The present invention is in the field of physical assistance devices, in particular a device configurable for use in various functions such as a sitting aid and a walking aid.
To aid people with physical limitations, there are several styles of rollable chairs and wheelchairs, including those that can be transformed to rollators (walkers).
U.S. Pat. No. 7,669,863 discloses a walker with a seat assembly that assists a user in rising from a seated position or sitting from a standing position. The seat assembly is mounted in a frame and includes a gas spring that deflects the seat assembly while the user is rising from the seat or dampens the deflection of the seat when the user is sitting.
U.S. Pat. No. 9,877,175 discloses a seating and walking wheelchair with an active seat and a frame. The active seat is configured to move from a seated position to a standing position. The active seat includes a seat back with an upper end and a lower end, and a seat bottom with a front end and a rear end. The rear end of the seat bottom is rotatable about a movable pivot.
U.S. Pat. No. 8,973,997 discloses a chair is operated by a pair of screw shaft-type linear actuators extend from a frame, and which may have a split seat with a drop-away front portion. One or more motors operate the screw shafts to raise the rear seat portion without changing its angular orientation. Connector links interconnect the frame with the front seat portion to drop it downwardly from under the user's thighs, while the back seat portion rises to assist the user to stand.
U.S. Pat. No. 6,619,681 discloses a seating and walking wheelchair device, which also functions as a stander and a hands-free walker. The device raises the user to a standing position from a seated position, allowing the user to propel the device by the user's legs and feet. As the seat is raised, the seat swings from generally horizontal first position to a generally vertical second position, and vice versa.
US patent application 2006/022517 discloses a mobility-assistance apparatus including a wheelchair with a seat and frame and a walker coupled and integrated into the wheelchair. The walker has a seat lift mechanism.
US patent application 2007/278761 discloses a wheelchair with a frame, a seat and apparatus for moving the seat between lowered and raised positions. A translating mechanism is attached to the frame and the seat and provides translational movement of the seat that is forwards and upwards. An assist means generates a force to move the seat from the lowered to the raised position. The seat supports the user in a seated position; and in the raised position the occupant is in a mounted stance with a major part of the occupant's weight supported.
US patent application 2005/236812 discloses apparatus for moving a seat of a wheelchair between lowered and raised positions via a translating mechanism that moves the seat forwards and upwards.
The teachings of the aforementioned publications are incorporated by reference as if fully set forth herein.
In accordance with a first aspect of the presently disclosed subject matter there is provided a user-support device configured to be rollable on a ground surface, comprising:
The above features can allow the device to be used as a bi-directional rollable user-support device operable in at least two of the following three modes:
Thus, in accordance with a second aspect of the presently disclosed subject matter there is provided rollable user-support device configured to be rollable on a ground surface, the device comprising:
In accordance with a third aspect of the presently disclosed subject matter there is provided a user-support device configured to be rollable on a ground surface, the device comprising:
In accordance with a fourth aspect of the presently disclosed subject matter, there is provided a user-support device configured to be rollable on a ground surface, the device comprising:
In the device of the this aspect, the safety arrangement can comprise a seat manipulation mechanism operable to move the seat, with a user seated thereon, between a lower rearward seating position and an elevated forward seating position in which the seat has a seating length shorter at a front area thereof relative to that in the lower rearward seating position to facilitate the user's standing up from his seated position. Alternatively or in addition, the safety arrangement can comprise one or both of the following: at least one roll prevention mechanism operable to prevent the front wheels from rolling on the ground surface when the seat is in its elevated forward seating position and at least one swivel prevention mechanism operable to prevent swiveling of the front wheels, when their rolling is prevented.
The device of each of above aspects can be a bi-directional rollable user-support device and have both front and rear wheels rollable and swivelable.
The seat of the device of each of above aspects can be capable of being brought from the elevated forward seating position into a folded position in which at least a portion of the seat has an orientation different from that in the elevated forward and lower rearward seating positions.
The device of each of the above aspects can thus have a seat folding mechanism attaching the seat to the frame and operable to move the seat between the folded position and the unfolded position being the elevated forward seating position.
The device of each of the above aspects can comprise a second swivel prevention mechanism activatable at least indirectly by the seat folding mechanism and operable to prevent the first wheels from swiveling when the seat folding device is in the folded position.
The device of each of the above aspects can thus be operable in the following three modes:
In accordance with a fifth aspect of the presently disclosed subject matter there is provided a bi-directional user-support device operable in, and manipulable between a first, chair mode, in which the device is rollable in a first direction with a user sitting thereon, and a second, rollator mode, in which the device is rollable in a second direction opposite to the first direction, by a standing user facing in the second direction, the device comprising:
In the device of each of the above aspects, the seat can have a seating length which is shorter at a front area thereof when the seat is in the elevated forward position relative to that in the lower rearward seating position.
More particularly, the seat can have a main, rearward seat portion and an auxiliary forward seat portion and is manipulable between the following three positions:
In the device of each of the above aspects, the seat manipulation mechanism and the seat folding mechanism can be considered as a single seat manipulation and folding mechanism operable to move the seat between the lower seating state and the elevated seating state and between the elevated seating state and the folded state.
In accordance with a sixth aspect of the presently disclosed subject matter, there is provided a foldable user-support device configurable to be positioned on a ground surface and comprising:
The device of each of the above aspects, can further have each of the features described below.
The main seat portion and the auxiliary seat portion can have a juxtaposed disposition when the seat is in its lower rearward position, allowing the two portions together to accommodate a seated user in the lower rearward seating position of the seat, and wherein the auxiliary portion is operable at least indirectly by the seat manipulation mechanism to change its orientation so as to reduce the seating length of the seat, when the seat is moved into its elevated forward seating position, allowing only the main portion to accommodate a seated user in the elevated forward seating position.
The main seat portion can have the same orientation in the elevated and lower positions allowing it to support a user in both these positions.
The auxiliary seat portion can be positioned lower than the main seat portion and oriented transversely thereto when the seat is in the elevated forward position.
The seat manipulation mechanism can include at least one piston configured to store energy when the seat is moved towards the lower rearward position, and to release its stored energy when the seat is moved towards its elevated forward position.
The at least one roll prevention mechanism can comprise a roll prevention member associated with each first wheel and manipulable between a roll-enabling state in which the front wheel can be rolled and a roll-arresting state in which the front wheel is prevented from rolling; and a roll-prevention trigger member activatable at least indirectly by the seat manipulation mechanism when the seat is brought thereby into elevated forward seating position, and operable to bring the roll prevention member into the roll-arresting state.
The at least one swivel prevention mechanism can be operable to change the state of the first wheels from a swivel-enabling state, when the seat is in the lower rearward seating position, into a swivel arrested state in which the first wheels are prevented from swiveling when the seat is in the elevated forward seating position.
The at least one first swivel prevention mechanism can comprise a swivel arresting member associated with the first wheel and manipulable between a swivel-enabling state in which the swivel-enabling state of the first wheel is allowed, and a swivel-arresting state in which the swivel arresting member prevents the first wheel from swiveling; and a swivel-prevention trigger member activatable at least indirectly when the roll-prevention trigger member brings the roll prevention member into the roll-arresting state and operable to bring the swivel arresting member into the swivel-arresting state.
The frame can be rigid and at least its legs and, optionally, the entire frame can be non-foldable.
The seat manipulation mechanism can be connected to the first legs of the frame.
The roll prevention mechanism and the swivel prevention mechanisms can comprise activating elements extending within the front legs, via which these mechanisms are connected to the seat manipulation mechanism.
The frame can comprise a lower portion and an upper portion extending upwardly therefrom, and wherein the lower portion comprises the first and second legs and a strengthening bar connecting between the second legs.
The frame can comprise a right and a left frame member, each having a frame member lower portion with one first and one second leg, and a frame member upper portion.
The device can further a pair of extendable user-support arms connected to the frame member upper portions and operable to transition between a lower arm position in which a part of the arms is located in the frame upper portions for use when the device is in the first mode, and an extended arm position for use at least when the device is in the second mode.
All mechanisms of the device can be free of electrical connections and electrical power source.
In the folded state of the seat, at least most of the seat can extend along the frame, in a side view of the device.
The at least one roll prevention mechanism and the at least one first swivel prevention mechanism can be actuatable simultaneously.
The device can comprise a backrest which maintains its orientation when the seat is in the lowered rearward seating position and in the elevated forward seating position, in which the seat is disposed farther from the backrest than in the lower rearward position
The backrest can be operably connected to the frame so as to be moveable between: a backrest deployed position in which the backrest is spaced rearwardly from the seat, at least a majority thereof is disposed above the plane defined by the seat, and the seat is oriented transversely to this plane when the seat is in the lower rearward position, and a backrest folded state in which the backrest is disposed adjacent the seat and extends along the seat when the seat is in the folded position.
The device can further comprise a backrest folding mechanism operable to move the backrest between the deployed state and the folded state. The backrest folding mechanism can be operably connected with the seat folding mechanism so as to activate the seat folding mechanism when the backrest folding mechanism is actuated.
When the frame comprises the frame members having the upper and lower portions as mentioned above, the backrest can be connected at least to the frame member upper portions.
The backrest and the backrest folding mechanism can be such that in the deployed position the backrest forms with the plane defined by the seat when in the lower rearward seating position, a first angle and in the folded state, the backrest forms with said plane a second, acute angle smaller than the first angle. In the folded position of the backrest, at most of it can extend along the frame in a side view of the device.
In accordance with a seventh aspect of the presently disclosed subject matter, there is provided a bi-directional user-support device operable in, and manipulable between, a first, chair mode, in which the device is configured to accommodate a seated user facing in a first direction, and a second, rollator mode, in which the device is rollable at least in a second direction opposite to the first direction, by a standing user facing in the second direction, the device comprising:
When the backrest of the device of this sixth aspect is in the deployed position it can form with the plane defined by the seat when in the lower rearward seating position a first angle, and in the folded state, the backrest forms with said plane a second, acute angle smaller than the first angle. When the backrest is in the folded position, at least most of it can extend along the frame.
In the device of this sixth aspect, the first wheels of the first and second legs can be rollable and swivelable.
The device of this aspect can further comprise a seat manipulation mechanism operable to move the seat, with a user seated thereon, between an elevated forward seating position and a lower rearward seating position, the elevated forward seating position constituting the deployed position of the seat into which it can be unfolded.
The device of this aspect can further comprise at least one roll prevention mechanism operable to prevent the first wheels from rolling on the ground surface when the seat is in its elevated forward seating position. Alternatively or in addition, the device can comprise at least one first swivel prevention mechanism operable to prevent swiveling of the first wheels when the seat is in the elevated forward seating position. In both cases the
In the device of this aspect, the orientation of the seat in the folded position is different from that in the elevated forward and lower rearward seating positions.
In the device of this aspect, the seat folding mechanism can be operable to activate a second swivel prevention mechanism to prevent the first wheels from swiveling when the seat folding device is in the folded position.
The device of this aspect can thus be operable in the following three modes:
In the device of this aspect, the seat can have a seating length which is shorter at a front area thereof when the seat is in the elevated forward position relative to that in the lower rearward seating position. More particularly, the seat can have a main, rearward seat portion and an auxiliary forward seat portion and is manipulable between the following three positions:
In the device of this aspect, the seat manipulation mechanism and the seat folding mechanism can be considered as a single seat manipulation and folding mechanism operable to move the seat between the lower seating state and the elevated seating state and between the elevated seating state and the folded state.
As mentioned above, in each of the above aspects, the mechanisms can be connected to each other solely or at least mostly by mechanical connections so that each mechanism is mechanically activated by, or mechanically activates, or both, at least indirectly, at least one of the other mechanisms of the device, thereby allowing the device to be user-friendly, i.e. free of means requiring a user to coordinate/control the operation of the mechanisms in different modes of operation of the device. In particular, the backrest folding mechanism can be operable to mechanically activate the seat folding mechanism, in order to bring the seat from its elevated forward state into its folded state or vice versa, for the device to be used in the rollator mode. The one of these two mechanisms which is activated first to bring the device into the folded state can be activated manually, e.g. by a user pulling the backrest or pushing the seat, or by using a control button. The backrest folding mechanism or the seat folding mechanism can be operable to mechanically activate the corresponding swivel prevention mechanism to prevent swiveling of the first/front legs when the device is in the folded state, to facilitate its use as a rollator. The seat manipulation mechanism activated by a user's raising himself with the help of arms of the device or by pressing a control button, can be operable to mechanically activate the roll prevention mechanism and the corresponding swivel prevention mechanism to arrest/lock the first/front wheels when the seat is in the elevated forward seating position, thereby enabling the user to be safely supported by the device when sitting high or standing up.
As also mentioned above, in each of the above aspects, at least a part of mechanical elements connecting between different mechanisms, such as elements involved in roll and swivel prevention, can be disposed within the frame.
In each of the above aspects, each of the first wheels of the device, i.e. the wheels operable as front wheels when the device in its neutral or first, chair mode, can be associated with a caster assembly comprising a swivel caster holding wheel and operable to allow swiveling of the wheel; the assembly comprising at least one roll prevention mechanism configured to prevent rolling of the wheel and at least one swivel prevention mechanism different from the roll prevention mechanism operable to prevent swiveling of the wheel.
In the above caster assembly, the at least one swivel prevention mechanism can be a first swivel preventing mechanism and the assembly can further comprise at least one second swivel prevention mechanism actuatable separately and independently from the first swivel preventing mechanism.
Each of the first and second swivel prevention mechanism can be operable to lock the caster after its partial rotation to a first and a second predetermined angle, respectively, in the direction of rolling, the first and second angles being different.
Thus, in accordance with a still further aspect of the presently disclosed subject matter, there is provided a caster assembly for holding a wheel assembly comprising a swivel caster configured for connecting a wheel thereto and operable to allow swiveling of the wheel; the assembly comprising at least one roll prevention mechanism configured to prevent rolling of the wheel and at least one swivel prevention mechanism different from the roll prevention mechanism operable to prevent swiveling of the wheel.
The at least one swivel prevention mechanism can be a first swivel preventing mechanism and the assembly further comprises at least one second swivel prevention mechanism actuatable separately and independently from the first swivel preventing mechanism.
Each of the first and second swivel prevention mechanism can be operable to lock the caster after its partial rotation to a first and a second predetermined angle, respectively, in the direction of rolling, the first and second angles being different.
The at least one roll prevention mechanism and the at least one first swivel prevention mechanism are actuatable simultaneously.
In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
The following detailed description of embodiments of the invention refers to the accompanying drawings referred to above. Dimensions of components and features shown in the figures are chosen for convenience or clarity of presentation and are not necessarily shown to scale. Wherever possible, the same reference numbers will be used throughout the drawings and the following description to refer to the same and like parts.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features/components of an actual implementation are necessarily described.
Alternatively or additionally, the rollable user-support device may be designed to allow specific control of the wheels, front wheels and/or rear wheels. In particular, the user support device may be configured to allow a combination of rolling and/or swiveling options, in particular via one or more mechanisms that control the wheels, which, in some designs is in conjunction with the particular seat position.
The rollable user-support device includes a rigid frame 20 including right and left frame members fixedly connected to each other (for example via a frame strengthening bar) having an upper portion and a lower portion, which is constituted by a front leg 22 and a rear leg 24. Each of the front legs has a distal end 26 with at least one front wheel 28 disposed at those distal ends. Each of the rear legs 24 has a distal end 26 with at least one rear wheel 32 disposed at those distal ends. The wheels are illustrated as single wheels, however, they may be constituted by a set of wheels, such as a pair of wheels. At least front wheels 28 can be configured to be both rollable and swivelable, as will be described in further detail hereinbelow, with reference to
Frame 20 has a seat 36 operably connected thereto. Seat 36 may be a 1-part seat, or a multi-part seat such as the illustrated 2-part seat. Seat 36 may be configured to be positionable in a lower rearward seating position (
In the case of the 2-part seat 36, the seat includes a rearward seating portion 38 (which may interchangeably be referred to as a main seating portion 38 herein the specification and claims), which is intended for supporting the user's buttocks; and a forward seating portion 40 (which may interchangeably be referred to as an auxiliary seating portion 40 herein the specification and claims), which in the lower sitting position is intended to provide support to the user's thighs. In this 2-part configuration, in the elevated position (
The device may also include at least one swivel prevention mechanism 300 configured to allow the front wheels 28 to be prevented from swiveling (in some designs independently, and in some designs in conjunction with the position of seat 36, in particular, when the seat is in its elevated position, as will be described hereinbelow). Swivel prevention mechanism 300 may be constituted by known means, or using a particular design, as will be described hereinbelow, with reference to
The device may also include at least one roll prevention mechanism 200 configured to prevent front wheels 28 from rolling when the seat is in the elevated position. Such a configuration maybe advantageous for providing a stable base for a user in an elevated position, such as when adjacent a kitchen/bathroom sink, or the like.). Roll prevention mechanism 200 may be constituted by known means, or by way of a particular design that is entirely mechanical, as will be described hereinbelow, with reference to
In some designs, the rollable user-support device is configured to include seat manipulation mechanism 100 and swivel prevention mechanism 300. In some designs, the rollable user-support device is configured to include seat manipulation mechanism 100 and roll prevention mechanism 200. In some designs, the rollable user-support device is configured to include swivel prevention mechanism 300 and roll prevention mechanism 200. In some designs, the rollable user-support device is configured to include seat manipulation mechanism 100; swivel prevention mechanism 300; and roll prevention mechanism 200.
Any one or all three of the aforementioned mechanisms may be operated by electrical means. However, in particular designs, at least one of the three aforementioned mechanisms is entirely constituted by mechanical means; in some particular designs, at least two of the three aforementioned mechanisms are entirely constituted by mechanical means; and in some particular designs, all three aforementioned mechanisms are entirely constituted by mechanical means.
In a particular example, seat manipulation mechanism 100 is operatable by the user, whilst roll prevention mechanism 200 and swivel prevention mechanism 300 are operable directly or indirectly by the seat manipulation mechanism 100 so that the change of the position of the seat triggers the change of the state of front wheels 28. Thus, when the device is in its initial state (“high chair”, neutral/ready for use mode), with its seat 36 in the elevated forward position, at least its front wheels 28 are prevented from rolling and swiveling until the seat is lowered into its lowered position (as a normal rollable chair) in which the front wheels are rollable and swivelable (released from their roll-prevention and swivel-prevention state). When the user (e.g. by shifting weight forward and rising) causes the seat manipulation mechanism 100 to start elevating seat 36, the seat manipulation mechanism at least indirectly causes the roll prevention mechanism 200 and swivel prevention mechanism 300 to prevent the device from rolling and swiveling. The seat manipulation mechanism 100 can be controllable by a user manipulating with his center of gravity and/or a control system.
Best seen in
Seat manipulation mechanism 100 also includes a pair of frame-to-rear seating linkages 106 pivotably connecting frame 20 to rearward seating portion 38, at a location behind to where seat portion attachment brackets 102 are attached Linkages 106 may include a set of pivotably connected linkage sections (three illustrated), including a lower linkage section 110; an intermediate linkage 112; and an upper linkage 114, where the intermediate linkage is pivotable connected at its respective ends to the lower linkage and the upper linkage.
Suitable lengths of seat portion attachment brackets 102 in combination with suitable lengths of forward seating portion-to-frame connection brackets 104 and frame-to-rear seating linkages 106 can be chosen to ensure that rearward seating portion 38 remains in a generally horizontal orientation during manipulation of seat 36, which, as noted above, is moved from a rearward lower position to an elevated forward position (and vice versa).
Seat manipulation mechanism 100 may be powered by manual means, for example by a crank or the like; or mechanical means using, for example, a spring.
However, in some particular designs, seat manipulation mechanism 100 includes a pneumatic seat movement assist mechanism that includes at least one piston 108 (
Pistons 108 are pivotally attached at a lower end thereof to frame 20 and pivotally attached at an upper end thereof to the side or bottom of rearward seating portion 38, typically at a relatively rear portion of the rearward seating portion.
The device shown in above-referenced
The bi-directional rollable user-support device is configured to be operable in and manipulable between a first mode (chair), in which the device can be rolled on a ground surface in first direction 42 with a user sitting thereon, and a second mode (rollator/walker), in which the device is rollable by a standing user on the ground surface in second direction 44, which is opposite to the first direction.
The bi-directional rollable user-support device includes the components noted with reference to
As the device is bi-directional, the “front wheels” will be termed “first wheels” 28a; and the “rear wheels” will be termed “second wheels” 32a.
When the bi-directional rollable user-support device is in its first mode (chair or elevated chair;
When the bi-directional rollable user-support device is in its second mode (rollator/walker;
Although frame 20 can be designed to provide support for the user while standing (e.g. rollator for a relatively short user;
The bi-directional rollable user-support device includes a seat manipulation and folding mechanism 400 operably attaching seat 36 to frame 20. Mechanism 400 is configured to move seat 36 between a first (deployed) state (
Seat manipulation and folding mechanism 400 may be constituted by known means, including electrically, or via a particular entirely mechanical design. In such a mechanical design (and wherein there is no backrest) may be constituted by the same components of seat manipulation mechanism 100. To accomplish the folding, the user may press forward seating portion 40 backward in the direction of arrow 402 (
The bi-directional rollable user-support device also includes a wheel manipulation mechanism 300 configured to enable at least first wheels 28a to swivel when the device is in its initial mode (
The bi-directional rollable user-support device includes frame 20 with front legs 22 and rear legs 24 connected thereto. At least one first wheel 28a is attached to distal ends 26 of each of front legs 22, in which the wheels are at least configured to roll and optionally to swivel. At least one second wheel 32a is attached to distal ends 26 of each of rear legs 24, in which the second wheels are configured to roll and swivel. Seat 36 is operably connected to the frame 20. The backrest 52 operably connected to frame 20, either directly (i.e. the frame may be suitably configured) or by other means such as via armrests 54.
The bi-directional rollable seat-folding user-support device also includes a seat and backrest folding mechanism 600 configured to fold and unfold the seat 36 and backrest 52 and operably attaching seat 36 and backrest 52 to frame 20. Backrest 52 is configured to be connected at least indirectly to seat and backrest folding mechanism 600 which is operable to move backrest 52 between a first (deployed, user back-support) state in the first mode (chair) of the device, in which the backrest is positioned at least partially above frame 20 (
Seat and backrest folding mechanism 600 can be operated by an electric means; however, in particular designs, mechanism 600 is entirely mechanical. In such a mechanical design, seat and backrest folding mechanism 600 may include seat manipulation mechanism 100 in combination with components configured to arrange the position of backrest 52.
With reference also to
Seat and backrest folding mechanism 600 includes a plurality of linkages, for example three linkages, including an upper linkage 602 that, at its upper end, is pivotally connected to frame 20, while being fixedly connected to armrest 54. An intermediate linkage 604 is pivotally connected at its upper end to the lower end of upper linkage 602. Lower linkage 606 is pivotally connected at its upper end to the lower end of intermediate linkage 604, and at its lower end to connection bracket 104 of seat manipulation mechanism 100. Intermediate linkage 604 has an elongated slot 608 therein that receives a pivot pin 610, which is fixed to upwardly extending portion 21 of frame 20.
Connection bracket 104 has a folding mechanism pin 612 (
To fold the device, namely to fold seat 36 and backrest 52 (as well as armrest 54), the user pulls on the backrest in the general direction 601 (
Foldable user-support device also includes a seat folding mechanism 700 configured to maneuver seat 36 between the lower seating state (
Roll and swivel control mechanism 800 may be constituted by an electrically controlled mechanism; however, in particular designs it is an entirely mechanical mechanism, as exemplified in
Roll prevention mechanism 200 is integrated and/or associated with swivel caster 34 and caster shaft 62. Caster shaft 62 has a longitudinal tunnel 202 running therethrough and configured to receive a roll brake rod 204, which may look like a carpentry nail with nail-heads on both sides. At its lower end, roll brake rod 204 is attached to a proximal end of roll prevention member 206 in the form of a roll brake lever 206. At its upper end, roll brake rod 204 is attached to a roll brake actuator 208.
Roll brake lever 206 is exemplified by a see-saw type lever pivotally attached to swivel caster 34, for example at about the mid-point of the lever, and at the free end of lever 206 there is a brake pad 210. At its upper end, roll brake actuator 208 is attached to one end of a roll brake actuating cable 212 (the right end of cable 212 in the Figs). A lower portion of roll brake actuator 208 is pivotably attached to frame 20.
Roll prevention mechanism 200 also includes a roll brake spring 214 held between roll brake actuator 208 and a swivel pin insertion lever 310 (described below) designed to actuate a mechanism for limiting wheel swivel, described hereinbelow. Cable 212 may longitudinally pass though (coil) spring 214.
In
Conversely, wheel 28 is prevented from rolling when cable 212 pulls on pivot roll brake actuator 208 to pivot the roll brake actuator (counterclockwise in the Figs) and raise the top of the roll brake actuator (spring 214 is compressed). This moves roll brake rod 204 upward whereby brake lever 206 seesaws (clockwise in the Figs) to force brake pad 210 downward to prevent wheel 28 from rolling.
Cable 212 is attached at its distal end (the left end in the Figs) to a roll-prevention trigger member 218 in the form of a roll prevention actuating member 218, which is fixed at a predetermined angle with respect to linkage section 110 of seat manipulation mechanism 100.
With reference to
Moving to the elevated seat position, i.e. when the user is getting up from a fully sitting to a semi-seated position, linkage 106 is moved from its position in
With continued reference to
First swivel prevention mechanism 300a will be described first, in which caster shaft 62 has a plurality (e.g. twelve) swivel limiting recesses 302 equally spaced about the shaft. For such purpose, caster shaft 62 may include a larger diameter portion 304 where swivel limiting recesses 302 are disposed in a substantially horizontal plane. Swivel limiting recesses 302 are dimensioned to receive a swivel arresting member 306 in the form of a swivel limiting pin 306 whose distal end fits into the recesses. Swivel limiting pin 306 is slidingly held horizontally at the same plane of recesses 302 by a pin holder 308.
At its proximal end, swivel limiting pin 306 interfaces with a lower end of a swivel pin insertion lever 310 so that the insertion lever can urge the pin into any one of recesses 302 when aligned therewith. Swivel pin insertion lever 310 is pivotally attached to pin holder 308 in a seesaw manner. The upper end of swivel pin insertion lever 310 interfaces with roll brake spring 214.
As noted above, when seat 36 is elevated, cable 212 is pulled. In addition to actuating roll prevention mechanism 200, pulling on cable 212 also actuates the limited swivel assembly. Cable 212 pulls on roll brake actuator 208, which compresses spring 214 so as to force the upper end of swivel pin insertion lever 310 outward (to the left in the Figs.). Swivel pin insertion lever 310 thus pivots (counterclockwise in the Figs) to urge swivel limiting pin 306 into swivel limiting recesses 302. If swivel caster 34 swivels up to 30 degrees, one of the swivel limiting recesses will align with swivel limiting pin 306 and the pin will enter the aligned recess. Thus, swiveling will be prevented beyond a limit, e.g. 30 degrees in the exemplary design wherein caster shaft 62 has twelve equally spaced recesses 302. As such, the user will have a stable high chair in the elevated seat position.
In this context, the term “swivel prevention”, its derivatives, uses within other terms and the like, herein the specification and claims, will be understood to mean swivel arresting after a predetermined swivel limit (spinning of wheels 28). This predetermined swivel limit is a function of the number of recesses 302.
Second swivel prevention mechanism 300b, via which swivel caster 34 can swivel until it is aligned with the direction of rolling, will now be described. Here, swivel prevention mechanism 300 includes a swivel prevention cable 350 attached to an upper end of a swivel alignment lever 352. Swivel alignment lever 352 is pivotally attached to pin holder 308 in a seesaw manner, for example, at the same pivot point as lever 310. A lower end of swivel alignment lever 352 interfaces with a swivel alignment and prevention pin 354, which is generally horizontally oriented. Swivel alignment and prevention pin 354 is disposed in the same plane as a single pin receiving recess 356 disposed in larger diameter portion 304. Single pin receiving recess 356 is located in portion 304 so as to align with swivel alignment and prevention pin 354 when wheel 28 trails behind shaft 62. Thus, wheel 28 rolls parallel (in alignment) with the forward movement of the device in the rollator configuration, and prevent swiveling within 180 degrees of wheel swivel.
In this context, the term “swivel prevention”, its derivatives, uses within other terms and the like, herein the specification and claims, will be understood to mean swivel arresting after a predetermined swivel limit (spinning of wheels 28). This predetermined swivel limit is no greater than 180 degrees, in particular until casters 34 of first wheels 28a align with frame 20.
Summarizing,
A bi-directional rollable user-support device having all the mechanisms described above will now be described with reference to the aforementioned Figs.
In such a design, which can be considered an “all-inclusive” design of the bi-directional rollable device, there are:
Movement between the three possible seat states operably effects the three possible first wheel states, namely, (a) moving seat 36 from its lower rearward position to its elevated forward position actuates mechanism 100 resulting in the first wheels changing state from a rollable and swivelable state to a swivel prevention state (and vice versa when the seat is moved from the elevated forward position to the rearward lower position); (b) moving backrest 52 from its user back-support position to its folded position (rollator) actuates mechanism 600 resulting in first wheels 28a changing state from a non-rollable and non-swivelable state to a rollable non-swivelable state and first wheels functioning as rear wheels. Conversely, moving backrest 52 from its folded position (rollator) to its non-folded back supporting state results in first wheels 28 returning to functioning as front wheels, and those wheels being in a non-roll swivel prevention state.
In particular, a rollable user-support device is provided that includes all the mechanisms described above, reference to the aforementioned Figs.
Specifically, the rollable user-support device is configured to be rollable on a ground surface and includes a rigid frame 20 (as described above) having a pair of first legs 22 and a pair of second legs 24 (as described above). Each first leg 22 has a first leg distal end 26 at which at least one first wheel 28a is attached and the wheels is rollable and swivelable (as described above). Each second leg 24 has a rear leg distal end 26 at which at least one second wheel 32a is attached and those wheels are rollable and swivelable (as described above).
The rollable user-support device includes seat 36 (as described above) operably connected to frame 20 and is positionable in three positions: a lower rearward seating position; an elevated forward seating position; and a folded position. A seat folding mechanism (as described above with reference to mechanism 600) is operable to manipulate seat 36 between the folded position and an unfolded position (the elevated forward seating position). Seat manipulation mechanism 100 (as described above) is operable to move seat 36, with a user seated thereon, between the lower rearward seating position and the elevated forward seating position.
At least one roll prevention mechanism 200 (as described above) is activatable, at least indirectly, by seat manipulation mechanism 100 and is operable to prevent first wheels 28a from rolling on the ground surface when seat 36 is brought into its elevated forward seating position. At least one first swivel prevention mechanism 300a (as described above) is activatable, at least indirectly, by seat manipulation mechanism 100 and is operable to prevent swiveling of first wheels 28a, at least after their rolling is prevented in the seat's elevated forward position. At least one second swivel prevention mechanism 300b (as described above) is actuatable by seat manipulation mechanism 100 of mechanism 600 and is operable to prevent the swiveling of first wheels 28a when seat 36 is brought into its folded position.
The rollable user-support device is a bi-directional rollable user-support device operable in the following three modes:
(a) a neutral mode, in which seat 36 is in the elevated frontward position and first wheels 28a are prevented from rolling and swiveling;
(b) a first mode (chair mode) in which seat 36 is in the lowered rearward position and first wheels 28a are allowed to roll and swivel (thus constituting chair front wheels 28), which enables the device to be rolled in first direction 42 with the user accommodated on seat 36 facing in the first direction; and
(c) a second mode (rollator mode) in which seat 36 is in the folded position and first wheels 28a are prevented from swiveling whilst second wheels 32a function as rollator front wheels enabling the device to be rolled in second direction 44 opposite first direction 42 with a standing user facing in the second direction.
In some designs, backrest 52 (as described above) is operably connected to frame 20 so as to be moveable between (a) a backrest deployed position in which the backrest is spaced rearwardly from seat 36 and at least a majority thereof is disposed above a plane defined by the seat and is oriented transversely to this plane when the seat is in its lowered rearward position, and (b) a backrest folded state in which the backrest is disposed adjacent the seat and extends along a plane of the seat when the seat is in the folded position. Backrest folding mechanism 600 is operable to move backrest 52 between the deployed state and the folded state.
In some designs, a backrest folding mechanism (as described above with reference to mechanism 600) is operably connected with a seat folding mechanism (as described above with reference to mechanism 100) so as to actuate the seat folding mechanism when the backrest folding mechanism is actuated. The backrest folding mechanism may be operably connected with the seat folding mechanism so as to actuate folding of backrest 52 and seat 36 upon actuation of the backrest folding mechanism.
Seat 36 may be disposed farther from backrest 52 in the elevated forward position than in the lowered rearward position. Seat 36 may have a seating length which is shorter at a front area thereof when the seat is in the elevated forward position relative to that in the lower rearward seating position. Seat 36 may have main seating portion 38 (as described above) and an auxiliary seating portion 40 (as described above) operable to change orientation thereof relative to the main seating portion 38 when seat 36 is moved between the lowered rearward position and the elevated forward position.
Main seating portion 38 and auxiliary seating portion 40 may have a juxtaposed disposition when seat 36 is in its lowered rearward position, allowing the two portions together to accommodate a seated user in the lower rearward seating position of seat 36, in which the auxiliary seating portion (40) is operable at least indirectly by the seat manipulation mechanism 100 to change its orientation so as to reduce the seating length of seat 36, when the seat (36) is moved into its elevated forward seating position, allowing only main seating portion 38 to accommodate a seated user in the elevated forward seating position.
Main seating portion 38 may have the same orientation in the elevated and lowered positions allowing it to support a user in both these positions. The auxiliary seating portion 40 may be positioned lower than main seating portion 38 and oriented transversely thereto when seat 36 is in the elevated forward position.
Seat manipulation mechanism 100 may include at least one piston 108 (as described above) configured to store energy when seat 36 is moved towards the lower rearward position, and to release its stored energy when seat 36 is moved towards its elevated forward position.
Roll prevention mechanism 200 may include a roll prevention member 206 (as described above) associated with each first wheel 28a and be manipulable between a roll-enabling state in which front wheel 28 can be rolled; and a roll-arresting state in which the front wheel is prevented from rolling. Roll-prevention trigger member 218 (as described above) is activatable, at least indirectly, by seat manipulation mechanism 100 when seat 36 is brought thereby into its elevated forward seating position, and operable to bring roll prevention member 206 into the roll-arresting state.
Swivel prevention mechanism 300 (as described above) is operable to change the state of first wheels 28a from a swivel-enabling state, when seat 36 is in the lower rearward seating position, into a swivel arrested state in which first wheels 28a are prevented from swiveling when seat 36 is in the elevated forward seating position.
Swivel prevention mechanism 300 may include a swivel arresting member 306 (as described above) associated with front wheels 28 and manipulable between a swivel-enabling state in which the swivel-enabling state of the front wheels is allowed, and a swivel-arresting state in which swivel arresting member 306 prevents the front wheels 28 from swiveling. Swivel-prevention trigger member 104 (as described above) is activatable when the roll-prevention trigger member 104 brings the roll prevention member 206 into the roll-arresting state and operable to bring the swivel arresting member 306 into the swivel-arresting state.
Each first wheel 28a may be in the form of caster 34 (as described above) attached to first legs 22 by caster shaft 62 (as described above), and second swivel prevention mechanism 300b is operable to prevent, in the roll-only state and caster 34 is prevented from rotating more than 180 degrees about the caster shaft 62.
Roll prevention mechanism 200 and swivel prevention mechanism 300 may include activating elements extending within front legs 28, via which these mechanisms are connected to seat manipulation mechanism 100.
Frame 20 may be rigid and its legs 28, 32 may be unfoldable. Seat manipulation mechanism 100 may be connected to first legs 28a of frame 20. Frame 20 may include a lower portion and an upper portion extending upwardly therefrom. The lower portion may include first and second legs 22, 24 and a frame strengthening bar connecting between the second legs 24.
Frame 20 may include right and left frame members, each member having a frame member lower portion with one first and one second leg 22, 24, and a frame member upper portion. Backrest 52 may be connected to the frame member upper portions.
The device may include a pair of extendable user-support arms 46 connected to the frame member upper portions. The arms 46 are operable to transition between a lower arm position in which a portion of the arms is located in the frame upper portions for use when the device is in its first mode, and an extended arm position for use at least when the device is in its second mode.
It should be understood that the above description is merely exemplary and various embodiments of the present invention may be devised, mutatis mutandis, and that the features described in the above-described embodiments, and those not described herein, may be used separately or in any suitable combination; and the invention can be devised in accordance with embodiments not necessarily described above.
This application claims priority to U.S. Provisional Patent Application No. 63/026,746 filed May 19, 2020, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4249774 | Andreasson | Feb 1981 | A |
4929022 | Geraci | May 1990 | A |
6371142 | Battiston | Apr 2002 | B1 |
6619681 | Gutierrez | Sep 2003 | B2 |
7669863 | Steiner et al. | Mar 2010 | B2 |
8584689 | Catton | Nov 2013 | B2 |
8590920 | Masaki | Nov 2013 | B2 |
8973997 | Green et al. | Mar 2015 | B2 |
9301896 | Hsieh | Apr 2016 | B2 |
9662264 | Jacobs | May 2017 | B2 |
9808394 | Jiang | Nov 2017 | B1 |
9849050 | Mcclean | Dec 2017 | B2 |
9877175 | Hussain et al. | Jan 2018 | B2 |
9907723 | Bisceglia et al. | Mar 2018 | B2 |
10639226 | Keyes | May 2020 | B1 |
11432978 | Inkmann | Sep 2022 | B1 |
20020050697 | Hallgrimsson | May 2002 | A1 |
20050236812 | Firth | Oct 2005 | A1 |
20060022517 | Bacardit et al. | Feb 2006 | A1 |
20070194547 | Steiner et al. | Aug 2007 | A1 |
20070278761 | Firth | Dec 2007 | A1 |
20090278325 | Geels | Nov 2009 | A1 |
20130020779 | Green et al. | Jan 2013 | A1 |
20140265188 | Chang | Sep 2014 | A1 |
20160022517 | Frangos et al. | Jan 2016 | A1 |
20160296410 | Paterson | Oct 2016 | A1 |
20170202727 | Wegener et al. | Jul 2017 | A1 |
20190240106 | Kapec | Aug 2019 | A1 |
20200008990 | Harrison | Jan 2020 | A1 |
20210361517 | Reuveni | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
202891207 | Apr 2013 | CN |
105030445 | Nov 2015 | CN |
2519861 | Jul 1983 | FR |
2000300611 | Oct 2000 | JP |
2013085716 | May 2013 | JP |
2017079964 | May 2017 | JP |
2018102816 | Jul 2018 | JP |
03099122 | Dec 2003 | WO |
2012039604 | Mar 2012 | WO |
2015040008 | Mar 2015 | WO |
2016032876 | Mar 2016 | WO |
2017155629 | Sep 2017 | WO |
2018014139 | Jan 2018 | WO |
2018154234 | Aug 2018 | WO |
2019022676 | Jan 2019 | WO |
2019132108 | Jul 2019 | WO |
2019191097 | Oct 2019 | WO |
2019230388 | Dec 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20210361517 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63026746 | May 2020 | US |