Not applicable.
None.
The present invention is directed to a wheeled mobility-assistance device and more particularly to a foldable, height adjustable rollator which allows the user to have full gait when standing upright and is provided with a plurality of hand brakes, each of which when activated locks the rear wheels simultaneously.
There are numerous examples of products designed and manufactured for people who suffer with mobility/walking problems. The disability that is experienced may be minor and easily managed or major to the individual significantly affecting balance, stability, strength, range of motion, endurance, etc. People may cope with one specific annoyance, but a significant number of persons are seriously affected by one or multiple disabilities that compromise their mobility. Such disability issues include rheumatoid arthritis, arthritis in the knee joint, orthopedic impairment of the lower extremities, stroke, chronic injury of back and neck, cerebrovascular disease, Parkinson's disease, to list just a few of the conditions that impede mobility. Usually patients who suffer from arthritis of the knee joint also have significant wasting of thigh muscles. The cause of this muscle wasting can be explained by the fact that such individuals decrease their activity due to knee pain. They use their thigh muscles less often and try to put less strain on them. As a result the muscles become weaker and thinner. Weak muscles can't support the body weight adequately. Muscles of the thigh and buttock both take part in the standing up process. The quadriceps muscle of the thigh receives the most strain when standing up.
The range of impairments that affect walking are more common with aging, each affecting an individual's unique struggle with mobility and a need for walking support, balance and assistance. In many cases people are able to manage these problems and be mobile with the assistance of a walker. A basic walker limits the speed and transition of a user's walking gait to a slow deliberate step by step process, which is different from normal walking.
A wheeled walker (also called rollator) is well-known in the art as an improvement to the earlier walker and cane mobility aids and is a popular mobility assistance vehicle for the mobility impaired. The advantages of the wheeled walker are known to include smoother and more comfortable movement along even surfaces without requiring the user to lift or slide the walking aid along.
The addition of wheels to improve the mobility of the walker introduces the disadvantages of instability and user safety as well as impairing the full gait of the user.
A rollator provides fluid mobility compared to a walker along with enhanced mobility, increased support and encourages walking with a normal gait.
There is also a subset of people that have no adverse disability but would like to extend their range of walking endurance and add convenience to their daily activities. For this subset there is a latent need for a device that becomes a personal mobile assistant enabling the user to: go food shopping in a supermarket, walk to the gym or to the physical therapy location with a gear bag, transport things from store to home, spend a day in a museum, take a long walk on the deck of a cruise ship, spend a day at the mall, walk to a beautiful location, sit down/observe, and so on.
This subset of users may need some additive support but they principally want to benefit from additional freedom, to move about longer distances with faster mobility or perhaps exercise over distance and be able to transport personal items in a mobile carrying device that looks stylish, innovative, active and intelligent.
Walking with a full range gait coincides with normal bipedal walking physiology. Gait locomotion involves the entire body. The body's center of gravity is located at the hips, as balance starts there as does the walking motion. To attain a normal gait cycle a person should be standing upright in a vertical upright posture.
Normal walking involves the lower extremities and trunk for propulsion as well as balance and stability. The faster the speed of travel, the more the body engages the upper extremities and trunk for propulsion, balance, and stability.
In the human bipedal mobility system, three major joints of the lower body and pelvis work in concert as the muscles and momentum propels the body forward. The degree in which the body's center of gravity moves during the forward gait cycle defines walking efficiency. The body's center of balance moves side to side and up and down during gait but the axis of the spine remains upright.
While rollators or similar walking aids are helpful and enable walking mobility, these devices also create unintentional constraints with posture and gait cycle. The hands and arms of the user are extended forward relative to the torso; the hips, upper legs and knees no longer maintain a vertically stacked alignment as the spine is angled forward rather than positioned vertical to the ground plane and the pelvis is offset away from the arms and hands. The range of motion of the upper legs is impeded by the support structure (seat and or traverse frame member) of the rollator. In the standard rollator framework, a person's balance is offset and the gait cycle is constrained from enacting a full range of motion.
Almost all of the rollators on the market today have two brake handles which are independent. The dual handle configuration requires balanced hand force applied simultaneously to two brakes with left and right hands. If one hand is stronger than the other the braking force will be uneven resulting in turning and uneven tracking of the rollator. In many cases, the aged cannot apply the same hand strength on both the left and right side. In some users one hand may be significantly compromised. For those users, the user must rely on one hand for all tasks that require grip strength.
In addition to the problems noted above, there is a need to illuminate the ground or floor areas at twilight, night or in heavily shaded areas and to measure the distance traveled so that the user can meet physical therapy requirements.
Many practitioners have suggested further improvements to mitigate these added disadvantages. For example, U.S. Pat. No. 4,907,794, issued Mar. 13, 1990 discloses a foldable rolling walker having a high crossbar for easier walking convenience, height adjustable handles centered over offset wheels for greater stability and lockable pivoting front wheels and reversible brakes. Other similar improvements made to wheeled walkers include folding mechanisms, user-controlled wheel brakes and larger wheel sizes to improve stability and user safety. U.S. Pat. No. 7,001,313, issued Feb. 21, 2006 discloses a rollator that has four large pneumatic tires, with its rear tires being larger than the front tires, to facilitate safer movement over rough terrain while U.S. Pat. No. 9,173,802, issued Nov. 3, 2015 discloses a collapsible wheeled walker with large wheels and a folding mechanism for convenient storage.
U.S. Pat. No. 6,378,663 issued Apr. 30, 2002 is directed toward a brake mechanism for a walker. The brake mechanism is operated by handles which manipulate a brake cable which releases the wheel. An intermediate turning block connects the brake handle cables and activates the brake mechanism.
Some practitioners propose improving the walker mobility by adding upper body support means for supporting the user's forearms, hands or shoulders, to improve user comfort and posture. For example, U.S. Pat. No. 5,657,783, issued Aug. 19, 1997 discloses accessory forearm rests that may be mounted to any conventional invalid walker, preferably disposed above the normal hand-grips to provide added upper body support.
Likewise, U.S. Pat. No. 9,585,807, issued Mar. 7, 2017 discloses a collapsible upright wheeled walker with adjustable arm rests that support a user upper-body weight to facilitate upright gait and provide mobility for a wide range of mobility-impaired individuals. The apparatus can also include mechanical brakes and a pair of handles.
The present invention overcomes these problems and deficiencies and the same are solved by this invention in the manner described below.
The present invention changes the physical and spatial relationship of the user and the rollator enabling a full gait cycle to be used.
The present invention enhances control, stability, balance, standing posture, gait cycle, turning, and ease of use. The frame geometry, structure, and spatial relationships of the rollator's frame have been reconfigured so that a full upright user standing posture could be attained along with a full walking gait cycle. The full gait cycle is thus not impeded by obstructions caused by either the frame or a seat mounted to the frame. The user is positioned in the center of the open frame so that the turning axis is aligned approximately with the vertical axis of the user.
The present inventive rollator is designed to maintain stable and erect body posture of a user and allow a full gait of the user. It is constructed with a sectional frame having a U-shaped upright main section, a U-shaped lower base section mounted to the upright section and an intermediate support section mounted to the upright main section and the lower base section. A plurality of rear wheels are mounted to the upright support section and a plurality of pivotable front wheels are mounted to the lower base frame section. A brake assembly is mounted to the frame for braking the rear wheels and a pivotable seat assembly is mounted to the frame for retraction of the seat into the frame during walking or opening the seat in the frame for use by the user.
When the present invention rotator device is turned (changes direction) it rotates about the vertical axis of the user so that the user is always supported and is walking within the wheel base rather than being outside or behind the wheel base. In addition, an upright walking “push bar/resting bar” or accessory rail is incorporated into the frame structure. The upright walking push bar enhances upright posture so that users may support themselves with the hand grips or alternatively in any comfortable grip position along the upright push bar. It also enables the user to lean and rest on the bar.
The present invention solves the upright wheeled walker stability problem by providing a wheel suspension assembly that, for the first time, suppresses lateral motion from wheel load fluctuations created by user when stepping while also dampening wheel shocks caused from engaging irregular terrain.
The invention couples both rear wheel brakes to the action of a single lever with balanced brake force applied to both wheels. Each of the two rear wheel are evenly braked with a single handed squeeze of the brake lever. The brake lever may be mounted to either left or right side depending on preference of user or mounted on both sides of the rollator. This provides a meaningful functional opportunity for stroke patients who may have issues with the strength or coordination of one side vs the other side.
A therapist activated tensioner can be used to modulate controlled brake resistance on the rear wheels to manage/limit the user's speed or effort. Continuous controlled resistance may be utilized by the user through the brake system to reduce velocity when moving downhill over a distance. Controlled resistance may also be applied to the wheels to satisfy a different objective. Continuous controlled resistance may be applied by a physical therapists and utilized to make the user apply additional muscular force to push (walk with) the upright mobility device.
The invention can be provided with an odometer which measures walking distance for objective documentation and charting user improvements over time. This allows physical therapists to apply walking objectives that change over time. The physical therapist may need quantified measurement of distances travelled over time for clinical documentation and patient charting. The odometer provides a practical and simple means to obtain this data and use that data over time to see trending and changes.
Integrated lighting is mounted on the invention for downward, and forward projecting illumination. Two types of illumination are available in the rollator to enable the user to see in various dark environments. One dark environment may be outdoors when ambient lighting is insufficient to provide clear visualization forward or downward while walking on a travelled pathway; examples may be a sidewalk, a dirt path, a country road, a backyard, etc. A second dark environment is indoors at one's home for example when the room lighting is turned off or simply not available. In this condition, downward flood lighting projects a soft pool of light around the perimeter of the rollator. This illumination enables the user to see around the perimeter of the rollator, providing sufficient illumination to enable one to walk down a hall way or through a room without turning on the room lighting in that space.
It is a principal object of this invention to provide a height adjustable frame that will move up or down to accommodate a small individual or accommodate a tall standing individual.
It is another object of the invention to provide a wheel suspension for wheeled walkers that stabilizes the walker both laterally during user stepping and longitudinally over irregular surfaces.
It is yet another object of the invention to provide a preload adjustment that may be made to facilitate customization for any user.
It is still another object of the invention to allow the frame of the rollator to be folded allowing easy storage and transportation of the rollator and to allow the seat to be retracted for walking and opened for sitting.
These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure along with the accompanying drawings.
The present rollator invention will be described with reference to the appended Figures, in which:
The present invention is directed towards a height adjustable rollator with a first preferred embodiment of the invention shown in
In general, all embodiments of the invention are specifically designed to facilitate erect walking posture of the user while also enabling responsive rotational movement of the user within a small space. It is also designed to enable a wide range of locomotor speeds and rehabilitative applications by enabling adjustment of the user's center of body weight relative to the rollator base of support. Finally, this invention can be configured to allow seated mobility through leg pushing or pulling movements.
The front wheel yokes 119 as shown in
One preferred embodiment of the rollator 100 comprises a multi-sectional coupled frame 102 which is constructed of a U-shaped upright main frame section 104 which is mounted on axles 108 as shown in
The invention couples both brakes to a single lever with balanced brake force applied to the wheels. Each of the two rear wheel are braked evenly with single handed squeeze of the brake handle. The brake handle may be mounted to either left or right side or on both sides depending on preference of user. This provides a meaningful functional opportunity for stroke patients who may have issues with the strength or coordination of one side vs the other hand.
Only one single brake handle lever 117 is used to apply even balanced braking force to the two rear wheels which provides the following benefits to the user.
In many cases the aged cannot apply the same hand strength on left and right side. In some users one hand may be significantly compromised. Therein, the user must rely on one hand for all tasks that require grip strength.
The rollator has a “therapist activated” tensioner to modulate controlled brake resistance on the rear wheels to manage/limit the user's speed or effort. Continuous controlled resistance may be utilized by the user through the brake system to reduce velocity when moving downhill over some distance. Controlled resistance may also be applied to the rear wheels to satisfy a different objective. Continuous controlled resistance may be applied by a physical therapists and utilized to make the user apply additional muscular force to push (walk with) the upright mobility device. This would be analogous to an exercise bicycle or treadmill where the resistance is utilized to improve muscle tone. With a precision brake the resistance can be applied (increased/decreased) to precisely manage the level of resistance the user must work against.
The handgrip frame members 116 can be adjusted as seen in
The rollator can be provided with a seat assembly 122 as shown in
Locking latches 130 are each secured on the front portion of the curved U-shaped support and pivot frame 114 and receive latch support member 132 which are mounted on the front section lower base frame section 110 to hold the seat 126 and frame in open position (See
A second most preferred embodiment of the rollator 150 is shown by
During use, a user stands between the frame sections and grasps each of the upper handle grips 166 with one hand.
The legs 156 of the U-shaped main upright frame section 154 allow the handle bar/back rest assembly 170 to be adjusted for height and the preferred height is set by means of a removable spring pin 155 which is inserted into sleeve 172 of the handle bar/back seat assembly 170 into aligned holes of upright main frame section leg 156 as best seen in
The finger joint fold assembly 300 as shown in
The male segment 330 is provided with a linear planar front section 331 having an angled planar front surface 333 which is designed to fit in slot 306. The planar front section 331 also has a throughgoing aperture 332 which runs perpendicular to the plane of the front segment 331 and has the same diameter as aperture 308 of the female yoke segment 304 so that it can receive and hold bushing 310 while allowing pivotal movement of the male and female segments. When the front section 331 is seated in slot 306, bushing 310 can be inserted through aperture 308. The bushing 310 is inserted through hole 308 in the yoke segment and through slot 306 as holes 308 and 332 are axially aligned.
The rear portion 335 of the male segment 330 is cylindrical and defines a throughgoing slot 338. The opposite end of male segment 330 adjacent rear portion 335 defines a solid cylindrical end member 336 which is held in tubular leg portion 163 or 163′ in the same manner as previously noted. The cylindrical end member 336 holds a compression spring member 342 in its planar distal end which extends rearwards ending in a stop button 344. The stop button 344 is designed to engage the rear wall of cylindrical sliding lock member 346. The sliding lock member 346 receives a tubular sleeve 334 which has an inner diameter greater than the rear cylindrical portion 335 of the male segment 330 and an outer diameter less than the inner diameter of the sliding lock member 346. The tubular sleeve 334 may be provided with a sleeve bearing or alternatively the sliding lock member 346 may be molded with a low friction polymer without the additional sleeve bearing. The sliding lock member 346 is provided with opposing aligned apertures 350 and 351 which are adapted to receive a slotted spring pin 352. The slotted spring pin 352 is inserted through aperture 350 of the sliding lock member through a slot 338 cut through the body of male member 330 into sliding lock member aperture 351 to hold the assembly locked together as shown in
The user is positioned upright within the rotator frame 152 and the four wheels in a stable orientation. Each brake lever is operatively connected to right and left calipers 167 as seen in
The invention couples both right and left brakes to a single lever with balanced brake force applied to the rear wheels. The two rear wheel are thus braked evenly with a single hand squeeze of the brake handle. The brake handle may be mounted to either left or right side depending on preference of user. This provides a meaningful functional opportunity for stroke patients who may have issues with the strength or coordination of one side vs the other hand.
One single brake handle lever can be used to apply even balanced braking force to the two rear wheels which provides the following benefits to the user.
In many cases the aged cannot apply the same hand strength on left and right side. In some users one hand may be significantly compromised. Therein, the user must rely on one hand for all tasks that require grip strength.
The handgrip frame member 166 can be adjusted to low, intermediate or high positions. A handle bar/back rest sddrmbly 170 is mounted on the forward surface of upright section 154 opposite handgrip frame member 166. A carry all mount 173 as shown by
The brake levers in the first embodiment initially were connected by cables to a rack and pinion assembly which in turn operated the brake rotor on each wheel as is well known in the art. The handle levers in all three preferred embodiments are optionally connected to a bell crank or force transfer mechanism 250. The bell crank mechanism 250 as shown in
The cable from the right brake lever is mounted in cable mount 266 and the cable to the right brake caliper is mounted in cable mount 268. Both cable mounts 266 and 268 are mounted to flange 256 and their respective cables are secured to clamps 262 and 264 of the bell crank member 260, respectively. The cable from the left hand brake lever is mounted in cable mount 267 and the cable to the left brake caliper is mounted in cable mount 265. Both cable mounts 266 and 268 are mounted to flange 256 and secured to the opposing respective clamps of the bell crank member as shown.
The rollator can be provided with a seat frame 176 having a slide mechanism 174 positioned on each side of seat frame 176. The slide mechanism 174 comprises a clip member 175 secured to the seat frame 176 and a slideable sleeve member 177 secured to the clip member 175 as seen in
In another third preferred embodiment of the rollator 200 as shown in
A handgrip assembly is mounted to each side of top section handgrip assembly 205 with the distal end of top section 205 being provided with a brake lever 217 and a handgrip 218 positioned adjacent to the brake lever 217. Each brake lever 217 is respectively connected to right and left rotors 220 which are synchronized together with the associated calipers to brake the rear wheels of the rollator 200. The top section assembly 205 can be adjusted as seen in
The rollator 200 can be provided with a seat assembly 222 as shown in
Each rollator frame can additionally be provided with an odometer 400 schematically shown in
As previously noted, the rear brake wheels of the invention on any of the embodiments may be of the standard rotor and caliper type but can also incorporate the rear brake wheels as shown by
Integrated lighting 410 as shown by
The use of conventional rolling walker grips with horizontal handles allows the rollator to be steered by pushing or pulling on respective handles as needed. The conventional walker is also designed to provide a place for the user to sit and rest as needed or desired. In the present invention, a backrest member connected with the main frame supports the user's back when the user is setting down.
The knee joint is one of the primary and most affected joints of the user that takes part in the standing position. Other joints that are involved in the standing position are the hip, ankle, knee, elbow, wrist and shoulder joint. The knee joint gets the most strain, and the knee joint is comparatively less supported. That is why usually it is the knee joint that first starts to signal pain because of arthritis. Knee joint arthritis causes long term knee pain, which makes the movement difficult at knee joint. Arthritis also makes the knee joint stiffer and slower and its range of motion also decreases. All these conditions make it difficult to stand up from a sitting or squatting position.
A seat is utilized in the embodiment of the present invention which is higher than the standard 18 inch distance from the floor to the seat top. The rollator offers a 20 inch to 22 inch seat height size to accommodate different users. In testing it was fond that for some users it was helpful to stand up from a seated position, but for more able body users it was less comfortable for longer term seating. The seat is provided with a flexible forward edge seat pan to assist the user to transition from a seated to a standing posture. As a person ages, they may lose the strength and balance affecting their ability to stand upright from a traditional chair. The seat of a standard chair is too low to the floor which results in a compromised biomechanical disadvantage as one ages. The seat is increased to 22 inches to improve the conditions for standing from a seated position. This elevated seat pan height changes the angle between the user's buttocks and lower leg to be greater than 90 degrees. The user's thighs are angled downward relative to the floor, initiating the first transition to standing. To further enhance this posture the seat pan is flexible and spring-like along the forward edge of the seat. The flexing feature added to the inventive seat engages the forward edge of the seat pan. The forward edge will flex upward as the seated person begins to stand up providing a contact area that remain with the user until the user is in a upright balance posture.
The present inventive device offers the following important features:
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claims:
This is a utility patent application claiming priority and benefit from U.S. Provisional Patent Application No. 62/582,588 filed Nov. 7, 2017.
Number | Name | Date | Kind |
---|---|---|---|
2872967 | Kirkpatrick | Feb 1959 | A |
5772234 | Luo | Jun 1998 | A |
5904168 | Alulyan | May 1999 | A |
6371142 | Battiston | Apr 2002 | B1 |
6494469 | Hara | Dec 2002 | B1 |
7179200 | Wu | Feb 2007 | B1 |
7669863 | Steiner | Mar 2010 | B2 |
9808394 | Jiang | Nov 2017 | B1 |
10174932 | Rosenblum | Jan 2019 | B2 |
20030070702 | Ownes | Apr 2003 | A1 |
20040104559 | Chen | Jun 2004 | A1 |
20040245737 | Hallgrimsson | Dec 2004 | A1 |
20070233403 | Alwan | Oct 2007 | A1 |
20080084690 | Rappl | Apr 2008 | A1 |
20090033052 | Bradshaw | Feb 2009 | A1 |
20090278325 | Geels | Nov 2009 | A1 |
20090310364 | Turner | Dec 2009 | A1 |
20100318005 | Amonette | Dec 2010 | A1 |
20120205882 | Staggs | Aug 2012 | A1 |
20130062848 | Huang | Mar 2013 | A1 |
20130062864 | Huang | Mar 2013 | A1 |
20130106070 | Woo | May 2013 | A1 |
20130113187 | Willis | May 2013 | A1 |
20130181489 | Serhan | Jul 2013 | A1 |
20130292916 | Nabeta | Nov 2013 | A1 |
20140084559 | Fang | Mar 2014 | A1 |
20140125037 | Andersen | May 2014 | A1 |
20140319792 | Miller | Oct 2014 | A1 |
20150048598 | Freeman | Feb 2015 | A1 |
20150173994 | Chen | Jun 2015 | A1 |
20150216757 | Powell | Aug 2015 | A1 |
20160106617 | Wobith | Apr 2016 | A1 |
20160287465 | Rabin | Oct 2016 | A1 |
20170174190 | DeBrock | Jun 2017 | A1 |
20170326019 | Bramsiepe | Nov 2017 | A1 |
20170352288 | Weffers-Albu | Dec 2017 | A1 |
20180021205 | DeBrock | Jan 2018 | A1 |
20180028392 | Bisceglia | Feb 2018 | A1 |
20190009758 | Liu | Jan 2019 | A1 |
20190029915 | Brockway | Jan 2019 | A1 |
20190151185 | Kirschey | May 2019 | A1 |
20190209418 | VanAusdall | Jul 2019 | A1 |
20190240106 | Kapec | Aug 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20190240106 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62582588 | Nov 2017 | US |