiers. Positioning any delicate electronics in the personal identifier, such that material forming the personal identifier substantially envelopes the electronics, may protect sensitive portions of the personal identifier from water and/or corrosive chemicals typically associated with a water amusement park. Participant identifiers may be formed from any appropriate material. Appropriate materials may include materials that are resistant to water and corrosive chemicals typically associated with a water amusement park. Participant identifiers may be at least partially formed from materials which are not typically thought of as resistant to water and/or chemicals, however, in some embodiments materials such as these may be treated with anticorrosive coatings. In certain embodiments, participant identifiers may be formed at least partially from polymers.
In some embodiments, a personal identifier may be brightly colored. Bright colors may allow the identifier to be more readily identified and/or spotted. For example, if the identifier becomes decoupled from a participant the identifier may be more easily spotted if the identifier is several feet or more under water. In some embodiments, a personal identifier may include a fluorescent dye. The dye may be embedded in a portion of the personal identifier. The dye may further assist in spotting a lost personal identifier under water and/or under low light level conditions (e.g., in a covered water slide).
Personal identifiers which may be adapted to be used with the systems and methods described herein are more fully described in U.S. patent application Ser. No. 10/693,654 to Henry et al which is incorporated by reference herein.
Other components which may be incorporated into a participant identifier system are disclosed in the following U.S. Patents, herein incorporated by reference: a personal locator and display system as disclosed in U.S. Pat. No. 4,225,953; a personal locator system for determining the location of a locator unit as disclosed in U.S. Pat. No. 6,362,778; a low power child locator system as disclosed in U.S. Pat. No. 6,075,442; a radio frequency identification device as disclosed in U.S. Pat. No. 6,265,977; and a remote monitoring system as disclosed in U.S. Pat. No. 6,553,336.
In some embodiments, participant identifiers may be used as part of an automated safety control system. Participant identifiers may be used to assist in determining and/or assessing whether a participant has been separated from their rollable carrier. Sensors may be positioned along portions of a water amusement park. For example sensors may be placed at different intervals along a water amusement ride. Intervals at which sensors are placed may be regular or irregular. Placement of sensors may be based on possible risk of a portion of a water amusement ride. For example, sensors may be placed with more frequency along faster moving portions of a water amusement ride where the danger for a participant to be separated from their rollable carrier is more prevalent.
In some embodiments, rollable carrier identifiers may be used to identify a rollable carrier in a water amusement park. The rollable carrier identifier may be used to identify the location of the rollable carrier. The rollable carrier identifier may be used to identify the type of rollable carrier. For example, the rollable carrier identifier may be used to identify how many people may safely ride in the rollable carrier.
In some embodiments, sensors near an entry point of a portion of a water amusement ride may automatically assess a number of participant identifiers/participants associated with a particular rollable carrier. Data such as this may be used to assess whether a participant has been separated from their rollable carrier in another portion of the water amusement ride.
In some embodiments, an operator may manually input data into a control system. Data input may include associating particular participant identifier(s) and/or the number of participants with a rollable carrier.
In some embodiments, a combination of automated and manual operation of a safety control system may be used to initially assess a number of participants associated with a rollable carrier. For example, an operator may provide input to initiate a sensor or a series of sensors to assess the number of participants associated with the rollable carrier. The assessment may be conducted at an entry point of a water amusement ride.
In certain embodiments, personal identifiers may be used in combination with a recording device. The recording device may be positioned in a water amusement park. One or more recording devices may be used throughout the water amusement park. The participant identifier may be used to activate the recording device. The participant identifier may be used to remotely activate the recording device. The recording device may include a sensor as described herein. The identifier may automatically activate the recording device upon detection by the sensor coupled to the recording device. The participant may activate the recording device by activating the personal identifier using participant input (e.g., a mechanical button, a touch screen). The participant identifier may activate one or more recording devices at one or more different times and/or timing sequences. For example several recording devices may be positioned along a length of a downhill slide. A participant wearing a personal identifier may activate (automatically or upon activation with user input) a first recording device positioned adjacent an entry point of the slide. Activating the first recording device may then activate one or more additional recording devices located along the length of the downhill water slide. Recording devices may be activated in a particular sequence so as to record the participant progress through the water slide.
In some embodiments, a recording device may record images and/or sound. The recording device may record other data associated with recorded images and/or sound. Other data may include time, date, and/or information associated with a participant wearing a participant identifier. The recording device may record still images and/or moving (i.e., short movie clips). Examples of recording devices include, but are not limited to, cameras and video recorders.
In some embodiments, a recording device may be based on digital technology. The recording device may record digital images and/or sound. Digital recording may facilitate storage of recorded events, allowing recorded events to be stored on magnetic media (e.g., hard drives, floppy disks, etc . . . ). Digital recordings may be easier to transfer as well. Digital recordings may be transferred electronically from the recording device to a control system and/or processing device. Digital recordings may be transferred to the control system via a hard-wired connection and/or a wireless connection.
Upon recording an event, the recording device may transfer the digital recording to the control system. The participant may purchase a copy of the recording as a souvenir. The participant may purchase a copy while still in a water amusement park, upon exiting the water amusement park, and/or at a later date. The control system may print a hard copy of the digital recording. The control system may transfer an electronic copy of the recorded event to some other type of media that may be purchased by the participant to take home with them. The control system may be connected to the Internet. Connecting the control system to the Internet may allow a participant to purchase a recorded event through the Internet at a later time. A participant may be able to download the recorded event at home upon arranging for payment.
In some embodiments, personal identifiers may be used in combination with sensors to locate a position of a participant in a water amusement park. Sensors may be positioned throughout the water park. The sensors may be connected to a control system. Locations of sensors throughout the water park may be programmed into the control system. The participant identifier may activate one of the sensors automatically when it comes within a certain proximity of the sensor. The sensor may transfer data concerning the participant (e.g., time, location, and/or identity) to the control system.
In some embodiments, participant identifiers may be used to assist a participant to locate a second participant. For example, identifiers may assist a parent or guardian to locate a lost child. The participant may consult an information kiosk or automated interactive information display. The interactive display may allow the participant to enter a code, name, and/or other predetermined designation for the second participant. The interactive display may then display the location of the second participant to the participant. The location of the second participant may be displayed, for example, as an icon on a map of the park. Security measures may be taken to ensure only authorized personnel are allowed access to the location of participants. For example, only authorized personnel (e.g., water park staff) may be allowed access to interactive displays and/or any system allowing access to identity and/or location data for a participant. Interactive displays may only allow participants from a predetermined group access to participant data from their own group.
In some embodiments, participant identifier may be used to assist in regulating throughput of participants through portions of a water amusement park. Participant identifiers may be used in combination with sensors to track a number of participants through a portion of the water amusement park. Keeping track of numbers of participants throughout the water park may allow adjustments to be made to portions of the water park. Adjustments made to portions of the water park may allow the portions to run more efficiently. Adjustments may be at least partially automated and carried out by a central control system. Increasing efficiency in portions of the water park may decrease waiting times for rides.
In some embodiments, sensors may be positioned along one or both sides of a floating queue line. Sensors in floating queue lines may be able to assist in detecting participants wearing participant identifiers. Data including about participants in the floating queue lines may be transferred to a control system. Data may include number of participants, identity of the participants, and/or speed of the participants through the floating queue lines. Based on data collected from the sensors, a control system may try to impede or accelerate the speed and/or throughput of participants through the floating queue line as described herein. Adjustment of the throughput of participants through the floating queue lines may be fully or partially automated. As numbers of participants in a particular ride increase throughput may decrease. In response to data from sensors the control system may increase the flow rate of participants to compensate. The control system may automatically notify water park staff if the control system is not able to compensate for increased flow rate of participants.
In certain embodiments (an example of which is depicted in
In some embodiments, a queue system may not include water or may not include water deep enough to substantially float otherwise buoyant rollable carriers. The queue system may include fluid jets located along the length of a path system forming the queue system. The fluid jets may include high velocity low volume fluid jets. The jets may use pressurized or high velocity fluids directed at participants/rollable carriers to propel them along a surface. The surface may include an incline, a decline, or be substantially level. Fluids may include liquids (e.g., water) and/or gases (e.g., air). Jets may be set at an appropriate angle to provide propulsive power for a rollable carrier. Jets may automatically orient themselves to a proper angle when connected to an automated control system. Jets may be positioned along floors, walls, and/or ceilings. Fluid jets using liquids to propel participant carriers along a portion of a water path system may be used in combination with dewatering systems. Dewatering systems may be especially useful when fluid jets using liquids are used to propel participant carriers up an incline. Dewatering systems may be used to remove liquid running down an inclined surface, such that the momentum of the liquid does not detract from the momentum of fluid expelled from fluid jets used to propel participants. Dewatering systems may be more fully described in U.S. Pat. No. 5,011,134 which is incorporated by reference herein.
Fluid jet systems used for rollable carrier propulsion in amusement rides may be more fully described in U.S. Pat. No. 5,213,547 to Lochtefeld and U.S. Pat. No. 5,503,597 to Lochtefeld et al. which are incorporated by reference as if fully set forth herein.
In some embodiments, participant identifiers may be used with interactive games. Interactive games may include interactive water games. Interactive games may be positioned anywhere in a water amusement park. Interactive games may be positioned along a floating queue line, an elevation system, and/or a water ride. Interactive games positioned along portions of the water amusement park where delays are expected may make waiting more tolerable or even pleasurable for participants.
An interactive water game including a control system as described above may include a water effect generator; and a water target coupled to the control system. In some embodiments, the water effect generator may include a water cannon, a nozzle, and/or a tipping bucket feature. The water effect generator may be coupled to a play structure. During use a participant may direct the water effect generator toward the water target to strike the water target with water. A participant may direct the water effect using a participant identifier to activate the water effect generator. Upon being hit with water, the water target may send an activation signal to the control system. Upon receiving an activation signal from the water target, the control system may send one or more control signals to initiate or cease predetermined processes.
The water target may include a water retention area, and an associated liquid sensor. In some embodiments, the liquid sensor may be a capacitive liquid sensor. The water target may further include a target area and one or more drains. The water target may be coupled to a play structure.
In some embodiments, the interactive water game may include one or more additional water effect generators coupled to the control system. Upon receiving an activation signal from the water target, the control system may send one or more control signals to the additional water effect generator. The additional water effect generator may be configured to create one or more water effects upon receiving the one or more control signals from the control system. For example, the one or more water effects created by the additional water effect generator may be directed toward a participant. The additional water effect generator may include, but is not limited to: a tipping bucket feature, a water cannon, and/or a nozzle. The additional water effect generator may be coupled to a play structure.
A method of operating an interactive water game may include applying a participant signal to an activation point associated with a water system. The participant signal may be fully automated and originate from a participant identifier. The participant signal may be activated when a participant wearing the participant identifier positions themselves in predetermined proximity of the activation point. Participant input may activate the participant signal using the participant identifier. An activation signal may be produced in response to the applied participant signal. The activation signal may be sent to a control system. A water system control signal may be produced in the control system in response to the received activation signal. The water system control signal may be sent from the control system to the water system. The water system may include a water effect generator. The water effect generator may produce a water effect in response to the water system control signal. The water effect generator may be directed toward a water target to strike the water target with water. An activation signal may be produced in the water target, if the water target is hit with water. The water target may send the activation signal to the control system. A control signal may be produced in the control system in response to the received water target activation signal. In some embodiments, the interactive water game may include an additional water effect generator. The control system may direct a control signal to the additional water effect generator if the water target is struck by water. The additional water effect generator may include, but is not limited to: a water cannon, a nozzle, or a tipping bucket feature. The additional water effect generator may produce a water effect in response to a received control signal. The water effect may be directed toward a participant.
In some embodiments, amusement rides, rollable carriers, and/or interactive water games may be combined into one amusement format. An example of this type of combination may include life sized water pinball rides. Rollable carriers may function as pinballs in a relatively sized water based pinball machine. Water based effects may be used in the pinball game. Effects of the amusement ride may be controlled by participants, programmable control systems, observers, and/or participants.
Another object of the invention is to give such observers control over certain elements of the water ride.
A pinball amusement ride may allow two-dimensional movement across the area and not simply movement from an upper area to a lower area.
To enable these objects, a water ride constructed includes a field area having a plurality of water effects and control systems for controlling those devices located outside of the field area for selective activation by observers watching participants within the field area. The field area may be laid out like a giant pinball machine in which participants are placed in groups or individually within rollable carriers representing the balls of the pinball machine. Movement of the rollable carriers along the field area plane may be influenced by movement inducing devices (e.g., flippers, spinners, stationary bumpers, and guides). The field area may include water devices (e.g., geysers, shower sprayers) that may either be on continuously or be selectively activated (e.g., by participants, observers, and/or programmable control systems) to drench participants within the field area with water.
Once positioned within rollable carriers, participants are launched from an upper end of the field area and proceed generally downward toward a receptacle (e.g., splash pool) at a lower end of the field area. Some of the movement inducing devices may be selectively actuated by observers located outside of the field area to propel the rollable carriers of the participants in a direction desired by the observer. Thus, for example, a observer can choose to selectively activate a flipper at the proper moment to thus propel a rollable carrier toward, for instance, a water shower whereupon another observer can activate the water shower at the proper moment to drench the participant(s) and/or rollable carrier.
There are multiple advantages to such a system. First, observers are entertained as well as the participants by allowing observers to affect the outcome of the water ride for the participants within. Second, such a ride may be simpler to operate since the observers themselves could activate the effects at the proper time rather than requiring extra staff or precisely timed automation. It is understood that such effects may be operated under a programmable control system if the effect has not been activated by an observer after a certain preset time period. Third, a pinball-type layout, including movement inducing devices and water devices, would allow movement in two dimensions or more thus increasing the novelty of the water ride even after multiple uses.
For example, amusement elements 128 may include amusement elements 128a, which may be commonly referred to as bumpers. Bumpers 128a may be static. Static bumpers 128a may simply act as obstacles to rollable carriers 100 natural progress toward openings 110. Bumpers 128a may be reactive. Reactive bumpers 128a may react to contact from a force of impact with rollable carriers 100. Rollable carriers 100 which impact reactive bumpers 128a may initiate a mechanism in the reactive bumper causing a portion of the bumper to spring outward in reaction to the impact of the rollable carrier, imparting momentum to the rollable carrier.
For example, amusement elements 128 may include amusement elements 128b, which may be commonly referred to as water cannons. Water cannons 128b may be static. Static water cannons 128b may simply run continuously as long as the amusement ride is active and turned on, the water cannons acting as obstacles to rollable carriers 100 natural progress toward openings 110. Water cannons 128b may be reactive. Reactive water cannons 128b may react to the presence of rollable carriers 100 within a predetermined range or vicinity of the water cannons. A programmable control system including sensors capable of detecting the rollable carriers may trigger the reactive water cannons. Water cannons 128b may be interactive. Interactive water cannons 128b may be controlled by observers not located in rollable carriers. Observers may control interactive water cannons 128b in order to work with or against participants by pushing them away or towards openings 110.
For example, amusement elements 128 may include amusement elements 128c, which may be commonly referred to as flippers. Flippers 128c may be reactive. Flippers 128c may act as obstacles to rollable carriers 100 natural progress toward openings 110. Flippers 128c may react to the presence of rollable carriers 100 within a predetermined range or vicinity of the flippers. A programmable control system including sensors capable of detecting the rollable carriers may trigger the flippers. Flippers 128c may be interactive. Interactive flippers 128c may be controlled by observers not located in rollable carriers. Observers may control interactive flippers 128c in order to work with or against participants by pushing them away or towards openings 110.
Amusement elements such as water cannons 128b and flippers 128c may alternate between reactive and interactive. Amusement elements may include sensors which detect the presence of an observer at the controls of the amusement element, the amusement element automatically relinquishing control over to the observer. When an observer is not present at the controls the amusement element may automatically switch to a reactive mode. In some embodiments, amusement elements may include a control which switches the amusement element from reactive to interactive for a predetermined period of time.
Amusement ride 120 may include elevation system 124. In the embodiments depicted in
The fact that participants enclosed in rollable carriers 100 may alter their trajectory and/or momentum add to the enjoyment factor of the participants as well as the observers. In this way it is possible for participants and observers to work with and/or against one another adding another dimension to the ride.
Examples of amusement rides based on pinball games which may be adapted for the herein described purposes are illustrated in U.S. Pat. No. 6,045,449 to Aragona et al. which is incorporated by reference as if fully set forth herein.
Amusement rides including water channels (e.g., artificial rivers) may include adjustable mechanisms or devices capable of changing the course of a river. Adjustable mechanisms such as these may be described as adjustable weirs. Weirs are generally defined as a dam placed across a river or canal to raise or divert the water, or to regulate or measure the flow of water.
A mechanism is described that controls the flow of water for an artificial river, in the context of water park, and in the setting of participants and participant carriers within the controlled river. Adjustable weirs may be optimally producible, easily installed, and/or readily maintained. Safety to both participants and personnel may be a requirement. Adjustable weirs may function to alter flow characteristics of water in a channel, produce downstream rapids of varying degree, and/or undulations to such in dynamic fashion. Adjustable weirs may function to fully dam up the upstream body of water (with only moderate leakage), whether in off-duty mode and/or in the event of power failure, such that, for example, upper water volumes may not overflow lower regions of the same river system.
Adjustable weirs may include safety fail-safes. For example an adjustable weir may include a loss of power mode, where the weir reverts to/maintains an upward (water-retaining) position. Adjustable weir fail-safes may include keeping gaps between static and moving features to a safe minimum, and/or inherently precluding access. Adjustable weir fail-safes may include ensuring no serviceable equipment (except for fundamental overhaul, coinciding with river drainage) may be located behind or beneath the primary mechanism. Advantages of ensuring no serviceable equipment is located behind or beneath the primary mechanism may ensure accessibility to serviceable equipment (e.g., when in the failsafe position, a huge body of water may be under retention). Serviceable equipment and/or motive components may be located outboard of the main channel, whether below grade (e.g., in pits), and/or above (e.g., in enclosures).
Adjustable weirs may include serviceable equipment and components which may be removed/exchanged with comparative rapidity and minimal disruption/removal of other components. Adjustable weirs may require minimal maintenance. Adjustable weirs may include drive mechanisms which are chemically benign (e.g., electrical or pneumatic). Chemically benign drive mechanisms are advantageous when river systems (natural or artificial) are used so as to inhibit introduction of chemicals (e.g., hydraulic fluid) into the environment. Non-engineered parts may be used whenever possible for the construction of adjustable weirs, chosen at least for durability and ready availability. Adjustable weirs may include lock-out features, such that the weir table may be redundantly secured into either of its extreme positions, regardless of hydraulic conditions in the river. Positioning of an adjustable weir may be capable of dynamic operation, taking into account the changing hydraulic forces of the moving volume of water.
Closing the gaps are fixed upstream plate 170 (secured to the concrete riverbed), and side shrouds 172. Both elements may continuously fit to rotatable contour 174, regardless of its position. The rotatable contour depicted in the associated figures is in the shape of an “hourglass,” however it should be noted this is just one example of many possible shapes the rotatable contour may assume.
To prevent water and/or participants from being sucked down behind adjustable weir 168, trailing plates 176 may be attached to the pivoting weir table. An upstream leaf is hinged directly thereto; a horizontal plate may be dragged behind. Together, a benign (though moving) riverbed is presented, with close proximity to the concrete walls (and minimal gaps).
Note also outboard pits may be covered—though size, shape, theming, etc., of such will be determined on an application basis.
As a variety of drive means may be applied, none are presented in the FIGS.
In this patent, certain U.S. patents, U.S. patent applications, and other materials (e.g., articles) have been incorporated by reference. The text of such U.S. patents, U.S. patent applications, and other materials is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents, U.S. patent applications, and other materials is specifically not incorporated by reference in this patent.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
142605 | Yates | Sep 1873 | A |
193516 | Johns | Jul 1877 | A |
419860 | Libbey | Jan 1890 | A |
435227 | Inglis | Aug 1890 | A |
485624 | Gardner | Nov 1892 | A |
536441 | Morris | Mar 1895 | A |
540715 | Butler | Jun 1895 | A |
548256 | Idler | Oct 1895 | A |
552713 | Lenox | Jan 1896 | A |
555049 | Ogilbe | Feb 1896 | A |
566182 | Jackman | Aug 1896 | A |
567861 | Mustain | Sep 1896 | A |
570016 | Harman | Oct 1896 | A |
572426 | Idler | Dec 1896 | A |
576704 | Urch | Feb 1897 | A |
583121 | Pattee | May 1897 | A |
604164 | Wilde et al. | May 1898 | A |
610548 | Manny | Sep 1898 | A |
640439 | Boyton | Jan 1900 | A |
654980 | Howard | Jun 1900 | A |
664179 | Schofield | Dec 1900 | A |
665765 | Thompson | Jan 1901 | A |
689114 | Pape | Dec 1901 | A |
691353 | Carpenter et al. | Jan 1902 | A |
697202 | Donne | Apr 1902 | A |
697891 | Schrader | Apr 1902 | A |
714717 | LaPorte | Dec 1902 | A |
720014 | Folks | Feb 1903 | A |
724040 | Pusterla | Mar 1903 | A |
724757 | Symonds | Apr 1903 | A |
728246 | Kremer | May 1903 | A |
728303 | Roltair | May 1903 | A |
728894 | Folks | May 1903 | A |
741964 | Harlan | Oct 1903 | A |
723968 | Wilson | Nov 1903 | A |
744880 | Smith | Nov 1903 | A |
753311 | Pusterla | Mar 1904 | A |
753449 | Thompson | Mar 1904 | A |
754698 | Reed | Mar 1904 | A |
757286 | Du Clos | Apr 1904 | A |
760503 | Welsh | May 1904 | A |
762566 | Webster et al. | Jun 1904 | A |
764675 | Pfeiffer | Jul 1904 | A |
771322 | Pattee | Oct 1904 | A |
774209 | Stubbs | Nov 1904 | A |
774274 | Pusterla | Nov 1904 | A |
774917 | Maguire | Nov 1904 | A |
776936 | Pusterla | Dec 1904 | A |
779464 | Bruce | Jan 1905 | A |
783425 | Folks | Feb 1905 | A |
792422 | Kelly | Jun 1905 | A |
801945 | Welsh | Oct 1905 | A |
803465 | Bernheisel | Oct 1905 | A |
808487 | Stahl | Dec 1905 | A |
815210 | Pattee | Mar 1906 | A |
815211 | Pattee et al. | Mar 1906 | A |
824436 | Pester | Jun 1906 | A |
828689 | Thompson | Aug 1906 | A |
831149 | Faller | Sep 1906 | A |
849970 | Boyton | Apr 1907 | A |
868736 | Washington | Oct 1907 | A |
879283 | Mayberry et al. | Feb 1908 | A |
883441 | Andrews | Mar 1908 | A |
887082 | Fraser | May 1908 | A |
891388 | Visser et al. | Jun 1908 | A |
896940 | Rosen | Aug 1908 | A |
901435 | Fuller | Oct 1908 | A |
904848 | DeVore | Nov 1908 | A |
929972 | M'Giehan | Aug 1909 | A |
931863 | Haight | Aug 1909 | A |
944407 | Beebe | Dec 1909 | A |
952673 | Karr | Mar 1910 | A |
995945 | Berhold | Jun 1911 | A |
1004174 | Kavakos | Sep 1911 | A |
1056929 | Navarro | Mar 1913 | A |
1062838 | Miller | May 1913 | A |
1063949 | Bedient | Jun 1913 | A |
1095965 | Glazier | May 1914 | A |
1124950 | Reagen et al. | Jan 1915 | A |
1158295 | Rodriguez | Oct 1915 | A |
1159519 | Menier | Nov 1915 | A |
1167993 | Guzendorfer | Jan 1916 | A |
1195707 | Miller | Aug 1916 | A |
1198749 | Myers | Sep 1916 | A |
1230559 | Burke | Jun 1917 | A |
1249455 | Myers | Dec 1917 | A |
1320124 | Chrul | Oct 1919 | A |
1378635 | Unger | May 1921 | A |
1399469 | Cucullu | Dec 1921 | A |
1417570 | Ridgway | May 1922 | A |
1440661 | Dickinson | Jan 1923 | A |
1441126 | Sherman et al. | Jan 1923 | A |
1448306 | Lezert | Mar 1923 | A |
1497754 | Howard | Jun 1924 | A |
1520217 | Auperl | Dec 1924 | A |
1540635 | Kohl | Jun 1925 | A |
1551249 | Held | Aug 1925 | A |
1563855 | Held | Dec 1925 | A |
1591566 | Schmidt et al. | Jul 1926 | A |
1601483 | Vaszin | Sep 1926 | A |
1606024 | Gorhum et al. | Nov 1926 | A |
1606854 | Vaszin | Nov 1926 | A |
1607771 | Miller | Nov 1926 | A |
1609922 | Wiig | Dec 1926 | A |
1648196 | Rohmer | Nov 1927 | A |
1763976 | Lippincott | Jun 1930 | A |
1783268 | Traver | Dec 1930 | A |
1849226 | Erban | Mar 1932 | A |
1859267 | Kurz | May 1932 | A |
1893167 | Glagolin | Jan 1933 | A |
1926780 | Lippincott | Sep 1933 | A |
2009904 | Purves | Jul 1935 | A |
2064035 | Rynearson | Dec 1936 | A |
2135230 | Courtney | Nov 1938 | A |
2146631 | Kish | Feb 1939 | A |
2484466 | Rumler | Oct 1949 | A |
2498450 | Pewitt | Feb 1950 | A |
2499470 | Duncan | Mar 1950 | A |
2535862 | Pewitt | Dec 1950 | A |
2705144 | Ridgway | Mar 1955 | A |
2738885 | Demaline | Mar 1956 | A |
2838022 | Wilson | Jun 1958 | A |
2888205 | Trucco | May 1959 | A |
D190127 | Fowler | Apr 1961 | S |
2991726 | Miller | Jul 1961 | A |
3000017 | Skovira | Sep 1961 | A |
3000022 | Cathey et al. | Sep 1961 | A |
3003430 | Hamel | Oct 1961 | A |
3030895 | Hamel | Apr 1962 | A |
3066951 | Gray | Dec 1962 | A |
3113528 | Morgan et al. | Dec 1963 | A |
3114333 | Fowler et al. | Dec 1963 | A |
3116925 | Welch | Jan 1964 | A |
D204282 | Morgan | Apr 1966 | S |
3299565 | Yarashes | Jan 1967 | A |
3302413 | Burnett | Feb 1967 | A |
3390640 | Couttet et al. | Jul 1968 | A |
3404635 | Bacon et al. | Oct 1968 | A |
3456943 | Brown | Jul 1969 | A |
3473334 | Dexter | Oct 1969 | A |
3507222 | Cirami | Apr 1970 | A |
3508405 | Koch | Apr 1970 | A |
3534413 | Plasseraud | Oct 1970 | A |
3598402 | Frenzl | Aug 1971 | A |
3610160 | Alimanestianu | Oct 1971 | A |
3675259 | Gilchrist | Jul 1972 | A |
3690265 | Horibata | Sep 1972 | A |
D229354 | Morgan | Nov 1973 | S |
3777835 | Bourne | Dec 1973 | A |
3779201 | Spahn | Dec 1973 | A |
3806156 | Tidwell | Apr 1974 | A |
3827387 | Morgan | Aug 1974 | A |
3830161 | Bacon | Aug 1974 | A |
3853067 | Bacon | Dec 1974 | A |
3861514 | Ling | Jan 1975 | A |
3865041 | Bacon | Feb 1975 | A |
3890655 | Mathis | Jun 1975 | A |
3913332 | Forsman | Oct 1975 | A |
3923301 | Myers | Dec 1975 | A |
3930450 | Symons | Jan 1976 | A |
3934291 | Hagen | Jan 1976 | A |
3956779 | Jewett | May 1976 | A |
4001899 | Mathis | Jan 1977 | A |
4042252 | Winter | Aug 1977 | A |
4063517 | Nardozzi, Jr. | Dec 1977 | A |
4149469 | Bigler | Apr 1979 | A |
4149710 | Rouchard | Apr 1979 | A |
4170943 | Achrekar | Oct 1979 | A |
4175361 | Kumode | Nov 1979 | A |
4194733 | Whitehouse, Jr. | Mar 1980 | A |
4196900 | Becker et al. | Apr 1980 | A |
4198043 | Timbes et al. | Apr 1980 | A |
4205785 | Stanley | Jun 1980 | A |
4221170 | Koudelka | Sep 1980 | A |
4225953 | Simon et al. | Sep 1980 | A |
4272093 | Filice et al. | Jun 1981 | A |
4278247 | Joppe et al. | Jul 1981 | A |
4299171 | Larson | Nov 1981 | A |
4305117 | Evans | Dec 1981 | A |
4337704 | Becker et al. | Jul 1982 | A |
4376404 | Haddad | Mar 1983 | A |
D269082 | Spieldiener | May 1983 | S |
4391201 | Bailey | Jul 1983 | A |
4392434 | Dürwald et al. | Jul 1983 | A |
4429867 | Barber | Feb 1984 | A |
4484739 | Kreinbihl et al. | Nov 1984 | A |
4484836 | Bailard | Nov 1984 | A |
4501434 | Dupuis | Feb 1985 | A |
4516943 | Spieldiener et al. | May 1985 | A |
4543886 | Spieldiener et al. | Oct 1985 | A |
4545574 | Sassak | Oct 1985 | A |
4545583 | Pearman et al. | Oct 1985 | A |
4564190 | Frenzl | Jan 1986 | A |
4576512 | Combes et al. | Mar 1986 | A |
4683686 | Ozdemir | Aug 1987 | A |
4696251 | Spieldiener et al. | Sep 1987 | A |
4759545 | Grable | Jul 1988 | A |
4778430 | Goldfarb et al. | Oct 1988 | A |
4783861 | Leurent | Nov 1988 | A |
4792260 | Sauerbier | Dec 1988 | A |
4797027 | Combes et al. | Jan 1989 | A |
4805896 | Moody | Feb 1989 | A |
4805897 | Dubeta | Feb 1989 | A |
4817312 | Fuller et al. | Apr 1989 | A |
4836521 | Barber | Jun 1989 | A |
4850896 | Smith et al. | Jul 1989 | A |
4854256 | Hayashi | Aug 1989 | A |
4905987 | Frenzi | Mar 1990 | A |
4939358 | Herman et al. | Jul 1990 | A |
4954014 | Sauerbier et al. | Sep 1990 | A |
4960275 | Magon | Oct 1990 | A |
4963057 | Fournier | Oct 1990 | A |
4979679 | Downs | Dec 1990 | A |
4984783 | Fujimaki | Jan 1991 | A |
5011134 | Langford | Apr 1991 | A |
5011161 | Galphin | Apr 1991 | A |
5020465 | Langford | Jun 1991 | A |
5022588 | Haase | Jun 1991 | A |
5033392 | Schemitsch | Jul 1991 | A |
5069387 | Alba | Dec 1991 | A |
5069443 | Shiratori | Dec 1991 | A |
5073082 | Radlik | Dec 1991 | A |
5115908 | Williams | May 1992 | A |
5137497 | Dubeta | Aug 1992 | A |
5143107 | Kelley | Sep 1992 | A |
5152210 | Chen | Oct 1992 | A |
5167321 | Brodrick, Sr. | Dec 1992 | A |
5171101 | Sauerbier et al. | Dec 1992 | A |
5183437 | Millay et al. | Feb 1993 | A |
5194048 | Briggs | Mar 1993 | A |
5213547 | Lochtefeld | May 1993 | A |
5218910 | Mesmer et al. | Jun 1993 | A |
5219315 | Fuller et al. | Jun 1993 | A |
5224652 | Kessler | Jul 1993 | A |
5230662 | Langford | Jul 1993 | A |
5236280 | Lochtefeld | Aug 1993 | A |
RE34407 | Frenzl | Oct 1993 | E |
5253864 | Heege et al. | Oct 1993 | A |
5265373 | Vollebregt | Nov 1993 | A |
5265802 | Hobbs et al. | Nov 1993 | A |
5271692 | Lochtefeld | Dec 1993 | A |
5299964 | Hopkins | Apr 1994 | A |
5320362 | Bear et al. | Jun 1994 | A |
5387158 | Bertrand | Feb 1995 | A |
5393170 | Lochtefeld | Feb 1995 | A |
5401117 | Lochtefeld | Mar 1995 | A |
5403238 | Baxter et al. | Apr 1995 | A |
5405294 | Briggs | Apr 1995 | A |
5421451 | Easton | Jun 1995 | A |
5421782 | Lochtefeld | Jun 1995 | A |
5426899 | Jones | Jun 1995 | A |
5427574 | Donnelly-Weide | Jun 1995 | A |
5433671 | Davis | Jul 1995 | A |
5437463 | Fromm | Aug 1995 | A |
5439170 | Dach | Aug 1995 | A |
5452678 | Simpkins | Sep 1995 | A |
5453054 | Langford | Sep 1995 | A |
5478281 | Forton | Dec 1995 | A |
5482510 | Ishii et al. | Jan 1996 | A |
5494729 | Henry et al. | Feb 1996 | A |
5499821 | Rycroft | Mar 1996 | A |
5503597 | Lochtefeld et al. | Apr 1996 | A |
5513470 | Vollebregt | May 1996 | A |
5536210 | Barber | Jul 1996 | A |
5540622 | Gold et al. | Jul 1996 | A |
5564859 | Lochtefeld | Oct 1996 | A |
5564984 | Mirabella et al. | Oct 1996 | A |
5581954 | Vollebregt | Dec 1996 | A |
5613443 | Ariga et al. | Mar 1997 | A |
5628584 | Lochtefeld | May 1997 | A |
5664910 | Lochtefeld et al. | Sep 1997 | A |
5667445 | Lochtefeld | Sep 1997 | A |
5669858 | Blair et al. | Sep 1997 | A |
5678956 | Freelain | Oct 1997 | A |
5685778 | Sheldon et al. | Nov 1997 | A |
5704294 | Van Winkle et al. | Jan 1998 | A |
5716282 | Ring et al. | Feb 1998 | A |
5732635 | McKoy | Mar 1998 | A |
5735748 | Meyers et al. | Apr 1998 | A |
5738590 | Lochtefeld | Apr 1998 | A |
5761776 | Vollebregt | Jun 1998 | A |
5766082 | Lochtefeld et al. | Jun 1998 | A |
5779553 | Langford | Jul 1998 | A |
5785592 | Jacobsen | Jul 1998 | A |
5791254 | Mares et al. | Aug 1998 | A |
5809701 | Vollebregt | Sep 1998 | A |
5820471 | Briggs | Oct 1998 | A |
5860364 | McKoy | Jan 1999 | A |
5927478 | Archer | Jul 1999 | A |
5950253 | Last | Sep 1999 | A |
5978593 | Sexton | Nov 1999 | A |
5989126 | Kilbert et al. | Nov 1999 | A |
6006672 | Newfarmer et al. | Dec 1999 | A |
6036603 | Mason et al. | Mar 2000 | A |
6045449 | Aragona et al. | Apr 2000 | A |
6075442 | Welch | Jun 2000 | A |
6083110 | Kitchen et al. | Jul 2000 | A |
6113506 | Nielsen | Sep 2000 | A |
6115974 | Milanian | Sep 2000 | A |
6139382 | Eschbacher et al. | Oct 2000 | A |
6146282 | McCready et al. | Nov 2000 | A |
6161771 | Henry | Dec 2000 | A |
6162127 | Ochi | Dec 2000 | A |
6186902 | Briggs | Feb 2001 | B1 |
6195851 | Vollebregt et al. | Mar 2001 | B1 |
6210287 | Briggs | Apr 2001 | B1 |
6237499 | McKoy | May 2001 | B1 |
6261186 | Henry | Jul 2001 | B1 |
6265977 | Vega et al. | Jul 2001 | B1 |
6272695 | Brandner | Aug 2001 | B1 |
6280342 | Tod | Aug 2001 | B1 |
6336771 | Hill | Jan 2002 | B1 |
6354955 | Stuart et al. | Mar 2002 | B1 |
6362778 | Neher | Mar 2002 | B2 |
6375578 | Briggs | Apr 2002 | B1 |
6475095 | Henry | Nov 2002 | B1 |
6488590 | Katayama | Dec 2002 | B2 |
6533191 | Berger et al. | Mar 2003 | B1 |
6553336 | Johnson et al. | Apr 2003 | B1 |
6561914 | Henry | May 2003 | B2 |
6569023 | Briggs | May 2003 | B1 |
6604327 | Reville | Aug 2003 | B1 |
6634949 | Briggs et al. | Oct 2003 | B1 |
6702687 | Henry | Mar 2004 | B1 |
6708706 | Robinson | Mar 2004 | B1 |
6758231 | Lochtefeld et al. | Jul 2004 | B1 |
6773355 | Lekhtman | Aug 2004 | B1 |
6796908 | Weston | Sep 2004 | B2 |
6830146 | Scully et al. | Dec 2004 | B1 |
6976434 | Roig et al. | Dec 2005 | B2 |
7004847 | Henry | Feb 2006 | B2 |
7029400 | Briggs | Apr 2006 | B2 |
7179173 | Henry et al. | Feb 2007 | B2 |
7229359 | Henry et al. | Jun 2007 | B2 |
7285053 | Henry et al. | Oct 2007 | B2 |
7371182 | Henry et al. | May 2008 | B2 |
7371183 | Henry et al. | May 2008 | B2 |
20020072317 | Livingston et al. | Jun 2002 | A1 |
20020082097 | Henry et al. | Jun 2002 | A1 |
20030190967 | Henry | Oct 2003 | A1 |
20030203760 | Henry et al. | Oct 2003 | A1 |
20050034768 | Henry et al. | Feb 2005 | A1 |
20050085306 | Henry et al. | Apr 2005 | A1 |
20050090318 | Henry et al. | Apr 2005 | A1 |
20050090319 | Henry et al. | Apr 2005 | A1 |
20050090320 | Henry et al. | Apr 2005 | A1 |
20050090321 | Henry et al. | Apr 2005 | A1 |
20050090322 | Henry et al. | Apr 2005 | A1 |
20050288111 | Cowan et al. | Dec 2005 | A1 |
20060052171 | Henry et al. | Mar 2006 | A1 |
20060111195 | Henry | May 2006 | A1 |
20060111196 | Henry | May 2006 | A1 |
20060135274 | Henry | Jun 2006 | A1 |
20060142090 | Henry | Jun 2006 | A1 |
20060214805 | Boujon | Sep 2006 | A1 |
20060258471 | Briggs et al. | Nov 2006 | A1 |
20070197304 | Henry et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
543055 | Dec 1955 | BE |
129145 | Mar 1902 | DE |
893778 | Oct 1953 | DE |
4243812 | Jun 1994 | DE |
1318864 | Jun 2003 | EP |
1604712 | Dec 2005 | EP |
270146 | Dec 1997 | NZ |
9203201 | Mar 1992 | WO |
9204087 | Mar 1992 | WO |
9733668 | Sep 1997 | WO |
9845006 | Oct 1998 | WO |
0110184 | Feb 2001 | WO |
0222226 | Mar 2002 | WO |
0222227 | Mar 2002 | WO |
2005042124 | May 2005 | WO |
2006057970 | Jun 2006 | WO |
2006113936 | Oct 2006 | WO |
2007019278 | Feb 2007 | WO |
2007027841 | Mar 2007 | WO |
2007028042 | Mar 2007 | WO |
2007028043 | Mar 2007 | WO |
2007035524 | Mar 2007 | WO |
2007106717 | Sep 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20060111196 A1 | May 2006 | US |