The present invention relates generally to fluid agitation and, more particularly, to a roller bearing for a fluid-agitating element and associated vessel, and especially a collapsible mixing vessel, or bag.
Most pharmaceutical solutions and suspensions manufactured on an industrial scale require highly controlled, thorough mixing to achieve a satisfactory yield and ensure a uniform distribution of ingredients in the final product. Perhaps the most common proposal for stirring such a fluid is to use a rotating, permanent magnet bar covered by an inert layer of TEFLON, glass, or the like. The magnetic “stirrer” bar is placed on the bottom of the agitator vessel and rotated by a driving magnet positioned external to the vessel.
Of course, the use of such an externally driven magnetic bar avoids the need for a dynamic bearing, seal or other opening in the vessel to transfer the rotational force from the driving magnet to the stirring magnet. Therefore, a completely enclosed system is provided. This of course prevents leakage and the potential for contamination created by hazardous materials (e.g., cytotoxic agents, solvents with low flash points, blood products, etc.), eases clean up, and allows for the desirable sterile interior environment to be maintained, all of which are considered significant advantages.
Despite these advantages, a substantial problem is the creation of unwanted friction between the fluid-agitating element and the vessel. The use of a conventional roller bearing would help to provide the desired low friction support for the fluid-agitating element as it rotates. However, in many applications, sterility is of significant importance, and conventional roller bearings are typically not designed for use in such an environment. During the mixing of pharmaceuticals or like products for eventual introduction into living creatures, the presence of contaminants, and particularly shed particles, can require costly remediation steps, such as rigorous filtering, and can be deleterious if not kept in check or controlled. Conventional bearings are also costly to manufacture and expensive to purchase, and consequently are generally not considered disposable items.
Thus, a need is identified for an improved manner of ensuring that the desired low friction support is provided for a fluid-agitating element in a mixing vessel, such as a bag, actuated by an external motive device. The improvement provided by the invention would be easy to implement using existing manufacturing techniques and without significant additional expense. Overall, a substantial gain in efficiency and ease of use would be realized as a result of the improvement, and would greatly expand the potential applications for which advanced mixing systems may be used.
In accordance with one aspect of the invention, an apparatus for use in agitating a fluid in a vessel is provided. The apparatus comprises a fluid-agitating element for positioning in the vessel and a bearing for rotatably supporting the fluid-agitating element. The bearing comprises first and second races, at least one of which comprises polyvinylidene fluoride, and a plurality of rollers.
Preferably, the rollers comprise a ceramic material and, most preferably, silicon nitride, but may also comprise metal, such as for example stainless steel. Even more preferably, both the first and second races comprise polyvinylidene fluoride (PVDF). The bearing may be a thrust bearing, with the rollers taking the form of balls. In one particular embodiment, the first race is unitary with the fluid-agitating element, which preferably is at least partially magnetic.
Another aspect of this disclosure is an apparatus for use in agitating a fluid in a vessel. The apparatus comprises a fluid-agitating element for positioning in the vessel and a thrust bearing for rotatably supporting the fluid-agitating element. The thrust bearing includes a first race integral with the fluid-agitating element and a second race spaced from and generally opposite the second race. The thrust bearing further includes a plurality of rollers for engaging at least one of the first and second races during rotation of the fluid-agitating element.
In one embodiment, a receiver (such as a post) supported by the vessel receives and holds the fluid-agitating element. The receiver may be generally concentric with the first race, and may further include a retainer for retaining the fluid-agitating element on the receiver. Most preferably, the retainer forms a portion of the receiver. The retainer may also be connected to the second race, so as to couple with the fluid-agitating element to retain the rollers within a space between the first and second races.
In another aspect of the disclosure, the apparatus further includes a vessel capable of receiving and holding the fluid and the fluid-agitating element. The vessel includes a flexible portion (such as in the case of a bag) and a rigid portion. A fluid-agitating element includes an upper race, and the rigid portion of the vessel includes a lower race in a position generally opposite the upper race. A plurality of rollers positioned between the upper and lower races provided the desirable low-friction rotation for the fluid-agitating element.
a is a partially schematic, partially cross-sectional, enlarged cutaway side view of the rigid portion of the vessel in the embodiment of
b is a partially schematic, partially cross-sectional, enlarged cutaway side view of the fluid-agitating element in the embodiment of
c is an enlarged partially cutaway side view showing one possible manner of attaching a first receiver in the form of a post to the rigid portion of the vessel;
Reference is now made to
The rigid portion 14 includes a first receiver 16 for receiving and holding a fluid-agitating element 18 at a home location (or expected position), when positioned in the bag 10. It is noted that “holding” as used herein defines both the case where the fluid-agitating element 18 is directly held and supported by the first receiver 16 (see below) against any significant side-to-side movement (save tolerances), as well as where the first receiver 16 merely limits the fluid-agitating element to a certain degree of side-to-side movement within the bag 10. In this embodiment, an opening 18a is provided in the fluid-agitating element 18 and the first receiver 16 is a post 20 projecting toward the interior of the bag 10 (see
The flexible portion 12 of the bag 10 may be made of thin (e.g., having a thickness of between 0.1 and 0.2 millimeters) polyethylene film. The film is preferably clear or translucent, although the use of opaque or colored films is also possible. The rigid portion 14 including the post 20 may be formed of plastic materials, such as high density polyethylene (HDPE), ultrahigh molecular weight (UHMW) polyethylene, or like materials. Of course, these materials do have some inherent flexibility when used to form relatively thin components or when a moderate amount of bending force is applied thereto. Despite this flexibility, the rigid portion 14 is distinguished from the flexible portion 12, in that it generally maintains its shape under the weight of any fluid introduced in the bag 10.
Optionally, the post 20 may include a portion 20a for capturing the fluid-agitating element 18 and assisting in holding it thereon. The portion 20a is preferably oversized and forms the head or end of the post 20. By “oversized,” it is meant that at least one dimension (length, width, diameter) of this portion 20a of the post 20 is greater than the corresponding dimension of the opening 18a in the fluid-agitating element 18. For example, the portion 20a is shown in
Alternatively, this portion 20a of the post 20 need not be oversized, as defined above, but instead may simply be sufficiently close in size to that of the opening 18a such that the fluid-agitating element 18 must be precisely aligned and register with the post 20 in order to be received or removed. In any case, it is again important to note that the fluid-agitating element 18 is held in place in the vicinity of the post 20, but remains free of direct attachment. In other words, while the first receiver 16 (post 20) confines or holds the fluid-agitating element 18 at a home location or expected position within the bag 10, it is still free to move side-to-side to some degree (which in this case is defined by the size of the opening 18a), and to move along the first receiver 16 in the axial direction (vertical, in the embodiment shown in
As perhaps best shown in
As should be appreciated, the bag 10 shown in
When ready for use, the bag 10 is then unfolded. It may then be placed in a rigid or semi-rigid support structure, such as a container C, partially open along at least one end such that at least the rigid portion 14 remains exposed (see
An external motive device 24 is then used to cause the fluid-agitating element 18 (which is at least partially magnetic or ferromagnetic) to at least rotate to agitate any fluid F in the bag 10. In the embodiment of
The fluid-agitating element 18 is also depicted as including a plurality of vanes or blades B to improve the degree of fluid agitation. If present, the vanes or blades B preferably project in a direction opposite the corresponding surface of the rigid portion 14. The particular number, type, and form of the vanes or blades B is not considered important, as long as the desired degree of fluid agitation for the particular application is provided. Indeed, in applications where only gentle agitation is required, such as to prevent damage to delicate suspensions or to merely prevent stagnation of the fluid F in the bag 10, the vanes or blades B need not be provided, as a rotating smooth-walled annular element 18 still provides some degree of fluid agitation.
As explained above, it is important to not only know the general location or position of the fluid-agitating element 18 within the bag 10, but also to assure its position relative to the motive device 24. To do so, the rigid portion 14 may be provided with a second receiver 26 to facilitate the correct positioning of the motive device 24 relative to the fluid-agitating element 18 when held at the home location. In the embodiment shown in
Preferably, the second receiver 26, such as second post 28, has a cross-sectional shape corresponding to the shape of the opening 24a. For example, the second post 28 may be square in cross-section for fitting in a correspondingly-shaped opening 24a or locator bore. Likewise, the second post 28 could have a triangular cross-sectional shape, in which case the opening 28 would be triangular. Myriad other shapes could also be used, as long as the shape of the second receiver 26 compliments that of the opening 24a such that it may be freely received therein. In this regard, a system of matching receivers and openings may be used to ensure that the fluid-agitating element 18 in the bag 10 corresponds to a particular motive device 24. For example, in the case where the fluid-agitating element 18 includes a particular arrangement of magnets producing a magnetic field that corresponds to a particular superconducting element or drive structure, the second receiver 26 may be provided with a certain shape that corresponds only to the opening 24 in the motive device 24 having that type of superconducting element or drive structure. A similar result could also be achieved using the relative sizes of the second receiver 26 and the opening 24a, as well as by making the size of the opening 18a in the fluid-agitating element 18 such that it only fits on a first receiver 16 having a smaller width or diameter, and then making the second receiver 26 correspond only to a motive device opening 24a corresponding to that fluid-agitating element 18.
In many past arrangements where a rigid vessel is used with a fluid-agitating element directly supported by a bearing, an external structure is provided to which a motive device could be directly or indirectly attached and held in a suspended fashion. This structure serves to automatically align the motive device with the fluid-agitating element supported therein. However, a bag 10 per se is generally incapable of providing reliable support for the motive device 24, which can weigh as much as twenty kilograms. Thus, the motive device 24 in the embodiments disclosed herein for use with a vessel in the form of a bag 10 is generally supported from a stable support structure (not shown), such as the floor, a wheeled, height adjustable platform, or the like. Since there is thus no direct attachment with the bag 10, the function performed by the second receiver 26 in aligning this device with the fluid-agitating element 18 is an important one.
The post 920 in the illustrated embodiment projects through an opening 942a in the ring 942 forming part of the bearing 940. This ring 942, in turn, supports the plurality of roller elements, such as spherical roller balls 944 (and thus forms a ball thrust bearing, although a roller thrust bearing could also be used in this embodiment). These balls 944 at least engage a corresponding rigid seating surface 916a associated with the receiver 916, and preferably project from both sides of the ring 942 in an opposed fashion so as to also engage a corresponding surface of the fluid-agitating element 918 and provide the desired low-friction support therefor. A separate locking element 950 associated with the post 920 (including possibly by way of friction fit, snap fit, or threaded engagement) may retain or capture the fluid-agitating element 918 and bearing 940 in place.
In use, a magnetic coupling may be formed between a selected external motive device (such as a “mag” drive or otherwise) to rotate the fluid agitating element 918. As the rotation is effected, the fluid agitating element 918 thus engages the bearing 940, which provides desirable low-friction support. This is the case even if the balls 944 only project toward and engage the rigid seating surface 916a of the receiver 916.
The engagement surfaces of the receiver 916 and fluid-agitating element 918 may be made of plastic, which depending on the conditions may be subject to wear and the creation of deleterious wear particles. To avoid this, it is possible to interject a wear-resistant (e.g., metal or stainless steel) surface or plate (not shown) between either of the adjacent surface of the fluid-agitating element 918, the seating surface 916a, or both. This arrangement provides suitable contact surface(s) for the rolling elements of the bearing 940.
a and 3b show alternate embodiments. In
Turning now to
A plurality of rollers, such as balls 1003, are positioned for engaging the races 1002, 1004 to provide the desirable low friction for the fluid-agitating element 1018 during rotation. The number of rollers provided may vary depending on their size or the particular application, but should be sufficient to ensure that even, reliable support is provided for the fluid-agitating element. To retain the balls 1003 of the illustrated embodiment, while permitting the desired rolling movement, the channels or tracks of the races 1002, 1004 for engaging the rollers are preferably U-shaped or V-shaped, but could take other forms (possibly depending on the shape of the rollers) as long as the retention function is provided.
The lower race 1004 includes a structure for retaining it with respect to the upper race 1002 so as to contain and capture the rollers in the desired position, as well as for receiving the fluid-agitating element 1018, to thus form a self-contained assembly. As perhaps best understood with reference to
In the assembled condition, as shown in
As in several of the other embodiments, a receiver may also be provided for receiving and holding the fluid-agitating element 1018 within the vessel. In the illustrated embodiment, this receiver comprises a post 1020 having a retainer, such as an oversized head portion 1020a. This ensures that the assembled fluid-agitating element 1018 and lower race 1004 remain held in place during use. As discussed above, the post 1020 may be removable, such as by way of a snap-fit or friction fit formed in a bore 1014a in the rigid portion 1014 (such as between groove 1014b and protection 1020b). The lower race 1004 may also have an opening 1004a for receiving the post 1020 in a concentric fashion.
In accordance with one particularly preferred embodiment of the invention, special materials are used to form the races 1002, 1004 and the rollers, such as balls 1003. Specifically, at least one and preferably both of the races 1002, 2004 comprise a plastic material that is resistant to particle shedding as the result of the engagement with rollers. Most preferably, this material comprises polyvinylidene fluoride (PVDF). A specific example of this type of material is that identified by the KYNAR trademark. The rollers may be fabricated of durable, wear resistant materials, such as metal (and, preferably, a type that is non-corrosive, such as stainless steel). Preferably, the rollers comprise a ceramic material and, most preferably, silicon nitride. As should be appreciated, bearing 940 can also be fabricated of such materials.
During experiments, rollers comprising silicon nitride when used in connection with races 1002, 1004 comprising PVDF had surprisingly little to no particle shedding after substantial use. The resulting assembly also has a minimal cost in terms of materials, and thus can simply be disposed of or discarded when the fluid processing is complete, preferably along with the vessel. The following example of experiments conducted is illustrative of the benefits and advantages achieved:
An experiment was conducted using rollers in the form of 7/32″ 316 stainless steel balls from McMaster and 7/32″ balls from the Barden Corp. The races 1002, 1004 used were formed of KYNAR. The vessel comprised a rigid plastic water tank, and rotation of the magnetic impeller serving as the fluid-agitating element 1018 was provided by an external magnetic drive system. Three different volumes of water (100 ml, 300 ml, and 1L) were used.
Clean water was obtained using a four step Barnsted purification system (Model D4541 Epure, 8.3 MegaOhm cm). For post mixing determination of particle generation, an optical microscope (OLYMPUS BX-60, MPlan OLYMPUS 10x/0.25×2 BD) was used, along with a bright line counting chamber (Hausser Scientific).
Initially, the balls, the lower race, the plastic tank for the water, and the impeller were cleaned: first in acetone, then in pure water. The balls were further cleaned ultrasonically.
The first experiment was performed using one liter (1L) of clean water. Then the volume of water was reduced to 300 ml and to 100 ml. The system was rotated during 6.5-8 hours. After the rotation was stopped, the water probe was taken by the pipette from the plastic tank and checked under microscope for the presence of the particles using the bright line counting chamber. Furthermore, the surface of the balls before and after experiments was investigated under optical microscope for comparison. The surface of the races 1002, 1004 in contact with the balls were also studied using the optical microscope in an effort to detect any damage.
For the metallic balls, no particles were observed in the water after rotation during 8 h in 1 l water. No damage of the balls surface was observed after the experiment. However, a reduction in the volume of water (8 h in 100 ml) generated a large amount of metallic particles. The surface of the ball also lost its shiny luster. Further investigations under optical microscope revealed that the surface of the balls included traces resulting from ball collisions. On the other hand, no damage to the races 1002, 1004 was observed, and no KYNAR particles were found in the water.
Using metallic balls, rotation of the impeller during 7.5 h in 300 ml water generated approximately 5 particles per 0.1 mm3 water. The surface of the metallic balls after the experiment has been studied under optical microscope, and no damage was observed. The ceramic balls looked identical before and after the experiment. No damage to the races 1002, 1004 was observed, either.
Referring now to
The foregoing descriptions of various embodiments of the present inventions have been presented for purposes of illustration and description. These descriptions are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obvious modifications are possible. For example, the lower race 1004 can be built directly into the rigid portion 1014, or may have a catch for connecting it thereto. The embodiments described provide the best illustration of the principles of the invention and its practical applications to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/890,955, filed Feb. 21, 2007, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/54625 | 2/21/2008 | WO | 00 | 3/10/2010 |
Number | Date | Country | |
---|---|---|---|
60890955 | Feb 2007 | US |