The present invention relates generally to devices for lifting personal-transportation vehicles such as a power chairs. More specifically, the invention relates to a roller assembly for supporting a lifting strap of a lifting device.
Personal-transportation vehicles such as power chairs, motorized wheelchairs, and scooters are commonly used by persons with ambulatory difficulties or other disabilities. Personal-transportation vehicles are often transported using a larger motorized vehicle such as a van, pickup truck, passenger car, etc. (hereinafter referred to as a “transporting vehicle”).
Lifting devices have been developed for lifting personal transportation-vehicles onto and off of transporting vehicles. Some types of lifting devices include a lifting strap having a lifting hook attached to an end thereof. The lifting hook can engage a suitable lifting point on the personal-transportation vehicle. The lifting strap can be routed through and supported by a lifting arm of the lifting device. The lifting arm often includes a pin for suspending the lifting strap as the lifting strap exits the lifting arm assembly. The lifting strap can be retracted into and extended from the lifting arm assembly by a motor or other suitable means. Retraction and extension of the lifting strap raises and lowers the personal-transportation vehicle.
Lifting devices are often operated while the transporting vehicle is parked on a rough or uneven surface. Operating a lifting device under these conditions can cause the lifting strap to fold or “bunch up” as it passes over the pin of the lifting arm assembly. The lifting strap can also separate or otherwise become off-centered with respect to the pin, thereby raising the possibility for the lifting strap to rub against adjacent stationary structure of the lifting arm. Folding, bunching up, and rubbing of the lifting strap can cause the lifting strap to become frayed, torn, or worn, thereby increasing the potential for a catastrophic failure the lifting strap.
A preferred embodiment of a roller assembly for supporting a lifting device for a personal-transportation vehicle comprises a shaft member for mounting on a lifting arm assembly of the lifting device, and a roller member mounted on the shaft member and having an outer surface for contacting the lifting strap. At least a portion of the outer surface has a substantially concave shape in relation to an axial centerline of the roller member.
A preferred embodiment of a roller assembly for a lifting device for a personal-transportation vehicle comprises a shaft member for mounting on a lifting arm assembly of the lifting device and having an outer surface, and a roller member for supporting a lifting strap of the lifting device. The roller member has an inner surface defining a central passage for receiving the shaft and contacting the outer surface. The inner and outer surfaces have complementary profiles that permit a relative orientation of the roller member and the shaft member to change so that a weight vector acting through the lifting strap can remain substantially perpendicular to an axial centerline of the roller member.
Another preferred embodiment of a roller assembly for a lifting device for a personal-transportation vehicle comprises a shaft member for mounting on a lifting arm assembly of the lifting device. The shaft member has an outer surface having including a middle portion and an adjoining first and second end portion. The first and second end portions are curved so that the first and second end portions extend away from an axial centerline of the shaft member.
The roller assembly also comprises a roller member mounted on the shaft member and having an inner surface defining a central passage for receiving the shaft member and contacting the outer surface. The inner surface includes a middle portion and an adjoining first and second end portion. The first end portion of the inner surface has a radius of curvature substantially equal to a radius of curvature of the first end portion of the outer surface, and the second end portion of the inner surface has a radius of curvature substantially equal to a radius of curvature of the second end portion of the outer surface.
Another preferred embodiment of a roller assembly for supporting a lifting strap of a lifting device for a personal-transportation vehicle comprises a shaft member for mounting on a lifting arm assembly of the lifting device, and a roller member mounted on the shaft member. The roller member has an outer surface including a first and a second end portion, a first and a second intermediate portion that adjoin the respective first and second end portions and extend substantially perpendicular to an axial centerline of the roller member, and a middle portion that adjoins the first and second intermediate portions for contacting the lifting strap.
Another preferred embodiment of a roller assembly for a lifting device for a personal-transportation vehicle comprises a gimbal mechanism comprising an inner cylinder fixedly coupled to a lifting arm assembly of the lifting device, and an outer cylinder rotatably coupled to the inner cylinder. The roller assembly also comprises a shaft member extending through the outer cylinder and being secured to the outer cylinder so that the shaft member is restrained from substantial axial movement in relation to the outer cylinder, and a roller member rotatably coupled to the shaft member for supporting a lifting strap of the lifting device.
The following detailed description of a preferred embodiment is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, the drawings show an embodiment that is presently preferred. The invention is not limited, however, to the specific instrumentalities disclosed in the drawings. In the drawings:
A preferred embodiment of a roller assembly 10 for a lifting device for a personal-transportation vehicle is shown in
The lifting device 100 can be used in conjunction with a personal-transportation vehicle, such as a power chair 101 shown in
The lifting device 100 comprises a base assembly 102, a mounting column assembly 104, and a lifting arm assembly 106 (see
The lifting arm assembly 106 comprises a mounting portion 120, an arm portion 122 fixedly coupled to the mounting portion 120, and a boom portion 124 telescopically mounted in the arm portion 122 (see
The boom portion of the lifting arm assembly 106 includes a hood 112. The roller assembly 10 is mounted on the hood 112 and, as explained below, supports and guides the lifting strap 108 as the lifting strap 108 is retracted into and extended from the boom portion 112.
It should be noted that the roller assembly 10 is described herein in conjunction with the lifting device 100 and the power chair 101 for exemplary purposes only. The roller assembly 10 can be used as part of virtually any type of lifting device that incorporates a lifting strap or similar lifting means. Moreover, the roller assembly 10 can be used in conjunction with virtually any type of personal-transportation vehicle, including motorized scooters, wheelchairs, etc.
The roller assembly 10 comprises a shaft member 12 and a roller member 14 (see
The shaft member 12 is mechanically coupled to the hood 112, as shown in
A conventional E-ring 24 or other suitable type of clip is inserted in each of the grooves 18. The E-rings 24 securely grasp the shaft member 12, and restrain the shaft member 12 from substantial movement in the axial (“x”) direction in relation to the hood 112 (see
The roller member 14 has outer surface 26a and an inner surface 26b (see
The central passage 28 has a diameter sufficient to permit the shaft member 12 to be positioned therein. In, other words, the minimum diameter of the inner surface 26b of the roller member 14 is greater than the maximum diameter of the shaft member 12.
The roller member 14 is positioned between the sidewalls 113 of the hood 112, and around the shaft member 12 when the roller assembly 10 is installed on the lifting device 100 (see
The lifting strap 108 is mechanically coupled to the power chair 101 by way of the lifting hook 110, as noted previously. The lifting strap 108 is supported from the roller assembly 10 (see, e.g.,
The roller member can 14 can rotate in relation to the shaft member 12, about the axial centerline C1 thereof, as the lifting strap 108 is retracted into and extended from the boom portion 124. Rotation of the roller member 14 occurs in response to the weight vector “W” acting on the lifting strap 108, and friction between the lifting strap 108 and the outer surface 26a of the roller member 14.
The roller member 14 resides in a substantially level orientation in relation to the shaft member 12, i.e., the centerlines C1 and C2 are substantially parallel, when the weight vector “W” acts in a direction substantially perpendicular to the axial centerline C1 of the shaft member 12 (see
More specifically, the complementary concave shapes of the inner surface 26b and the outer surface 22 permit a top portion of the roller member 14 to translate along an arc denoted by the reference character “B” in
The concave shapes of the inner surface 26b and the outer surface 22, in conjunction with the frictional force acting between the lifting strap 108 and the outer surface 26a in response to the weight vector “W,” tend to center and level the roller member 14 in relation to the shaft member 12 when the weight vector “W” acts in a direction substantially perpendicular to the centerline C1 of the shaft member 12. (The weight vector “W” normally acts in a direction substantially perpendicular to the centerline C1 when the power chair 101 is lifted and lowered while the transporting vehicle parked on a level surface.)
The top portion of the roller member 14 can translate along the arc “B” when the weight “W” is not substantially perpendicular to the centerlines C1 and C2 of the respective shaft member 12 and roller member 14. In particular, the weight “W,” in conjunction with the friction between the lifting strap 108 and the outer surface 26a of the roller member 14, causes the lifting strap 108 to exert a force component on the roller member 14 in the axial (“x”) direction under these conditions. The axial force component, in conjunction with the concave shapes of the inner surface 26b and the outer surface 22, cause the top portion of the roller member 14 to move along the arc “B” until the axial force component approaches zero. (The axial force component approaches zero when the centerline C2 of the roller member 14 is substantially perpendicular to the weight vector “W.”) Notably, the portion of the lifting strap 108 that extends from the roller member 14 is substantially aligned with the weight vector “W,” as shown in
The lifting strap 108 can subsequently be retracted or extended. Retracting and extending the lifting strap 108 while the lifting strap 108 is substantially aligned with the weight vector “W” can substantially reduce the potential for the lifting strap 108 to fold, “bunch up,” or separate from the roller member 14, or to otherwise become off-centered with respect to the roller member 14.
Retracting or extending a lifting strap, such as the lifting strap 108, while the lifting strap 108 is folded, “bunched up,” separated, or otherwise off-centered with respect to the roller member 14 can cause the lifting strap 108 to become frayed, torn, or prematurely worn. For example, operating the lifting strap 108 while all or a portion of the lifting strap 108 is off of its associated roller can bring the lifting strap 108 into contact the adjacent non-rotating structure of the lifting device 100. Such contact can fray, tear, or otherwise wear the lifting strap.
Operating the lifting device 100 with the lifting strap 108 in a frayed, torn, or worn condition can substantially increase the potential for the lifting strap 108 to fail. The use of the roller assembly 10 can potentially reduce the potential for fraying, tearing, or premature wear of the lifting strap 108, and can thus extend the useful life of the lifting strap 108 and enhance the safety of the user of the lifting device 10.
The weight vector “W” normally acts in a direction substantially perpendicular to the centerlines C1 of the shaft member 12 when the power chair 101 is lifted and lowered while the transporting vehicle parked on a level surface, as discussed above.
Conversely, the weight vector “W” normally acts in a direction that is not substantially perpendicular to the centerline C1 when the transporting vehicle is parked on a non-level surface. The roller assembly 10 permits the centerline C2 of the roller member 14 to remain substantially perpendicular to the weight vector “W” under these conditions, and thereby allows the lifting strap 108 to remain substantially aligned with the weight vector “W” when the transporting vehicle is parked on a non-level surface. The roller assembly 10 can thus minimize the potential for tearing, fraying, or premature wear of the lifting strap 108 that could otherwise occur when the lifting device is operated under such conditions.
It is to be understood that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, the disclosure is illustrative only and changes can be made in detail within the principles of the invention.
For example,
At least a portion of each end portion 56a, 56b of the inner surface 56 is curved so that the end portions 56a, 56b each extend away from the axial centerline C2 of the roller member 54. (The optimal radius of curvature for each of the end portions 56a, 56b is application dependent. Specific values for these parameters therefore are not presented herein.)
The roller member 54 also includes a circumferentially-extending outer surface 57. The outer surface 57 includes a first and a second end portion 57a, 57b, and a first and a second intermediate portion 57c, 57d that adjoin the respective first and second end portions 57a, 57b. The outer surface also includes a middle portion 57e that adjoins the first and second intermediate portions 57c, 57d.
The middle portion 57e preferably extends in a direction substantially parallel to the centerline C2 of the roller member 54. The first and second intermediate portions 57c, 57d preferably extend in a direction substantially perpendicular to the centerline C2. The lifting strap 108 is supported by the middle portion 57e (see
The shaft member 52 includes a first end portion 58a, a second end portion 58b, and a middle portion 58c that adjoins the first and second end portions 58a, 58b. The first and second end portions 58a, 58b are substantially similar to the first and second end portions 16a, 16b of the shaft member 12 of the roller assembly 10. The middle portion 58c has a circumferentially-extending outer surface 60.
The outer surface 60 of the middle portion 58c substantially conforms to the inner surface 56 of the roller member 54. In particular, the outer surface 60 includes a first end portion 60a, a second end portion 60b, and a middle portion 60c that adjoins the first and second end portions 60a, 60b. The first and second end portions 60a, 60b each have a radius of curvature that substantially matches that of the respective first and second end portions 56a, 56b of the inner surface 56, as shown in
The roller assembly 50 operates in a manner substantially similar to that described above with respect the roller assembly 10. In particular, the complementary shapes of the inner surface 56 and the outer surface 60 cause the roller member 54 to remain substantially centered and level with respect to the shaft member 52 when the weight vector “W” acts in a direction substantially perpendicular to the axial centerlines C1 and C2 of the respective shaft member 52 and roller member 54 (see
The noted geometry of the inner surface 56 and the outer surface 60 also facilitates relative movement between the inner surface 56 and the outer surface 60 in the axial (“x”) and vertical (“z”) directions when the weight vector “W” acts in a direction that is not substantially perpendicular to the centerlines C1 and C2 of the respective shaft member 52 and roller member 54. This feature permits the roller member 44 to move to a position in which the weight vector “W” is substantially perpendicular to the to the centerline C2 of the roller member 54 (see
In addition, the above-noted geometry of the outer surface 57 of the roller member 54 can also facilitate movement of the roller member 54 in the axial and vertical directions. In particular, contact between the intermediate portions 57c, 57d and the lifting strap 108 can occur when the weight vector “W” acts in a direction substantially non-perpendicular to the centerline C2 of the roller member 54. This contact can urge the roller member 54 in the axial and vertical directions until the weight vector “W” acts in a direction substantially perpendicular to the centerline C2. Moreover, the intermediate portions 57c, 57d can help to retain the lifting strap 108 in a centered position on the roller member 57.
The roller member 74 also includes a circumferentially-extending outer surface 77. The outer surface 77 includes a first and a second end portion 77a, 77b, and a first and a second intermediate portion 77c, 77d that adjoin the respective first and second end portions 77a, 77b. The outer surface also includes a middle portion 77e that adjoins the first and second intermediate portions 77c, 77d.
The middle portion 77e has a substantially convex shape in relation to the centerline C2 of the roller 74. The first and second intermediate portions 77c, 77d preferably extend in a direction substantially perpendicular to the centerline C2. The lifting strap 108 is supported by the middle portion 77e (see
The middle portion 77e preferably has a length that causes the lifting strap 108 to fit between the first and second intermediate portions 77c, 77d with minimal clearance. The end portions 77a, 77b are preferably rounded, as shown in
The shaft member 72 includes a first end portion 78a, a second end portion 78b, and an adjoining middle portion 78c. The middle portion 78c has a circumferentially-extending outer surface 80. The outer surface 80 has a concave shape that is substantially similar to that of the middle portion 76c of the inner surface 76.
The roller assembly 70 operates in a manner similar to that described above with respect the roller assembly 10. In particular, the complementary shapes of the inner surface 76 and the outer surface 80 cause the roller member 74 to remain substantially centered and level with respect to the shaft member 72 when the weight vector “W” acts in a direction substantially perpendicular to the centerlines C1 and C2 of the respective shaft member 72 and roller member 74.
Moreover, the upper portion of the roller assembly 70 can translate along an arc, in a manner similar to the upper portion of the roller member 14, when the weight vector “W” acts in a direction that is not substantially perpendicular to the centerlines C1, C2 of the respective shaft member 72 and roller member 74. The upper portion of the roller member 74 can translate in this manner until the roller member 74 approaches a position where the weight vector “W” is substantially perpendicular to the centerline C2 of the roller member 74 (see
The first or the second end portions 76a, 76b of the inner surface 76 abut an outer surface of the respective first and second send portions 78a, 78b of the shaft member 72 when the upper portion of the roller member 74 has translated a predetermined distance, e.g., fifteen degrees, from is centered position (see
In addition, the above-noted geometry of the outer surface 77 of the roller member 74 can also facilitate movement of the roller member 74 in the axial and vertical directions. In particular, contact between the intermediate portions 77c, 77d and the lifting strap 108 can occur when the weight vector “W” acts in a direction substantially non-perpendicular to the centerline C2 of the roller member 74. This contact can urge the roller member 74 in the axial and vertical directions until the weight vector “W” acts in a direction substantially perpendicular to the centerline C2. Moreover, the intermediate portions 77c, 77d can help to retain the lifting strap 108 in a centered position on the roller member 77. Also, the convex shape of the middle portion 77e, it is believed, can lessen of potential for the lifting strap 108 to separate from or otherwise become off-centered in relation to the roller member 77.
The roller member 94 has an internal surface 96 that defines a passage 97 within the roller member 94. The internal surface is 96 is substantially uniform along its lengthwise direction. The internal surface 96 preferably has a diameter that permits the shaft member 92 to fit within the passage 97 with minimal clearance between the internal surface 96 and an outer surface of the shaft member 92. In particular, the clearance between the internal surface 96 and the outer surface of the shaft member 92 is sufficient to permit the roller member 94 to rotate around an axial centerline “C1” of the shaft member 92, but is small enough to prevent substantial rotation or pivoting of the roller member 94 in relation to the shaft member 92.
The roller member 94 has a circumferentially-extending outer surface 98. The outer surface 98 preferably has a first end portion 98a, a second end portion 98b, and middle portion 98c that adjoins the first and second end portions 98a, 98b. The middle portion 98c has a substantially concave shape in relation to an axial centerline “C2” of the roller member 94. Preferably, the first and second end portions 98a, 98b each have a substantially rounded shape, as shown in
The concave shape of the middle portion 98c, it is believed, causes the lifting strap 108 to remain substantially centered on the roller member 94 when the weight vector “W” acts in a direction substantially perpendicular to the centerlines C1 and C2 of the respective shaft member 92 and roller member 94 (see
The roller assembly 200 also comprises a shaft member 212 mechanically coupled to the outer cylinder 206 so that the shaft member 212 is restrained from linear movement in relation to the outer cylinder 206. The roller assembly 200 further comprises a roller member 214 positioned around the shaft member 212 so that the roller member 214 can rotate in relation to a longitudinal centerline “C1” of the shaft member 212.
The above-noted arrangement permits the permits the outer ring 206 to rotate in relation to the inner ring 204 when the weight vector “W” is not substantially perpendicular to the centerlines C1, C2 of the respective shaft member 212 and roller member 214. The outer ring 206 can rotate until the centerlines C1, C2 of the respective shaft member 212 and roller member 214 are substantially perpendicular to the weight vector “W” (see
This application is based on provisional application No. 60/479,681 filed Jun. 19, 2003, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1819334 | North | Aug 1931 | A |
1857434 | Cole | May 1932 | A |
3711877 | Averill | Jan 1973 | A |
3804350 | Williams | Apr 1974 | A |
4057025 | Piotrowski | Nov 1977 | A |
4111316 | Wappler | Sep 1978 | A |
4419038 | Pendergraft | Dec 1983 | A |
4441304 | Douwenga | Apr 1984 | A |
4463858 | Bilas | Aug 1984 | A |
4562976 | Ban | Jan 1986 | A |
4991810 | Andrus et al. | Feb 1991 | A |
5090580 | Nelson | Feb 1992 | A |
5156517 | Boissonneault | Oct 1992 | A |
5195726 | Kaner | Mar 1993 | A |
5431526 | Peterson et al. | Jul 1995 | A |
5462368 | Lob | Oct 1995 | A |
5667464 | Simonson | Sep 1997 | A |
5752799 | Carey et al. | May 1998 | A |
5806686 | Ecker | Sep 1998 | A |
5839681 | Kaneko | Nov 1998 | A |
5944274 | Kaneko | Aug 1999 | A |
6065557 | von Keyserling | May 2000 | A |
6202868 | Murray | Mar 2001 | B1 |
6340271 | Carlson et al. | Jan 2002 | B1 |
6460908 | Green | Oct 2002 | B1 |
6499610 | Spitsbergen | Dec 2002 | B2 |
6547507 | Gest et al. | Apr 2003 | B1 |
20020074305 | Davis et al. | Jun 2002 | A1 |
Number | Date | Country |
---|---|---|
0 425 733 | May 1991 | EP |
Number | Date | Country | |
---|---|---|---|
20050035338 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60479681 | Jun 2003 | US |