1. Technical Field
The disclosure generally relates to roller bearings, more particularly to such bearings used in gas turbine engines.
2. Description of the Related Art
Gas turbine engines include numerous rotating and non-rotating components that typically are coupled to each other using bearings. An example of such a bearing is a tapered roller bearing that is commonly used to support a rotating shaft. Notably, a tapered roller bearing can accommodate both radial and axial loads. Unfortunately, bearings such as tapered roller bearings typically are subjected to conditions that cause wear which, if excessive, can lead to premature replacement of the bearings, or failure of the bearings.
Roller bearings, and struts and gas turbine engines involving such bearings are provided. In this regard, an exemplary embodiment of a roller bearing, e.g., for a gas turbine engine, comprises: a roller having a rolling surface and an end; a race having a flange and defining a raceway, the raceway terminating at the flange, the raceway being operative to receive the roller such that the rolling surface of the roller engages in rolling contact with the raceway; and a hard coating applied to the flange such that the end of the roller engages in sliding contact with the coating.
An exemplary embodiment of a gas turbine engine comprises: a turbine; a shaft operative to be driven by the turbine; and a roller bearing supporting the shaft. The roller bearing comprises: a roller having a rolling surface and an end; a race having a flange and defining a raceway, the raceway terminating at the flange, the raceway being operative to receive the roller such that the rolling surface of the roller engages in rolling contact with the raceway; and a hard coating applied to the flange such that the end of the roller engages in sliding contact with the coating.
An exemplary embodiment of a strut assembly for a gas turbine engine comprises: a strut; and a roller bearing supported by the strut. The roller bearing comprises: a roller having a rolling surface and an end; a race having a flange and defining a raceway, the raceway terminating at the flange, the raceway being operative to receive the roller such that the rolling surface of the roller engages in rolling contact with the raceway; and a hard coating applied to the flange such that the end of the roller engages in sliding contact with the coating.
Other systems, methods, features and/or advantages of this disclosure will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be within the scope of the present disclosure.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Roller bearings, and struts and gas turbine engines involving such bearings are provided, several exemplary embodiments of which will be described in detail. In some embodiments, the bearings are used as thrust bearings for gas turbine engines, although other implementations, which may not involve the use of gas turbine engines, are contemplated. Notably, the bearings typically exhibit both rolling and sliding contact between various constituent components of the bearings. In some embodiments, at least one of the component surfaces that experiences sliding contact receives a hard coating.
In this regard,
Engine 100 also incorporates a strut assembly 110 that includes a strut 112. Strut 112 is used to support a bearing 114, which engages a shaft 116. In this embodiment, bearing 114 is a thrust bearing and shaft 116 is a low spool shaft that interconnects a low-pressure turbine and low-pressure compressor for driving (either directly or indirectly, e.g., through a gearbox) the fan 102. Shaft 116 extends along a longitudinal axis 117, which defines a centerline of bearing 114. Bearing 114 is described in greater detail with respect to
As shown in
In
Inner race (or “cone”) 120 includes an inner flange (or “rib face”) 122 and an outer flange 124 between which is defined a raceway 126. Notably, in other embodiments, a cone can incorporate fewer that two rib faces.
Outer race (or “cup”) 130 also includes a raceway, in this case, raceway 132. Notably, although outer race 130 does not incorporate flanges, other embodiments can incorporate one or more flanges.
The raceways 126 and 132 are portions of the corresponding races in which rolling surfaces of the rollers engage in rolling contact. By way of example, rolling surface 142 of roller 140 is configured to roll along (engage in rolling contact with) the raceways. In contrast, ends of the rollers are configured to engage in sliding contact with corresponding surfaces of the races. By way of example, ends 144, 146 of roller 140 are configured to engage in sliding contact with corresponding surfaces of race 120. Thus, in the embodiment of
In order to reduce wear of the bearing, the embodiment of
With respect to coating types. various hard coatings can be used. By way of example, mineral coatings (such as diamond and/or diamond like coatings), metal coatings (such as nickel coatings), and composite coatings (such as nanocomposite coatings) can be used. For instance, a nanocomposite coating comprising metal carbide in an amorphous hydrogenated carbon matrix (MC/a-C:H) can be used. An example of such a nanocomposite coating is ES300™ by The Timken Company.
Depending upon the application, various considerations can be considered in selection of an appropriate coating. By way of example, one such consideration relates to compatibility with various operating temperatures in gas turbine engines. For instance, compatibility with an operating temperature of approximately 500° F. may be desirable in some applications. Additionally or alternatively, compatibility with synthetic oil, such as MIL-L-23699, can be desired in some applications. Other considerations may include, but are not limited to compatibility with the rib material as being AMS-6278.
Depending upon the type of coating and/or area of intended use, one or more of various application techniques can be used. By way of example, some coatings can be applied, but not limited to sputtering, plating, and electroplating.
It should be emphasized that the above-described embodiments are merely possible examples of implementations set forth for a clear understanding of the principles of this disclosure. Many variations and modifications may be made to the above-described embodiments without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
4245951 | Minnich | Jan 1981 | A |
4311004 | du Pont | Jan 1982 | A |
5593234 | Liston | Jan 1997 | A |
5735612 | Fox et al. | Apr 1998 | A |
5906691 | Burnett et al. | May 1999 | A |
6082959 | Van Duyn | Jul 2000 | A |
6261061 | Pfaffenberger | Jul 2001 | B1 |
6464401 | Allard | Oct 2002 | B1 |
6517249 | Doll | Feb 2003 | B1 |
6655845 | Pope et al. | Dec 2003 | B1 |
6682224 | Ooitsu et al. | Jan 2004 | B2 |
6869222 | Okita et al. | Mar 2005 | B1 |
6905250 | Lynch et al. | Jun 2005 | B2 |
7104699 | Shattuck et al. | Sep 2006 | B2 |
7201558 | Norris et al. | Apr 2007 | B2 |
7240872 | Inoguchi et al. | Jul 2007 | B2 |
7703290 | Bladon et al. | Apr 2010 | B2 |
7748952 | Schopf et al. | Jul 2010 | B1 |
20050047694 | Nozaki et al. | Mar 2005 | A1 |
20060251508 | Norris et al. | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090067985 A1 | Mar 2009 | US |