Roller ball assembly with superhard elements

Information

  • Patent Grant
  • 11970339
  • Patent Number
    11,970,339
  • Date Filed
    Wednesday, April 28, 2021
    3 years ago
  • Date Issued
    Tuesday, April 30, 2024
    22 days ago
Abstract
A roller ball assembly is provided. The assembly includes a primary roller ball supported by a support element that is composed of a superhard material. The assembly includes a cup defining a cavity within which the support element is positioned. A cap is coupled with the cup and positioned to retain the primary roller ball within the cavity. Also, a cup is disclosed for supporting roller halls. Additionally, disclosed are system and apparatus incorporating the assembly, as well as to methods of making and using the same.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OF DEVELOPMENT

Not applicable.


FIELD

The present disclosure relates to roller ball assemblies, apparatus and systems including the same, and methods of making, assembling, and using the same.


BACKGROUND

Roller ball assemblies, also known as transfer ball bearings, are employed extensively in material handling and equipment applications. Such applications include but are not limited to: equal load distribution, aerospace & air cargo applications, die-handling, metal manufacturing & fabrication, caster substitution, medical technologies & devices, industrial robotics, downhole drilling tools, downhole wireline operations, downhole coiled tubing operations, downhole completions, military logistics, measuring equipment, guides for small linear motion (e.g., photo copier slides), and transfer of material in clean rooms.


Roller ball assemblies typically include a primary ball supported by a multiplicity of smaller ball bearings in a containing cup. Typical comparative sizes are 1″, or 1¼″, or 1½″ diameter for the primary roller ball and ⅛″ diameter for the support balls. Over time, the primary roller ball and especially the support balls are subject to point loading, surface spalling, corrosion, and fatigue loading, leading to failure of the roller ball assembly, Some precision applications employ primary balls as small as 4.8 mm and appropriately reduced diameter support balls.



FIG. 1 depicts a cross-sectional view of atypical roller ball assembly 100 of the prior art. In assembly 100, primary roller ball 101 is supported by a series of small steel balls 103 within shaped steel cup 102. Primary steel roller ball 101 is retained by cap 105. Assembly 100 also includes small weep holes 104 for clearing liquid or minor debris.


Some assemblies do not employ smaller ball bearings as support for the primary roller ball, but rather use a direct engagement with a cup surface. In order to overcome galling problems, these designs have, in sonic instances, used coatings or lubricants, which require seals, or alternative roller ball materials, such as silicon nitride, tungsten carbide, silicon carbide, or ceramics. Even when coatings or alternative roller ball materials are used, the increased surface contact area of the roller ball with the cup surface increases the coefficient of friction and reduces the free rolling capability of the roller ball.


An additional significant challenge is contamination with debris, hampering the free rolling of the primary roller ball. In the support ball of existing assemblies, debris evacuation openings in the lower cup structure must be small enough to not catch or interfere with the free rolling of the secondary balls. This size limitation of the debris evacuation openings limits their effectiveness in clearing contaminants from the assembly.


Changing out failed or fouled roller ball assemblies is time consuming and disruptive to operations. This can be especially problematic in aerospace, downhole, and military logistics operations where limited access exists or failure impacts mission critical performance.


Information on roller ball bearing assemblies can be found in the “Hudson Bearings Air Cargo Roller Ball Transfers”, an undated eight-page brochure, as well as in “Hudson Bearings Air Cargo Roller Bali Transfers Installation and Maintenance Protocols”, an undated five-page brochure, both of which are available from the Hudson Bearings website (http://www.hudsonbearings.com). Of note from these brochures are the 850 lbs. maximum load capacity rating and 400° F. maximum temperature range for heavy duty transfer roller ball assemblies.


An additional reference on the downhole use of roller ball assemblies is U.S. Pat. No. 9,803,432, to Wood et al., which is incorporated herein by reference in its entirety as if set out in full.


BRIEF SUMMARY

Some aspects of the present disclosure include a roller ball assembly. The assembly includes a primary roller ball that is supported by at least one support element. Each support element is composed of a superhard material.


Other aspects of the present disclosure include a cup for supporting a roller ball in a roller ball assembly. The cup includes a cup body defining a cavity. At least one support element is positioned in the cavity and coupled with the cup body. Each support element is composed of a superhard material.


Additional aspects of the present disclosure include a method of supporting a primary roller ball of a roller ball assembly. The method includes positioning at least one support element within a cavity of a cup. Each support element is composed of a superhard material. The method includes positioning the primary roller ball within the cavity such that an outer surface of the primary roller ball is in contact with an engagement surface of the at least one support element. The method includes positioning a cap relative to the cup such that the cap is positioned to retain the primary roller ball within the cavity.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the features and advantages of the systems, apparatus, and/or methods of the present disclosure may be understood in more detail, a more particular description briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings that form a part of this specification. It is to be noted, however, that the drawings illustrate only various exemplary embodiments and are therefore not to be considered limiting of the disclosed concepts as it may include other effective embodiments as well.



FIG. 1 is a cross-sectional view of a typical roller ball assembly of the prior art.



FIG. 2 is a flow chart of a method in accordance with certain aspects of the present disclosure.



FIG. 3 is a side view of an embodiment of a roller ball assembly of the present application.



FIG. 4 is a top view of a cup of a three-support element assembly of the present technology without roller ball or cap.



FIG. 5 is a side view of an alternative embodiment of the technology of this application.



FIG. 6 is a side view of an alternative embodiment of the technology of this application.



FIG. 7A is a top view of an alternative embodiment of the technology of this application without roller ball or cap.



FIG. 7B is a side view of the assembly of FIG. 7A with cap and roller ball included.



FIG. 8 is a diagram showing the location spectrum from centerline for a single support at centerline, or for multiple supports angled upwards on the cup from centerline. Systems, apparatus, and methods according to present disclosure will now be described more fay with reference to the accompanying drawings, which illustrate various exemplary embodiments. Concepts according to the present disclosure may, however, be embodied in many different forms and should not be construed as being limited by the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough as well as complete and will fully convey the scope of the various concepts to those skilled in the art and the best and preferred modes of practice.





DETAILED DESCRIPTION

Certain aspects of the present disclosure include roller ball assemblies, apparatus including roller ball assemblies, systems including roller ball assemblies, methods of making roller ball assemblies, methods of assembling roller ball assemblies, and methods of using roller ball assemblies.


Roller Ball Assemblies Including Superhard Materials


In some embodiments, the technology of this application provides for a high-performance roller ball assembly with a moving part (optionally a single moving part), in particular a primary roller ball, supported on at least one so called “superhard” component or element (i.e., a component composed of a “superhard material”). As would be understood by one skilled in the art, “superhard materials” are a category of materials defined by the hardness of the material, which may be determined in accordance with the Brinell, Rockwell, Knoop and/or Vickers scales. For example, superhard materials include materials with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. As used herein, superhard materials include materials that are at least as hard as tungsten carbide tiles and/or cemented tungsten carbide, such as is determined in accordance with one of these hardness scales, such as the Brinell scale. One skilled in the art would understand that a Brinell scale test may be performed, for example, in accordance with ASTM E10-14, the Vickers hardness test may be performed, for example, in accordance with ASTM E384; the Rockwell hardness test may be performed, for example, in accordance with ASTM E18; and the Knoop hardness test may be performed, for example, in accordance with ASTM E384. The “superhard materials” disclosed herein include, but are not limited to, tungsten carbide (e.g., tile or cemented), infiltrated tungsten carbide matrix, silicon carbide, silicon nitride, cubic boron nitride, and polycrystalline diamond.


Thus, some aspects of the present disclosure include employing discrete superhard elements to support a roller ball. In certain aspects of the technology of this application, the need for small diameter support balls in a roller ball assembly is eliminated. Thus, at least some of the roller ball assemblies disclosed herein lack (i.e., do not include) small diameter support balls.


In certain embodiments, the roller ball assemblies disclosed herein have a higher load bearing capacity, higher temperature capacity, are more durable, are more corrosion resistant, are smoother running, and have a greater capacity for the passing of contaminants and larger debris from the working area of the assembly in comparison to existing roller ball assemblies.


In some aspects, the roller ball assemblies disclosed herein “self-clean” any corrosion on the primary roller ball. As the surface of the primary roller ball moves, while engaged with the surface of the polycrystalline diamond elements, existing corrosion on the primary roller ball may be at least partially removed therefrom via the frictional threes resulting from the engagement between the surfaces of the primary roller ball and the polycrystalline diamond elements. That is, the polycrystalline diamond elements clean, sweep, or rub off at least some of the corroded material of the primary roller ball. In contrast, roller ball assemblies such as is shown in FIG. 1 include primary roller balls that “roll” on other, small roller balls, which do not function to remove corroded material from the primary roller ball.


In certain embodiments, the technology of this application includes a roller ball assembly suitable for application in harsh environments (e.g., downhole environments). The technology of this application includes a roller ball assembly capable of application in downhole drilling applications in the mitigation of torque and drag.


Exemplary Testing


Applicants of the present application have conducted significant testing on an exemplary roller ball assembly that provides an ultra-high-performance alternative in comparison to existing technology. Table 1, below, sets forth a summary of a test performed by the Applicants of an exemplary configuration of a roller ball assembly of the present disclosure.














TABLE 1






Tested Mechanism-







Bearing Steel Ball







in Alloy Steel Cup







Against Rotating

Surface





Steel Cam Surface
RPM
Speed
Loading
Result







Test
Tripod Polished
200
1.13
700 lbf
20 hr. test, little



PDC 1.50″ Ball

m/s

wear on Ball;







slight Hertzian







trace on PDCs










FIG. 2 sets forth the steps of the testing performed, which included: supporting a single 1½″ high-carbon steel roller ball on three polycrystalline diamond (PDC) elements, box 290; deploying the supported roller ball in a steel cup, box 291; subjecting the deployed roller ball to 20 hours of rotating test under 700 lbf of load, box 292; and assessing wear roller ball and PDC elements, box 293. As is evident from Table 1, the testing resulted in little wear on the roller ball and only a slight Hertzian trace of discoloration on the PDC elements.


In further testing, 800 lbs of load on the primary roller ball of a prior art roller ball assembly was found to produce 525,000 PSI max stress on the associated support ball. Whereas, in an exemplary roller ball assembly in accordance with the present disclosure, 1,600 lbs of load on the primary roller ball was required to produce the same 525,000 PSI max stress on the associated superhard element. Consequently, without being bound by theory, the technology disclosed herein exhibited twice the load bearing capacity in comparison to the prior art roller ball assembly.


Turning now to FIGS. 3-8, various exemplary roller ball assemblies and aspects thereof will now be described. In FIGS. 3-8, like reference numerals refer to like elements. For example, an exemplary cup is identified with reference numeral “302” in FIG. 3 and is identified with reference numeral “402” in FIG. 4.


Ball Assembly with Superhard Support Elements



FIG. 3 is a side view of a roller ball assembly 300 in accordance with an embodiment of the present application. In assembly 300, roller ball 301 is supported within cup 302 (cup body) via support elements 303. Each support element 303 is formed of a superhard material. Roller ball 301 may be formed of any of a variety of materials including, but not limited to, steel. As shown in FIG. 3, roller ball 301 is supported by support elements 303 via contact between roller ball outer surface 320 (also referred to as engagement surface) and support element surfaces 322 (also referred to as opposing engagement surfaces). Primary roller ball 301 is clear of (i.e., not in contact with) cup 302. Support elements 303 are attached to, embedded within, or otherwise affixed to and/or coupled with or within cup 302. In contrast to small support roller halls, such as is shown in FIG. 1, support elements 303 are static relative to cup 302. In operation, primary roller ball 301 moves in sliding contact with support elements 303.


Cup 302, also referred to as “shaped cup”, has a shape that defines a cavity 350 configured to receive roller ball 301 therein, and to allow rolling of roller ball 301 therein. Cup 302 may be formed on any of a variety of materials including, but not limited to steel.


Assembly 300 includes cap 305. Cap 305 is positioned relative to cup 302 to retain primary roller ball 301 within cup 302. Cap 305 is engaged and/or coupled (e.g., affixed) with cup 302 at top end 332 of cup 302. Cap 305 has a curvature 340 sufficient to retain roller ball 301 within cup 302 such that, in operation, roller ball 301 is supported via support elements 303 and freely rolls within cup 302 while being retained therein by cap 305. Cap 305 is clear of (i.e., not in contact with) primary roller ball 301. Cap 305 may be formed on any of a variety of materials including, but not limited to, steel. Cap 305 may be, for example, in the form of a retainer ring.


Assembly 300 includes debris clearance hole 304 positioned at the bottom end 330 of cup 302. Hole 304 may be sized and arranged for clearance of large debris from cup 302. Contrary to the hole 204 of FIG. 1, hole 304 is not limited in size by the presence of small supporting roller balls that would fall through the hole if the hole were too large. Thus, while hole 304 may be as small or smaller than hole 204, hole 304 may also be larger, even significantly larger, than hole 204. For example, hole 304 may be up to about half the size of primary roller ball 301 (e.g., half the diameter), or from about ⅛ to about ½ the size (e.g., diameter) of primary roller ball 301, or from about ¼ to about ½ the size (e.g., diameter) of primary roller ball 301.


One skilled in the art would understand that the roller ball assembly disclosed herein is not limited to the particular arrangement shown in FIG. 3 (or FIGS. 4-8). For example, the roller ball assembly may include more or less than three support elements, which may be arranged, sized, and positioned in numerous configurations.


Cup Assembly



FIG. 4 is a top view of a cup that includes a three-support element assembly (i.e., three support elements, 403) in accordance with certain aspects of the present technology. Cup 402 is shown in FIG. 4 without a roller ball engaged therein and without a cap engaged thereon.


Support elements 403, formed of a superhard material, are deployed and positioned within cup 402. Support elements 403 may be coupled to, with, or within cavil surface 452 of cup 402 via any of a variety of methods, as is known in the art. Debris clearance hole 404 is positioned at the bottom end of cup 402, as a through-hole through cavity surface 452.


While shown as evenly spaced in FIG. 4, one skilled in the art would understand that support elements 403 may be spaced unevenly.


Roller Ball Assembly with Superhard Support and Retention Elements



FIG. 5 shows a side view of roller hail assembly 500, exemplifying an alternative embodiment of the technology of this application. In assembly 500, roller ball 501 is supported by support elements 503 (formed of superhard material) that are positioned within cup 502 and is further retained by retention elements 506 (formed of superhard material) deployed, positioned, and arranged on or within cap 505 such that opposing engagement surfaces 522 of both support elements 503 and retention element 506 are engaged with outer surface 520 of roller ball 501.


Retention elements 506 may be coupled to, with, or within cap 505 in the same manners as described with respect to the coupling of support elements with the cup. In certain aspects, retention elements 506 are of the same or substantially structure the same as support elements 503. As is evident in FIG. 5, support elements 503 are positioned below a hypothetical axis of rotation 560 of roller ball 501 to support downward force 570 of roller ball 501, and retention elements 506 are positioned above the hypothetical axis of rotation 560 of roller ball 501 to support upward force 572 of roller ball 501.


As with other embodiments, assembly 500 includes debris clearance hole 504 positioned at the bottom end 530 of cup 502.



FIG. 6 depicts a side view of roller ball assembly 600 in accordance with an alternative embodiment of the technology of this application. In assembly 600, roller ball 601 is supported by support elements 603 and additional support elements 607, each formed of superhard material and positioned within cup 602; and is retained by retention elements 606, which is formed of superhard material and is deployed and positioned in cap 605. Debris clearance hole 604 is deployed at the bottom end 630 of cup 602. Each of support elements 603, additional support elements 607, and retention elements 606 has an engagement surface 622 in sliding contact with outer surface 620 of roller ball 601.


Cup Assembly with Cut Out Relief and Lubricating Element



FIG. 7A is a top view of cup 702 including a three-support element assembly (i.e., three support elements, 703) in accordance with certain aspects of the present technology. Cup 702 is shown without a roller ball engaged therein and without a cap engaged thereon.


Support elements 703, formed of superhard material, are deployed and positioned in cup 702. Debris clearance hole 704 is formed through the bottom of cup 702, through cavity surface 752.


Cup 702 includes cut out relief areas 708 formed there-through (e.g., through the frame, body, structure). Support elements 703 are positioned between cut out relief areas 708. Cut out relief areas 708 may be holes formed through cavity surface 752 and may allow debris to pass there-through.


Cup 702 also includes lubricating element 709 positioned to provide a lubricant within cup 702, between cup 702 and any roller ball that is positioned therein, such as between engagement surfaces of support elements 703 and the outer surface of a roller ball.



FIG. 7B shows a side view of roller ball assembly 700, which includes cup 702 with support elements 703, debris clearance hole 704, cut out relief areas 708, and lubricating element 709 as shown in FIG. 7A, with the addition of primary roller hall 701 and cap 705 (retaining cap).


In assembly 700, roller ball 701 is supported within cup 702 via support elements 703, which are formed of superhard material, and is retained within cup 702 via cap 705. In operation, as roller ball 701 rolls in sliding contact with engagement surface 722 within cup 702, relief areas 708 and hole 704 allow for debris fall out there-through.


Lubricating element 709 is engaged with (e.g., pressed against) outer surface 720 of primary roller hall 701. Energizer 710, which may be a bias member, such as a spring, presses lubricating element 709 into engagement with outer surface 720 of roller ball 701. Thus, lubricating element 709 is positioned to apply lubricant to outer surface 720 of roller ball 701. In some aspects, the lubricant is any one of a number of solid lubricants including but not limited to: graphite, hexagonal boron nitride, oil releasing polymer, molybdenum disulfide, or tungsten disulfide. In some aspects, energizer 710 is a coil spring, a Belleville spring, an elastomer, or other applicable energizing element.


Although FIGS. 7A and 7B show cap 705 without superhard retention elements, it would be clear to one skilled in the art that a cap containing superhard retention elements, such as shown in FIGS. 5 and 6, could be used in the assembly of FIGS. 7A and 7B.


Positioning of Superhard Supporting Elements



FIG. 8 is a representative diagram of an arc 811 identifying positions where supporting elements of superhard material may be deployed within a cup in accordance with certain aspects of the technology of the present application. Arc 811 is bisected by vertical centerline 814. Arc 811 corresponds with the bottom, cavity surface of a cup of a roller ball assembly, as indicated via 852. Thus, centerline 814 corresponds with the centerline of a cup of a roller ball assembly or with the centerline of the roller ball of a roller ball assembly.


In embodiments where a single support element formed of superhard material is deployed, support element 812 is deployed as the support element at the base of arc 811 with the face 822a (engagement surface formed of superhard material) arranged and positioned perpendicular to centerline 814.


In embodiments where more than one support element formed of superhard material are deployed, support elements 813 (formed of superhard material) are deployed at positions that are generally equidistant from centerline 814 and at an arc angle from centerline 814 along arc 811. A generally minimum angle for deployment of multiple superhard support elements is shown at C. The value for angle C is about 20° from centerline 814. A more preferred spectrum of angles for deployment of superhard support elements is shown by angles D and E, which are from about 30° at D to about 50° at E, both from centerline 814. A generally maximum angle for deployment of multiple superhard support elements is shown at F. The value for angle F is about 60° from centerline 814. It would be understood by those skilled in the art that the angles shown in FIG. 8 apply to the primary superhard support elements and do not apply to additional superhard retention elements that may be deployed in a retaining cap or ring of a roller ball assembly.


Roller Ball


In the practice of the technology of this application, the primary roller ball is preferably stainless steel or hard carbon steel, but may, alternatively, be tungsten carbide, silicon carbide, silicon nitride, alternative ceramics, nylon or any other bearing ball material as known in the art.


Support of the Roller Ball


Although superhard components are typically more expensive (financially) than existing small diameter support roller balls, the technology of the present application offers clear advantages over existing primary roller ball supports. The roller ball assembly—technology of the present application includes, in some instances, only a single moving part, i.e., the primary roller ball, with no other moving parts in the roller ball assembly. The engagement of the primary roller ball with the superhard components (support and retention elements), especially polished PDC elements, provides for very low-friction rolling of the primary roller ball. In some aspects, the coefficient of friction (CoF) of the engagement between the primary roller ball and the PDC elements remains constant or substantially constant over relatively long terms of use, as the assembly does not rely on use of small roller balls (e.g., as shown in FIG. 1), which are subject to degradation that affects the Col′. The superhard components are also capable of higher loading than existing small diameter support roller balls.


Retaining Cap


In the embodiments disclosed herein, the retaining caps or rings (e.g., cap 205) may be held in place on the respective cup of the roller ball assembly via methods known in the art including, but not limited to, one or more snap rings, gluing, threading, welding, brazing, or press fitting the cap or ring to the cup. In some aspects, the retaining cap is designed to incorporate a debris excluding “knife edge”, as is known in the art, or a sealing surface. Alternatively, the retaining cap or ring may be slotted, scalloped or gapped to allow for the free flow of fluid, such as in a downhole application of the roller ball assembly.


Mounting of Support and Retention Elements


The superhard support and retention elements deployed in the various embodiments of the technology of this application may be mounted (e.g., onto the cup and/or cap) via one or more methods, as known in the art, including but not limited to brazing, gluing, threading, or press fitting the superhard support and retention elements to the cap or cup.


Superhard Materials


Although the technology of this application is broad enough to include the use of a range of superhard materials, in some applications the preferred superhard material is PDC. While polished PDC is preferred in the technology of the present application, the PDC employed in this technology may be lapped, highly lapped, polished, or highly polished. U.S. Pat. Nos. 5,447,208 and 5,653,300, to Lund et al., provide disclosure related to PDC and the surface finish thereof. The disclosures of U.S. Pat. Nos. 5,447,208 and 5,653,300 are incorporated herein by reference and made a part of the present disclosure. As used herein, a, surface is defined as “highly lapped” if the surface has a surface finish of 20 μin or about 20 μin, such as a surface finish ranging from about 18 to about 22 μin. As used herein, a surface is defined as “polished” if the surface has a surface finish of less than about 10 μin, or of from about 2 to about 10 μin. As used herein, a surface is defined as “highly polished” if the surface has a surface finish of less than about 2 μin, or from about 0.5 μin to less than about 2 μin. In some aspects, engagement surface has a surface finish ranging from 0.5 μin to 40 μin, or from 2 μin to 30 μin, or from 5 μin to 20 μin, or from 8 μin to 15 μin, or any range therebetween. In some aspects, engagement surface has a surface finish of less than 40 μin, less than 30 μin, less than 20 μin, less than 15 μin, less than 10 μin, less than 8 μin, less than 5 μin, or less than 2 μin. Polycrystalline diamond that has been polished to a surface finish of 0.5 μin has a coefficient of friction that is about half of standard lapped polycrystalline diamond with a surface finish of 20-40 μin.


Thus, in some aspects, the technology disclosed herein incorporates the use of superhard elements, preferably polished polycrystalline diamond compact (PDC) elements, to support the primary roller ball of a roller ball assembly.


Arrangement and Configuration of Super® hard Support and/or Retention Elements


In one preferred embodiment, three planar superhard support elements are complimentarily deployed in a metal cup or frame. In operation; the superhard support elements provide the primary support for the roller ball. Several alternatives are possible for the supporting elements of the technology of this application including an increased or decreased number of superhard support elements. For example, a single superhard support element may be deployed in the bottom of the metal cup to support the roller ball.


Although planar superhard support elements are preferred, non-planar, including concave or convex, superhard support elements may be used.


The upper girth of the roller ball may be contained (retained) by a number of materials or combinations of materials as known in the art including, but not limited to, polypropylene, Kevlar, metal, felt, leather, or Teflon. However, in an enhanced embodiment, the upper portion of the roller ball is contained (retained) by an additional set of superhard, preferably polished PDC elements (i.e., retention elements), secured on an inner surface or bosses of a cap of metal or other appropriate material.


The superhard components (support or retention elements) of the present technology may generally be as small as ⅛″ (about 3 mm) in diameter or as large as ¾” (about 19 mm) in diameter. For smaller precision applications, significantly smaller diameter support and retention elements and smaller primary ball diameters may be used. As would be understood by one skilled in the art, the technology of the present application may be scaled up or down without departing from the primary technology. When two or more superhard components are used to support the transfer roller ball; the superhard components are typically, although not necessarily, located equidistant from the assembly centerline (as shown and described with reference to FIG. 8).


As would be understood by one skilled in the art, the various aspects disclosed herein may be combined in any of numerous combinations without departing from the scope of this disclosure. For example, a roller ball assembly that includes a primary roller ball supported on at least one support element that is formed of a superhard material may further include: at least one retention element formed of a superhard material; at least one additional support element formed of a superhard material; at least one large debris clearance hole; at least one lubricating element; or any combination thereof.


From the descriptions and figures provided above it can readily be understood that the technology of the present application may be employed in a broad spectrum of applications, including those in downhole environments. The technology provided herein additionally has broad application to other industrial applications.


Furthermore, while shown and described in relation to engagement between the surface of a roller ball and the surface of a support element that includes superhard material, one skilled in the art would understand that the present disclosure is not limited to this particular application and that the concepts disclosed herein may be applied to the engagement between any surface (e.g., steel surface) that is engaged with the surface of a superhard material.


Although the present embodiments and advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A roller ball assembly, the assembly comprising: a cup, the cup defining a cavity;a polycrystalline diamond compact coupled with the cup and positioned within the cavity, the polycrystalline diamond compact having a diamond engagement surface thereon, the diamond engagement surface having a surface finish of at most 20 μin Ra; anda roller ball, the roller ball having an outer surface thereon, wherein the roller ball is positioned within the cavity, and wherein the outer surface of the roller ball is in sliding contact with the diamond engagement surface.
  • 2. The assembly of claim 1, wherein the diamond engagement surface is highly lapped.
  • 3. The assembly of claim 1, wherein the diamond engagement surface is polished.
  • 4. The assembly of claim 1, wherein the diamond engagement surface is highly polished.
  • 5. The assembly of claim 1, wherein the roller ball comprises steel.
  • 6. The assembly of claim 5, wherein the steel comprises stainless steel.
  • 7. The assembly of claim 5, wherein the steel comprises high carbon steel.
  • 8. The assembly of claim 1, wherein the roller ball comprises nylon.
  • 9. The assembly of claim 1, further comprising: a cap coupled with the cup, wherein the cap is positioned to retain the roller ball within the cup;a polycrystalline diamond compact coupled with the cap, wherein the polycrystalline diamond compact that is coupled with the cap has a diamond engagement surface, wherein the diamond engagement surface of the polycrystalline diamond compact that is coupled with the cap has a surface finish of at most 20 μin Ra.
  • 10. The assembly of claim 9, wherein the polycrystalline diamond compact that is coupled with the cup is positioned below an axis of rotation of the roller ball, and wherein the polycrystalline diamond compact that is coupled with the cap is positioned above the axis of rotation of the roller ball.
  • 11. The assembly of claim 1, further comprising a plurality of the polycrystalline diamond compacts coupled with the cup and positioned within the cavity, wherein each of the polycrystalline diamond compacts has a diamond engagement surface thereon, and wherein each diamond engagement surface has a surface finish of at most 20 μin Ra.
  • 12. The assembly of claim 11, further comprising a plurality of cut out relief areas in the cup, wherein each of the plurality of cut out relief areas is positioned between two of the plurality of polycrystalline diamond compacts.
  • 13. The assembly of claim 1, further comprising: a lubricant positioned relative to the cup; anda spring, the spring engaged with the lubricant and positioned to bias the lubricant into contact with the outer surface of the roller ball.
  • 14. The assembly of claim 1, wherein the diamond engagement surface is planar.
  • 15. The assembly of claim 1, wherein the diamond engagement surface is concave.
  • 16. The assembly of claim 1, wherein the diamond engagement surface is convex.
  • 17. A roller ball assembly, the assembly comprising: a cup, the cup defining a cavity;a first polycrystalline diamond compact coupled with the cup and positioned in the cavity, the first polycrystalline diamond compact having a first diamond engagement surface;a roller ball, the roller ball having an outer surface, wherein the roller ball is positioned within the cavity such that the outer surface is in sliding contact with the first diamond engagement surface;a cap coupled with the cup, wherein the cap is positioned to retain the roller ball within the cup;a second polycrystalline diamond compact coupled with the cap, wherein the second polycrystalline diamond compact has a second diamond engagement surface.
  • 18. The assembly of claim 17, wherein the first polycrystalline diamond compact is positioned below an axis of rotation of the roller ball, and wherein the second polycrystalline diamond compact is positioned above the axis of rotation of the roller ball.
  • 19. A roller ball assembly, the assembly comprising: a cup, the cup defining a cavity;a plurality of polycrystalline diamond compacts positioned in the cavity and coupled with the cup, wherein each polycrystalline diamond compact has a diamond engagement surface;a roller ball, the roller ball having an outer surface, wherein the roller ball is positioned within the cavity of the cup such that the outer surface is in sliding contact with the diamond engagement surfaces;cut out relief areas in the cup, wherein each cut out relief area is positioned between two of the plurality of polycrystalline diamond compacts.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation of U.S. application Ser. No. 16/049,631, filed on Jul. 30, 2018 (allowed), the entirety of which is incorporated herein by reference.

US Referenced Citations (272)
Number Name Date Kind
1798604 Hoke Mar 1931 A
1963956 James Jun 1934 A
2259023 Clark Oct 1941 A
2299978 Hall Oct 1942 A
2407586 Summers Sep 1946 A
2567735 Scott Sep 1951 A
2693396 Gondek Nov 1954 A
2758181 Crouch Aug 1956 A
2788677 Hayek Apr 1957 A
2877662 Eduard Mar 1959 A
2897016 Baker Jul 1959 A
2947609 Strong Aug 1960 A
2947610 Hall et al. Aug 1960 A
3132904 Kohei et al. May 1964 A
3559802 Eidus Feb 1971 A
3582161 Hudson Jun 1971 A
3603652 Youden Sep 1971 A
3650714 Farkas Mar 1972 A
3697141 Garrett Oct 1972 A
3707107 Bieri Dec 1972 A
3741252 Williams Jun 1973 A
3745623 Wentorf et al. Jul 1973 A
3752541 Mcvey Aug 1973 A
3866987 Garner Feb 1975 A
3869947 Vandenkieboom Mar 1975 A
3920290 Evarts Nov 1975 A
4085634 Sattler Apr 1978 A
4182537 Oster Jan 1980 A
4225322 Knemeyer Sep 1980 A
4238137 Furchak et al. Dec 1980 A
4285550 Blackburn Aug 1981 A
4364136 Hattan Dec 1982 A
4382637 Blackburn et al. May 1983 A
4398772 Odell Aug 1983 A
4410054 Nagel et al. Oct 1983 A
4410284 Herrick Oct 1983 A
4428627 Teramachi Jan 1984 A
4432682 McKewan Feb 1984 A
4468138 Nagel Aug 1984 A
4554208 MacIver et al. Nov 1985 A
4560014 Geczy Dec 1985 A
4620601 Nagel Nov 1986 A
RE32380 Wentorf, Jr. et al. Mar 1987 E
4662348 Hall et al. May 1987 A
4679639 Barr et al. Jul 1987 A
4689847 Huber Sep 1987 A
4720199 Geczy et al. Jan 1988 A
4729440 Hall Mar 1988 A
4732490 Masciarelli Mar 1988 A
4738322 Hall et al. Apr 1988 A
4764036 McPherson Aug 1988 A
4796670 Russell et al. Jan 1989 A
4797011 Saeki et al. Jan 1989 A
4858688 Edwards et al. Aug 1989 A
4906528 Cerceau et al. Mar 1990 A
4958692 Anderson Sep 1990 A
5011514 Cho et al. Apr 1991 A
5011515 Frushour Apr 1991 A
5030276 Sung et al. Jul 1991 A
5037212 Justman et al. Aug 1991 A
5066145 Sibley et al. Nov 1991 A
5067826 Lemelson Nov 1991 A
5092687 Hall Mar 1992 A
5112146 Stangeland May 1992 A
5123772 Anderson Jun 1992 A
5151107 Cho et al. Sep 1992 A
5176483 Baumann et al. Jan 1993 A
5193363 Petty Mar 1993 A
5205188 Repenning et al. Apr 1993 A
5253939 Hall Oct 1993 A
5271749 Rai et al. Dec 1993 A
5351770 Cawthorne et al. Oct 1994 A
5358041 O'Hair Oct 1994 A
5358337 Codatto Oct 1994 A
5364192 Damm et al. Nov 1994 A
5375679 Biehl Dec 1994 A
5385715 Fish Jan 1995 A
5447208 Lund et al. Sep 1995 A
5462362 Yuhta et al. Oct 1995 A
5464086 Coelln Nov 1995 A
5514183 Epstein et al. May 1996 A
5522467 Stevens et al. Jun 1996 A
5533604 Brierton Jul 1996 A
5538346 Frias et al. Jul 1996 A
5540314 Coelln Jul 1996 A
5560716 Tank et al. Oct 1996 A
5618114 Katahira Apr 1997 A
5645617 Frushour Jul 1997 A
5653300 Lund et al. Aug 1997 A
5715898 Anderson Feb 1998 A
5833019 Gynz-Rekowski Nov 1998 A
5855996 Corrigan et al. Jan 1999 A
5948541 Inspektor Sep 1999 A
6045029 Scott Apr 2000 A
6109790 Gynz-Rekowski et al. Aug 2000 A
6120185 Masciarelli, Jr. Sep 2000 A
6129195 Matheny Oct 2000 A
6152223 Abdo et al. Nov 2000 A
6164109 Bartosch Dec 2000 A
6190050 Campbell Feb 2001 B1
6209185 Scott Apr 2001 B1
6279716 Kayatani et al. Aug 2001 B1
6378633 Moore et al. Apr 2002 B1
6409388 Lin Jun 2002 B1
6457865 Masciarelli, Jr. Oct 2002 B1
6488103 Dennis et al. Dec 2002 B1
6488715 Pope et al. Dec 2002 B1
6516934 Masciarelli, Jr. Feb 2003 B2
6517583 Pope et al. Feb 2003 B1
6652201 Kunimori et al. Nov 2003 B2
6655845 Pope Dec 2003 B1
6737377 Sumiya et al. May 2004 B1
6764219 Doll Jul 2004 B2
6808019 Mabry Oct 2004 B1
6814775 Scurlock et al. Nov 2004 B2
6951578 Belnap et al. Oct 2005 B1
7007787 Pallini et al. Mar 2006 B2
7128173 Lin Oct 2006 B2
7198043 Zhang Apr 2007 B1
7234541 Scott et al. Jun 2007 B2
7311159 Lin et al. Dec 2007 B2
7441610 Belnap et al. Oct 2008 B2
7475744 Pope Jan 2009 B2
7552782 Sexton et al. Jun 2009 B1
7703982 Cooley Apr 2010 B2
7737377 Dodal et al. Jun 2010 B1
7845436 Cooley et al. Dec 2010 B2
7861805 Dick et al. Jan 2011 B2
7870913 Sexton et al. Jan 2011 B1
8069933 Sexton et al. Dec 2011 B2
8080071 Vail Dec 2011 B1
8109247 Wakade et al. Feb 2012 B2
8119240 Cooper Feb 2012 B2
8163232 Fang et al. Apr 2012 B2
8277124 Sexton et al. Oct 2012 B2
8277722 DiGiovanni Oct 2012 B2
8365846 Dourfaye et al. Feb 2013 B2
8435317 Burgess et al. May 2013 B2
8480304 Cooley et al. Jul 2013 B1
8485284 Sithebe Jul 2013 B2
8613554 Tessier et al. Dec 2013 B2
8627904 Voronin Jan 2014 B2
8678657 Knuteson et al. Mar 2014 B1
8701797 Baudoin Apr 2014 B2
8734550 Sani May 2014 B1
8757299 DiGiovanni et al. Jun 2014 B2
8763727 Cooley et al. Jul 2014 B1
8764295 Dadson et al. Jul 2014 B2
8789281 Sexton et al. Jul 2014 B1
8833635 Peterson Sep 2014 B1
8881849 Shen et al. Nov 2014 B2
8911521 Miess et al. Dec 2014 B1
8939652 Peterson et al. Jan 2015 B2
8974559 Frushour Mar 2015 B2
9004198 Kulkarni Apr 2015 B2
9010418 Pereyra et al. Apr 2015 B2
9022149 Lyons May 2015 B2
9045941 Chustz Jun 2015 B2
9103172 Bertagnolli et al. Aug 2015 B1
9127713 Lu Sep 2015 B1
9145743 Shen et al. Sep 2015 B2
9222515 Chang Dec 2015 B2
9273381 Qian et al. Mar 2016 B2
9284980 Miess Mar 2016 B1
9309923 Lingwall et al. Apr 2016 B1
9353788 Tulett et al. May 2016 B1
9366085 Panahi Jun 2016 B2
9404310 Sani et al. Aug 2016 B1
9410573 Lu Aug 2016 B1
9429188 Peterson et al. Aug 2016 B2
9488221 Gonzalez Nov 2016 B2
9562562 Peterson Feb 2017 B2
9611885 Cooley et al. Apr 2017 B1
9643293 Miess et al. May 2017 B1
9702198 Topham Jul 2017 B1
9702401 Gonzalez Jul 2017 B2
9732791 Gonzalez Aug 2017 B1
9776917 Tessitore et al. Oct 2017 B2
9790749 Chen Oct 2017 B2
9790818 Berruet et al. Oct 2017 B2
9803432 Wood et al. Oct 2017 B2
9822523 Miess Nov 2017 B1
9840875 Harvey et al. Dec 2017 B2
9869135 Martin Jan 2018 B1
10018146 Azevedo et al. Jul 2018 B2
10113362 Ritchie et al. Oct 2018 B2
10294986 Gonzalez May 2019 B2
10307891 Daniels et al. Jun 2019 B2
10408086 Meier Sep 2019 B1
10465775 Miess et al. Nov 2019 B1
10683895 Hall et al. Jun 2020 B2
10711792 Vidalenc et al. Jul 2020 B2
10711833 Manwill et al. Jul 2020 B2
10738821 Miess et al. Aug 2020 B2
10807913 Hawks et al. Oct 2020 B1
10968700 Raymond Apr 2021 B1
10968703 Haugvaldstad et al. Apr 2021 B2
11085488 Gonzalez Aug 2021 B2
11118408 Marshall et al. Sep 2021 B2
11802443 Peters Oct 2023 B2
20020020526 Male et al. Feb 2002 A1
20030019106 Pope et al. Jan 2003 A1
20030075363 Lin et al. Apr 2003 A1
20030159834 Kirk et al. Aug 2003 A1
20030220691 Songer et al. Nov 2003 A1
20040031625 Lin et al. Feb 2004 A1
20040134687 Radford et al. Jul 2004 A1
20040163822 Zhang et al. Aug 2004 A1
20040219362 Wort et al. Nov 2004 A1
20040223676 Pope et al. Nov 2004 A1
20060060392 Eyre Mar 2006 A1
20060165973 Dumm et al. Jul 2006 A1
20070046119 Cooley Mar 2007 A1
20080085407 Cooley et al. Apr 2008 A1
20080217063 Moore et al. Sep 2008 A1
20080253706 Bischof et al. Oct 2008 A1
20090020046 Marcelli Jan 2009 A1
20090060408 Nagasaka et al. Mar 2009 A1
20090087563 Voegele et al. Apr 2009 A1
20090268995 Ide et al. Oct 2009 A1
20100037864 Dutt et al. Feb 2010 A1
20100061676 Sugiyama et al. Mar 2010 A1
20100276200 Schwefe et al. Nov 2010 A1
20100307069 Bertagnolli et al. Dec 2010 A1
20110174547 Sexton et al. Jul 2011 A1
20110203791 Jin et al. Aug 2011 A1
20110220415 Jin et al. Sep 2011 A1
20110297454 Shen et al. Dec 2011 A1
20120037425 Sexton et al. Feb 2012 A1
20120057814 Dadson et al. Mar 2012 A1
20120225253 DiGiovanni et al. Sep 2012 A1
20120281938 Peterson et al. Nov 2012 A1
20130000442 Wiesner et al. Jan 2013 A1
20130004106 Wenzel Jan 2013 A1
20130140093 Zhou et al. Jun 2013 A1
20130146367 Zhang et al. Jun 2013 A1
20130170778 Higginbotham et al. Jul 2013 A1
20140037232 Marchand et al. Feb 2014 A1
20140176139 Espinosa et al. Jun 2014 A1
20140254967 Gonzalez Sep 2014 A1
20140341487 Cooley et al. Nov 2014 A1
20140355914 Cooley et al. Dec 2014 A1
20150027713 Penisson Jan 2015 A1
20150079349 Russell et al. Mar 2015 A1
20150132539 Bailey et al. May 2015 A1
20150337949 Ziegler et al. Nov 2015 A1
20160153243 Hinz et al. Jun 2016 A1
20160186363 Merzaghi et al. Jun 2016 A1
20160312535 Ritchie et al. Oct 2016 A1
20170030393 Phua et al. Feb 2017 A1
20170108039 Hall et al. Apr 2017 A1
20170138224 Henry et al. May 2017 A1
20170234071 Spatz et al. Aug 2017 A1
20170261031 Gonzalez et al. Sep 2017 A1
20180087134 Chang et al. Mar 2018 A1
20180209476 Gonzalez Jul 2018 A1
20180216661 Gonzalez Aug 2018 A1
20180264614 Winkelmann et al. Sep 2018 A1
20180320740 Hall et al. Nov 2018 A1
20190063495 Peterson et al. Feb 2019 A1
20190136628 Savage et al. May 2019 A1
20190170186 Gonzalez et al. Jun 2019 A1
20200032841 Miess et al. Jan 2020 A1
20200032846 Miess et al. Jan 2020 A1
20200056659 Prevost et al. Feb 2020 A1
20200182290 Doehring et al. Jun 2020 A1
20200362956 Prevost et al. Nov 2020 A1
20210140277 Hall et al. May 2021 A1
20210148406 Hoyle et al. May 2021 A1
20210198949 Haugvaldstad et al. Jul 2021 A1
20210207437 Raymond Jul 2021 A1
20210222734 Gonzalez et al. Jul 2021 A1
Foreign Referenced Citations (37)
Number Date Country
1286655 Jul 1991 CA
2891268 Nov 2016 CA
101273151 Dec 2011 CN
102128214 Dec 2012 CN
103069099 Aug 2016 CN
109072811 Dec 2018 CN
106678189 Nov 2023 CN
4226986 Feb 1994 DE
29705983 Jun 1997 DE
102010052804 May 2012 DE
0595630 Jan 1998 EP
1931852 Jan 2018 EP
2514445 Jun 2015 GB
S401624 Jan 1965 JP
S6061404 Apr 1985 JP
06174051 Jun 1994 JP
2000002315 Jan 2000 JP
2000211717 Aug 2000 JP
2002070507 Mar 2002 JP
2004002912 Jan 2004 JP
2006275286 Oct 2006 JP
2007153141 Jun 2007 JP
2008056735 Mar 2008 JP
8700080 Jan 1987 WO
2004001238 Dec 2003 WO
2006028327 Mar 2006 WO
2008133197 Nov 2008 WO
2011052231 May 2011 WO
2013043917 Mar 2013 WO
2014014673 Jan 2014 WO
2014189763 Nov 2014 WO
2016089680 Jun 2016 WO
2017105883 Jun 2017 WO
2018041578 Mar 2018 WO
2018226380 Dec 2018 WO
2019096851 May 2019 WO
2006011028 Feb 2020 WO
Non-Patent Literature Citations (49)
Entry
Bovenkerk, Dr. H. P.; Bundy, Dr. F. P.; Hall, Dr. H. T.; Strong, Dr. H. M.; Wentorf, Jun., Dr. R. H.; Preparation of Diamond, Nature, Oct. 10, 1959, pp. 1094-1098, vol. 184.
Chen, Y.; Nguyen, T; Zhang, L.C.; Polishing of polycrystalline diamond by the technique of dynamic friction-Part 5: Quantitative analysis of material removal, International Journal of Machine Tools & Manufacture, 2009, pp. 515-520, vol. 49, Elsevier.
Chen, Y.; Zhang, L.C.; Arsecularatne, J.A.; Montross, C.; Polishing of polycrystalline diamond by the technique of dynamic friction, part 1: Prediction of the interface temperature rise, International Journal of Machine Tools & Manufacture, 2006, pp. 580-587, vol. 46, Elsevier.
Chen, Y.; Zhang, L.C.; Arsecularatne, J.A.; Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism, International Journal of Machine Tools & Manufacture, 2007, pp. 1615-1624, vol. 47, Elsevier.
Chen, Y.; Zhang, L.C.; Arsecularatne, J.A.; Zarudi, I., Polishing of polycrystalline diamond by the technique of dynamic friction, part 3: Mechanism exploration through debris analysis, International Journal of Machine Tools & Manufacture, 2007, pp. 2282-2289, vol. 47, Elsevier.
Chen, Y.; Zhang, L.C.; Polishing of polycrystalline diamond by the technique of dynamic friction, part 4: Establishing the polishing map, International Journal of Machine Tools & Manufacture, 2009, pp. 309-314, vol. 49, Elsevier.
Dobrzhinetskaya, Larissa F.; Green, II, Harry W.; Diamond Synthesis from Graphite in the Presence of Water and SiO2: Implications for Diamond Formation in Quartzites from Kazakhstan, International Geology Review, 2007, pp. 389-400, vol. 49.
Element six, The Element Six CVD Diamond Handbook, Accessed on Nov. 1, 2019, 28 pages.
Grossman, David, What the World Needs Now is Superhard Carbon, Popular Mechanics, https://www.popularmechanics.com/science/environment/a28970718/superhard-materials/, Sep. 10, 2019, 7 pages, Hearst Magazine Media, Inc.
Hudson Bearings Air Cargo Ball Transfers brochure, accessed on Jun. 23, 2018, 8 Pages, Columbus, Ohio.
Hudson Bearings Air Cargo Ball Transfers Installation and Maintenance Protocols, accessed on Jun. 23, 2018, pp. 1-5.
International Search Report and Written Opinion dated Aug. 3, 2020 (issued in PCT Application No. PCT/US20/21549) [11 pages].
International Search Report and Written Opinion dated Aug. 4, 2020 (issued in PCT Application No. PCT/US2020/034437) [10 pages].
International Search Report and Written Opinion dated Oct. 21, 2019 (issued in PCT Application No. PCT/US2019/043746) [14 pages].
International Search Report and Written Opinion dated Oct. 22, 2019 (issued in PCT Application No. PCT/US2019/043744) [11 pages].
International Search Report and Written Opinion dated Oct. 25, 2019 (issued in PCT Application No. PCT/US2019/044682) [20 pages].
International Search Report and Written Opinion dated Oct. 29, 2019 (issued in PCT Application No. PCT/US2019/043741) [15 pages].
International Search Report and Written Opinion dated Sep. 2, 2020 (issued in PCT Application No. PCT/US20/37048) [8 pages].
International Search Report and Written Opinion dated Sep. 8, 2020 (issued in PCT Application No. PCT/US20/35316) [9 pages].
International Search Report and Written Opinion dated Sep. 9, 2019 (issued in PCT Application No. PCT/US2019/043732) [10 pages].
International Search Report and Written Opinion dated Sep. 9, 2020 (issued in PCT Application No. PCT/US20/32196) [13 pages].
Liaao, Y.; Marks, L.; In situ single asperity wear at the nanometre scale, International Materials Reviews, 2016, pp. 1-17, Taylor & Francis.
Linear Rolling Bearings ME EN 7960—Precision Machine Design Topic 8, Presentation, Accessed on Jan. 26, 2020, 23 Pages, University of Utah.
Linear-motion Bearing, Wikipedia, https://en.wikipedia.org/w/index.php?title=Linear-motion_bearing&oldid=933640111, Jan. 2, 2020, 4 Pages.
Machinery's Handbook 30th Edition, Copyright Page and Coefficients of Friction p. 2016, p. 158 (2 Pages total), Industrial Press, Inc., South Norwalk, U.S.A.
Machinery's Handbook, 2016, Industrial Press, INC., 30th edition, pp. 843 and 1055 (6 pages total).
McCarthy, J. Michael; Cam and Follower Systems, PowerPoint Presentation, Jul. 25, 2009, pp. 1-14, UCIrvine The Henry Samueli School of Engineering.
McGill Cam Follower Bearings brochure, 2005, p. 1-19, Back Page, Brochure MCCF-05, Form #8991 (20 Pages total).
Motion & Control NSK Cam Followers (Stud Type Track Rollers) Roller Followers (Yoke Type Track Rollers) catalog, 1991, Cover Page, pp. 1-18, Back Page, CAT. No. E1421 2004 C-11, Japan.
Product Catalogue, Asahi Diamond Industrial Australia Pty. Ltd., accessed on Jun. 23, 2018, Cover Page, Blank p. 2 Notes Pages, Table of Contents, pp. 1-49 (54 Pages total).
RBC Aerospace Bearings Rolling Element Bearings catalog, 2008, Cover Page, First Pages, pp. 1-149, Back Page (152 Pages total).
RGPBalls Ball Transfer Units catalog, accessed on Jun. 23, 2018, pp. 1-26, 2 Back Pages, (28 Pages total).
Sandvik Coromant Hard part turning with CBN catalog, 2012, pp. 1-42, 2 Back Pages, (44 Pages total).
Sexton, Timothy N.; Cooley, Craig H.; Diamond Bearing Technology for Deep and Geothermal Drilling, PowerPoint Presentation, 2010, 16 Pages.
SKF Ball transfer units catalog, Dec. 2006, Cover Page, Table of Contents, pp. 1-36, 2 Back Pages, (40 Pages total), Publication 940-711.
Bowers, Jason Michael, Examination of the Material Removal Rate in Lapping Polycrystalline Diamond Compacts, A Thesis, Aug. 2011, 2 Cover Pages, p. iii-xiv, pp. 1-87 (101 Pages total).
Sun, Liling; Wu, Qi; Dai, Daoyang; Zhang, Jun; Qin, Zhicheng; Wang, Wenkui; Non-metallic catalysts for diamond synthesis under high pressure and high temperature, Science in China (Series A), Aug. 1999, pp. 834-841, vol. 42 No. 8, China.
Superhard Material, Wikipedia, https://en.wikipedia.org/wiki/Superhard_material, Retrieved from https://en.wikipedia.org/w/index.php?title=Superhard_material&oldid=928571597, Nov. 30, 2019, 14 pages.
Surface Finish, Wikipedia, https://en.wikipedia.org/wiki/Surface_finish, Retrieved from https://en.wikipedia.org/w/index.php?title=Surface_finish&oldid=919232937, Oct. 2, 2019, 3 pages.
United States Defensive Publication No. T102,901, published Apr. 5, 1983, in U.S. Appl. No. 298,271 [2 Pages].
USSynthetic Bearings and Waukesha Bearings brochure for Diamond Tilting Pad Thrust Bearings, 2015, 2 Pages.
USSynthetic Bearings brochure, accessed on Jun. 23, 2018, 12 Pages, Orem, Utah.
Zeidan, Fouad Y.; Paquette, Donald J., Application of High Speed and High Performance Fluid Film Bearings in Rotating Machinery, 1994, pp. 209-234.
Zhigadlo, N. D., Spontaneous growth of diamond from MnNi solvent-catalyst using opposed anvil-type high-pressure apparatus, accessed on Jun. 28, 2018, pp. 1-12, Laboratory for Solid State Physics, Switzerland.
Zou, Lai; Huang, Yun; Zhou, Ming; Xiao, Guijian; Thermochemical Wear of Single Crystal Diamond Catalyzed by Ferrous Materials at Elevated Temperature, Crystals, 2017, pp. 1-10, vol. 7.
International Search Report and Written Opinion dated Jan. 15, 2021 (issued in PCT Application No. PCT/US2020/049382) [18 pages].
Anonymous: “Chemical vapor deposition—Wikipedia”, Dec. 27, 2023, Retrieved from the Internet on Feb. 9, 2024, https://en.wikipedia.org/wiki/Chemical_vapor_deposition#Diamond (14 pages).
Anonymous: “CVD Diamond—FAQ”, Feb. 8, 2024, Retrieved from the Internet on Feb. 9, 2024, http://www.cvd-diamond.com/faq_en.htm (4 pages).
Anonymous: “Diamond-like carbon—Wikipedia”, Jan. 9, 2024, Retrieved from the Internet on Feb. 9, 2024, https://en.wikipedia.org/wiki/Diamond-like_carbon (10 pages).
Related Publications (1)
Number Date Country
20210245962 A1 Aug 2021 US
Continuations (1)
Number Date Country
Parent 16049631 Jul 2018 US
Child 17242829 US