This disclosure relates to roller brushes for surface cleaning robots.
A vacuum cleaner generally uses an air pump to create a partial vacuum for lifting dust and dirt, usually from floors, and optionally from other surfaces as well. The vacuum cleaner typically collects dirt either in a dust bag or a cyclone for later disposal. Vacuum cleaners, which are used in homes as well as in industry, exist in a variety of sizes and models, such as small battery-operated hand-held devices, domestic central vacuum cleaners, huge stationary industrial appliances that can handle several hundred liters of dust before being emptied, and self-propelled vacuum trucks for recovery of large spills or removal of contaminated soil.
Autonomous robotic vacuum cleaners generally navigate, under normal operating conditions, a living space and common obstacles while vacuuming the floor. Autonomous robotic vacuum cleaners generally include sensors that allow it to avoid obstacles, such as walls, furniture, or stairs. The robotic vacuum cleaner may alter its drive direction (e.g., turn or back-up) when it bumps into an obstacle. The robotic vacuum cleaner may also alter drive direction or driving pattern upon detecting exceptionally dirty spots on the floor. Hair and other debris can become wrapped around the brushes and stalling the brushes from their rotation, therefore, making the robot less efficient in its cleaning.
One aspect of the disclosure provides a rotatable roller brush for a cleaning appliance. The roller brush includes a brush core defining a longitudinal axis of rotation and three or more dual rows of bristles disposed on and equidistantly spaced along a circumference the brush core. Each dual row of bristles includes a first bristle row of a first bristle composition and having a first height and a second bristle row of a second bristle composition stiffer than the first bristle composition and having a second height. The second bristle row is circumferentially spaced from the first bristle row by a gap (e.g., measured as a cord distance along the surface of the brush core) less than or equal to 10% of the first height. Also, the first height is less than or equal to 90% of the second height.
Implementations of the disclosure may include one or more of the following features. In some implementations, the first bristle row of each dual bristle row is forward of the second bristle row in a direction of rotation of the roller brush. The roller brush may include elastomeric vanes arranged between and substantially parallel to the bristle rows. Each vane extends from a first end attached to the brush core to a second end unattached from the brush core. The vanes may have a third height less than the second height of the second bristle row.
In some implementations, the first bristle row and second bristle row each define a chevron shape arranged longitudinally along the brush core. Each of the bristles of the first bristle row may have a first diameter less than a second diameter of each of the bristles of the second bristle row.
Each brush core may define a longitudinally extending T-shaped channel for releasably receiving a brush element. The brush element includes an anchor defining a T-shape complimentary sized for slidable receipt into the T-shaped channel and at least one dual row of bristles or a vane attached to the anchor.
Another aspect of the disclosure provides a rotatable roller brush assembly for a cleaning appliance. The roller brush assembly includes a first roller brush and a second roller brush arranged rotatably opposite the first roller brush. The first roller brush includes a brush core defining a longitudinal axis of rotation and three or more dual rows of bristles disposed on and equidistantly spaced along a circumference the brush core. Each dual row of bristles includes a first bristle row of a first bristle composition and having a first height and a second bristle row of a second bristle composition stiffer than the first bristle composition and having a second height. The second bristle row is circumferentially spaced from the first bristle row by a gap (e.g., measured as a cord distance along the surface of the brush core) less than or equal to 10% of the first height. Also, the first height is less than or equal to 90% of the second height. The second roller brush includes a brush core defining a longitudinal axis of rotation and three or more rows of bristles disposed on and circumferentially spaced about the brush core.
In some implementations, the first bristle row of each dual bristle row is forward of the second bristle row in a direction of rotation of the roller brush. The first roller brush may include elastomeric vanes arranged between and substantially parallel to the bristle rows. Each vane extends from a first end attached to the brush core of the first roller brush to a second end unattached from the brush core of the first roller brush. Moreover, the vanes may have a third height less than the second height of the second bristle row.
Additionally or alternatively, the second brush may include elastomeric vanes arranged between and substantially parallel to the bristle rows. Each vane extends from a first end attached to the brush core of the second roller brush to a second end unattached from the brush core of the second roller brush. The vanes may be shorter than the bristles of the second roller brush.
In some implementations, the rows of bristles of each roller brush each define a chevron shape arranged longitudinally along the corresponding brush core. The first direction of rotation of the first rotatable brush may be a forward rolling direction with respect to a forward drive direction of the rotatable roller brush assembly.
The roller brush assembly may include a brush bar arranged parallel to and engaging a bristle row by an engagement distance, measured radially with respect to the corresponding brush core, of less than or equal to 0.060 inches. The brush bar interferes with rotation of the engaged roller brush to strip fibers from the engaged bristles.
In yet another aspect of the disclosure, a mobile surface cleaning robot includes a robot body having a forward drive direction and a drive system supporting the robot body above a floor surface for maneuvering the robot across the floor surface. The drive system includes right and left drive wheels disposed on corresponding right and left portions of the robot body. The robot includes a caster wheel assembly disposed rearward of the drive wheels and a cleaning system supported by the robot body forward of the drive wheels. The cleaning system includes a rotatably driven roller brush, which includes a brush core defining a longitudinal axis of rotation and three or more dual rows of bristles disposed on and equidistantly spaced along a circumference the brush core. Each dual row of bristles includes a first bristle row of a first bristle composition and having a first height and a second bristle row of a second bristle composition stiffer than the first bristle composition and having a second height. The second bristle row is circumferentially spaced from the first bristle row by a gap (e.g., measured as a cord distance along the surface of the brush core) less than or equal to 10% of the first height. Also, the first height is less than or equal to 90% of the second height.
In some implementations, at least 5% of the second height of the second bristle row engages with the floor surface. In some examples, the first bristle row of each dual bristle row is forward of the second bristle row in a direction of rotation of the roller brush. A center of gravity of the robot may be located forward of the drive wheels, allowing the robot body to pivot forward about the drive wheels. In some examples, the robot body defines a square front profile or a round profile.
The robot may include at least one clearance regulator roller supported by the robot body and disposed forward of the drive wheels and rearward of the roller brush. The at least one clearance regulator provides a minimum clearance height of at least 2 mm between the robot body and the floor surface.
In some implementations, the robot includes a second roller brush arranged rotatably opposite the first roller brush. The second roller brush includes a brush core defining a longitudinal axis of rotation and three or more rows of bristles disposed on and circumferentially spaced about the brush core. The three or more rows of bristles of the second brush may be dual-rows of bristles. Each dual row of bristles includes a first bristle row of a first bristle composition and having a first height and a second bristle row of a second bristle composition stiffer than the first bristle composition and having a second height. The second bristle row is circumferentially spaced from the first bristle row by a gap (e.g., measured as a cord distance along the surface of the brush core) less than or equal to 10% of the first height. Also, the first height is less than or equal to 90% of the second height.
The cleaning system may include a collection volume disposed on the robot body, a plenum arranged over the first and second roller brushes, and a conduit in pneumatic communication with the plenum and the collection volume.
Another aspect of the disclosure provides a mobile surface cleaning robot that includes a robot body, a drive system, a robot controller, and a cleaning system. The robot body has a forward drive direction. The drive system supports the robot body above a floor surface for maneuvering the robot across the floor surface, and is in communication with the robot controller. The cleaning system, supported by the robot body, includes first and second roller brushes rotatably supported by the robot body. The first roller brush includes a brush core defining a longitudinal axis of rotation, and at least two longitudinal rows of bristles circumferentially spaced about the brush core. Each bristle extends away from a first end attached to the brush core to a second end unattached from the brush core. The bristles all have substantially the same length. The robot body rotatably supports the second roller brush rearward of the first roller brush. The second roller brush includes a brush core defining a longitudinal axis of rotation, and at least two longitudinal dual-rows of bristles circumferentially spaced about the brush core, each dual-row having a first row of bristles having a first bristle length and a second row of bristles adjacent and parallel the first bristle row and having a second bristle length different from the first bristle length. The first and second bristle rows of each dual-row of bristles are separated circumferentially along the brush core by a cord distance of less than about ¼ the first length. Moreover, each bristle extends away from a first end attached to the brush core to a second end unattached from the brush core.
In some implementations, the first bristle length is less than 90% of the second bristle length. In some examples, the first bristle row of each dual-row of bristles is forward of the second bristle row in the direction of rotation of the second roller brush. Additionally or alternatively, the first roller brush may include vanes arranged between and substantially parallel to the rows of bristles. Each vane includes an elastomeric material extending from a first end attached to the brush core to a second end unattached from the brush core. The vanes of the first roller brush may be shorter than the bristles. In some examples, the second roller brush includes vanes arranged between and substantially parallel to the dual-rows of bristles. Each vane includes an elastomeric material extending from a first end attached to the brush core to a second end unattached from the brush core. The vanes of the second roller brush may be shorter than the bristles. In some examples, the rows of bristles of each roller brush each define a chevron shape arranged longitudinally along the corresponding brush core.
In some implementations, the robot includes first and second brush motors. The first brush motor is coupled to the first roller brush and drives the first roller brush in a first direction. The second brush motor is coupled to the second roller brush and drives the second roller brush in a second direction opposite the first direction. Additionally or alternatively, the first direction of rotation may be a forward rolling direction with respect to the forward drive direction.
In some implementations, each brush core defines a longitudinally extending T-shaped channel for releasably receiving a brush element. The brush element includes an anchor defining a T-shape and is complimentary sized for slidable receipt into the T-shaped channel. The brush element also includes at least one longitudinal row of bristles or a vane attached to the anchor. The brush element may include a dual-row of bristles attached to the anchor. Additionally or alternatively, the brush core may define multiple equidistantly circumferentially spaced T-shaped channels.
In some implementations, the cleaning system includes a brush bar arranged parallel to and engaging the bristles of one or both of the roller brushes. The brush bar interferes with rotation of the engaged roller brush to strip fibers from the engaged bristles. In some examples, the cleaning system further includes a collection volume disposed on the robot body, a plenum arranged over the first and second roller brushes, and a conduit in pneumatic communication with the plenum and the collection volume.
Another aspect of the disclosure provides a mobile surface cleaning robot including a robot body having a forward drive direction and a drive system supporting the robot body above a floor surface for maneuvering the robot across the floor surface. The drive system includes right and left drive wheels disposed on corresponding right and left portions of the robot body, and a caster wheel assembly disposed rearward of the drive wheels. The caster wheel assembly includes a caster wheel supported for vertical movement and a suspension spring biasing the caster wheel toward the floor surface. The robot includes a robot controller in communication with the drive system and a cleaning system supported by the robot body forward of the drive wheels. The cleaning system includes at least one cleaning element configured to engage the floor surface, where the suspension spring has a spring constant sufficient to elevate a rear end of the robot body above the floor surface to maintain engagement of the at least one cleaning element with the floor surface.
In some examples, the cleaning element includes a roller brush having bristles. The suspension spring elevates the rear end of the robot body above the floor surface, causing engagement of at least 5% of a bristle length of the roller brush bristles with the floor surface. Additionally or alternatively, a center of gravity of the robot may be located forward of the drive axis, allowing the robot body to pivot forward about the drive wheels.
In some implementation, the robot includes at least one clearance regulator disposed on the robot body forward of the drive wheels. The clearance regulator maintains a minimum clearance height (e.g., at least 2 mm) between a bottom surface of the robot body and the floor surface. The clearance regulator(s) may be disposed forward of the drive wheels and rearward of the cleaning element(s). Additionally or alternatively, the clearance regulator(s) is/are roller(s) rotatably supported by the robot body.
In some implementations, the at least one cleaning element includes a first roller brush rotatably supported by the robot body. The first roller brush includes a brush core defining a longitudinal axis of rotation, and at least two longitudinal rows of bristles circumferentially spaced about the brush core. Each bristle extends away from a first end attached to the brush core to a second end unattached from the brush core. The bristles all have substantially the same length. The cleaning element further includes a second roller brush rotatably supported by the robot body rearward of the first roller brush. The second roller brush includes a brush core defining a longitudinal axis of rotation, and at least two longitudinal dual-rows of bristles circumferentially spaced about the brush core. Each dual-row of bristles includes a first row of bristles having a first bristle length, and a second row of bristles adjacent and parallel the first bristle row and having a second bristle length different from the first bristle length. The first and second bristle rows of each dual-row of bristles are separated circumferentially along the brush core by a cord distance of less than about ¼ the first length. Moreover, each bristle extends away from a first end attached to the brush core to a second end unattached from the brush core. In some examples, the cleaning system includes first and second brush motors. The first brush motor is coupled to the first roller brush and drives the first roller brush in a first direction. The second brush motor is coupled to the second roller brush and drives the second roller brush in a second direction opposite the first direction.
Yet another aspect of the disclosure provides a mobile surface cleaning robot including a robot body having a forward drive direction and a drive system supporting the robot body above a floor surface for maneuvering the robot across the floor surface. The drive system includes right and left drive wheel assemblies disposed on corresponding right and left portions of the robot body. Each drive wheel assembly has a drive wheel, a drive wheel suspension arm having a first end rotatably coupled to the robot body and a second end rotatably supporting the drive wheel, and drive wheel suspension spring biasing the drive wheel toward the floor surface. The drive system further includes at least one clearance regulator disposed forward of the drive wheels to maintain a minimum clearance height between a bottom surface of the robot body and the floor surface. The drive system further includes a caster wheel assembly disposed rearward of the drive wheels and includes a caster wheel supported for vertical movement and a suspension spring biasing the caster wheel toward the floor surface. The robot further includes a robot controller in communication with the drive system, and a cleaning system supported by the robot body forward of the drive wheels. The cleaning system includes at least one roller brush configured to engage the floor surface and having bristles. The suspension spring has a spring constant sufficient to elevate a rear end of the robot body above the floor surface to maintain engagement of the at least one roller brush with the floor surface. In some examples, a forward portion of the robot body has a flat forward face and a rearward portion of the robot body defines a semi-circular shape.
In some implementations, the suspension springs support the robot body a height above the floor surface that causes engagement of at least 5 of a bristle length of the roller brush bristles with the floor surface. Additionally or alternatively, the drive wheel suspension arm may have a length equal to between 70% and 150% of a height of the robot body. The first end of the drive wheel suspension arm may be disposed on the robot body below half the height of the robot body. Additionally, the drive wheel suspension springs together provide a spring force equal to between 40% and 80% of an overall weight of the robot. Each drive wheel may have a diameter equal to between 70-120% of the height of the robot body.
In some implementations, the caster wheel suspension spring elevates the rear end of the robot body above the floor surface to cause engagement of at least 5% of a bristle length of the roller brush bristles with the floor surface. A center of gravity of the robot may be located forward of the drive wheels, allowing the robot body to pivot forward about the drive wheels.
The minimum clearance height may be at least 2 mm. In some examples the clearance regulator(s) is/are disposed forward of the drive wheels and rearward of the roller brush(es). Additionally or alternatively, the clearance regulator may be a roller rotatably supported by the robot body.
In some implementations, the at least one cleaning element includes a first roller brush rotatably supported by the robot body. The first roller brush includes a brush core defining a longitudinal axis of rotation, and at least two longitudinal rows of bristles circumferentially spaced about the brush core. Each bristle extends away from a first end attached to the brush core to a second end unattached from the brush core. The bristles all have substantially the same length. The cleaning element further includes a second roller brush rotatably supported by the robot body rearward of the first roller brush. The second roller brush includes a brush core defining a longitudinal axis of rotation, and at least two longitudinal dual-rows of bristles circumferentially spaced about the brush core. Each dual-row of bristles includes a first row of bristles having a first bristle length, and a second row of bristles adjacent and parallel the first bristle row and having a second bristle length different from the first bristle length. The first and second bristle rows of each dual-row of bristles are separated circumferentially along the brush core by a cord distance of less than about ¼ the first length. Moreover, each bristle extends away from a first end attached to the brush core to a second end unattached from the brush core.
In some implementations, the first bristle length is less than 90% of the second bristle length. The first bristle row of each dual-row of bristles may be forward of the second bristle row in the direction of rotation of the second roller brush.
The first roller brush may include vanes arranged between and substantially parallel to the rows of bristles. Each vane includes an elastomeric material that extends from a first end attached to the brush core to a second end unattached from the brush core. The vanes may be shorter than the bristles. Additionally or alternatively, the second roller brush may include vanes arranged between and substantially parallel to the dual-rows of bristles. Each vane including an elastomeric material that extends from a first end attached to the brush core to a second end unattached from the brush core, the vanes being shorter than the bristles. The rows of bristles of each roller brush may each define a chevron shape arranged longitudinally along the corresponding brush core.
The robot may further include first and second brush motors. The first brush motor may be coupled to the first roller brush and may drive the first roller brush in a first direction. The second brush motor may be coupled to the second roller brush and may drive the second roller brush in a second direction opposite the first direction. The first direction of rotation may be a forward rolling direction with respect to the forward drive direction.
In some implementations, each brush core defines a longitudinally extending T-shaped channel for releasably receiving a brush element. The brush element includes an anchor defining a T-shape and complimentary sized for slidable receipt into the T-shaped channel, and at least one longitudinal row of bristles or a vane attached to the anchor. The brush element may include a dual-row of bristles attached to the anchor. In some examples, the brush core defines multiple equidistantly circumferentially spaced T-shaped channels.
In some implementations, the cleaning system further includes a brush bar arranged parallel to and engaging the bristles of one or both of the roller brushes. The brush bar interferes with rotation of the engaged roller brush to strip fibers from the engaged bristles. Additionally or alternatively, the cleaning system may include a collection volume disposed on the robot body, a plenum arranged over the first and second roller brushes, and a conduit in pneumatic communication with the plenum and the collection volume.
The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
An autonomous robot movably supported can clean a surface while traversing that surface. The robot can remove debris from the surface by agitating the debris and/or lifting the debris from the surface by applying a negative pressure (e.g., partial vacuum) above the surface, and collecting the debris from the surface.
Referring to
In some examples, the wheel modules 120a, 120b are movable secured (e.g., rotatably attach) to the robot body 110 and receive spring biasing (e.g., between about 5 and 25 Newtons) that biases the drive wheels 124a, 124b downward and away from the robot body 110. For example, the drive wheels 124a, 124b may receive a downward bias of about 10 Newtons when moved to a deployed position and about 20 Newtons when moved to a retracted position into the robot body 110. The spring biasing allows the drive wheels 124a, 124b to maintain contact and traction with the floor surface 10 while any cleaning elements of the robot 100 contact the floor surface 10 as well.
The robot 100 can move across the floor surface 10 through various combinations of movements relative to three mutually perpendicular axes defined by the body 110: a transverse axis X, a fore-aft axis Y, and a central vertical axis Z. A forward drive direction along the fore-aft axis Y is designated F (sometimes referred to hereinafter as “forward”), and an aft drive direction along the fore-aft axis Y is designated A (sometimes referred to hereinafter as “rearward”). The transverse axis X extends between a right side R and a left side L of the robot 100 substantially along an axis defined by center points of the wheel modules 120a, 120b.
Referring to
A forward portion 112 of the body 110 carries a bumper 130, which detects (e.g., via one or more sensors) one or more events in a drive path of the robot 100, for example, as the wheel modules 120a, 120b propel the robot 100 across the floor surface 10 during a cleaning routine. The robot 100 may respond to events (e.g., obstacles, cliffs, walls) detected by the bumper 130 by controlling the wheel modules 120a, 120b to maneuver the robot 100 in response to the event (e.g., away from an obstacle). While some sensors are described herein as being arranged on the bumper, these sensors can be additionally or alternatively arranged at any of various different positions on the robot 100.
A user interface 140 disposed on a top portion of the body 110 receives one or more user commands and/or displays a status of the robot 100. The user interface 140 is in communication with a robot controller 150 carried by the robot 100 such that one or more commands received by the user interface 140 can initiate execution of a cleaning routine by the robot 100.
Referring to
The robot controller 150 (executing a control system) may execute behaviors that cause the robot 100 to take an action, such as maneuvering in a wall following manner, a floor scrubbing manner, or changing its direction of travel when an obstacle is detected (e.g., by a bumper sensor system 400). The robot controller 150 can maneuver the robot 100 in any direction across the floor surface 10 by independently controlling the rotational speed and direction of each wheel module 120a, 120b. For example, the robot controller 150 can maneuver the robot 100 in the forward F, reverse (aft) A, right R, and left L directions. As the robot 100 moves substantially along the fore-aft axis Y, the robot 100 can make repeated alternating right and left turns such that the robot 100 rotates back and forth around the center vertical axis Z (hereinafter referred to as a wiggle motion). The wiggle motion can allow the robot 100 to operate as a scrubber during cleaning operation. Moreover, the wiggle motion can be used by the robot controller 150 to detect robot stasis. Additionally or alternatively, the robot controller 150 can maneuver the robot 100 to rotate substantially in place such that the robot 100 can maneuver-away from an obstacle, for example. The robot controller 150 may direct the robot 100 over a substantially random (e.g., pseudo-random) path while traversing the floor surface 10. The robot controller 150 can be responsive to one or more sensors 530 (e.g., bump, proximity, wall, stasis, and/or cliff sensors) disposed about the robot 100. The robot controller 150 can redirect the wheel modules 120a, 120b in response to signals received from the sensors 530, causing the robot 100 to avoid obstacles and clutter while treating the floor surface 10. If the robot 100 becomes stuck or entangled during use, the robot controller 150 may direct the wheel modules 120a, 120b through a series of escape behaviors so that the robot 100 can escape and resume normal cleaning operations.
Referring to
Referring to
The roller brush 310a, 310b may be driven by a corresponding brush motor 312a, 312b or by one of the wheel drive motors 122a, 122b. The driven roller brush 310 agitates debris on the floor surface 10, moving the debris into a suction path for evacuation to the collection volume 202b. Additionally or alternatively, the driven roller brush 310 may move the agitated debris off the floor surface 10 and into a collection bin (not shown) adjacent the roller brush 310 or into one of the ducting 208. The roller brush 310 may rotate so that the resultant force on the floor 10 pushes the robot 100 forward. The robot body 110 may include a removable cover 104 allowing access to the collection bin, and may include a handle 106 for releasably accessing the collection volume 202b.
In some implementations, the robot body 110 includes a side brush 140 disposed on the bottom forward portion 112 of the robot body 110. The side brush 140 agitates debris on the floor surface 10, moving the debris into the suction path of a vacuum module 162. In some examples, the side brush 140 extends beyond the robot body 110 allowing the side brush 140 to agitate debris in hard to reach areas such as corners and around furniture.
Referring to
Referring to
Referring to
In some implementations of the second roller brush 310b, the first row 325a of bristles 320 is formed of a first bristle composition and the second row 325b of bristles 330 is formed of a second bristle composition, and the first bristle composition is stiffer than the second bristle composition. The first bristle length LB1 may be no more than 90% of second bristle length LB2, and the first row 325a and second row 325b may be separated by a narrow gap of no more than 10% of second bristle length LB2 (i.e. no more 10% of the length of the longer bristles 330). In some examples, the second roller brush 310b has three or more dual rows of bristles 320, 330 equidistantly separated along the circumference of the brush core by 60 to 120 degrees. Having more than five dual rows 325 is costly and also results in excessive power draw on the motor driving the second roller brush 310b. Having fewer than three dual rows 325 results in poor cleaning performance because the bristles 330 do not contact the surface being cleaned with sufficient frequency.
The first roller brush 310a may include three or more rows of single height bristles 318. Additionally or alternatively, the first roller brush 310a may include one or more dual-rows 325 of bristles 320, 330 identical to those shown and described herein with reference to the second roller brush 310 of
Referring again to
In some implementations, a spacing distance DS, measured along the Y-axis, between the longitudinal axes of rotation XA, XB is greater than or equal to a diameter ϕA, ϕB of the brushes 310a, 310b. In some examples, the brushes 310a, 310b are spaced apart such that distal second ends 318b, 320b, 320c of their respective bristles 318, 320, 330 are distanced by a gap of about 1-10 mm.
Referring again to
In some implementations, each brush core 314 defines a longitudinally extending T-shaped channel 360 for releasably receiving a brush element 370. The brush element 370 includes an anchor 372 defining a T-shape and complimentary sized for slidable receipt into the T-shaped channel 360, and at least one longitudinal row of bristles 318, 320, 330 or a vane 340 attached to the anchor 372. The T-shaped anchor 372 allows a user to slide the brush element 370 on and off the brush core 314 for servicing, while also preventing escapement of the bristles during operation of the brush 310. In some examples, the channel 360 defines other shapes for releasably receiving a brush element 370 having a complimentary shape sized for slidably being received by the channel 360. The channels 360 may be equidistantly circumferentially spaced about the brush core 314.
Referring to
As the cleaning system 160 suctions debris from the floor surface 10, dirt and debris may adhere to the plenum 182 of the cleaning head 180. The cleaning head 180 may releasably connect to the robot body 110 and/or the cleaning system 160 to allow removal by the user to clean any accumulated dirt or debris from within the cleaning head 180. Rather than requiring significant disassembly of the robot 100 for cleaning, a user can remove the cleaning head 180 (e.g., by releasing tool-less connectors or fasteners) for emptying the collection volume 202b by grabbing and pulling a handle 106 located on the robot body 110.
Referring again to
Referring again to
Referring to
In some examples, the caster wheel assembly 126 is a vertically spring-loaded swivel caster 126 biased to maintain contact with a floor surface 10. The vertically spring-loaded swivel caster wheel assembly 126 may be used to detect if the robot 100 is no longer in contact with a floor surface 10 (e.g., when the robot 100 backs up off a stair allowing the vertically spring-loaded swivel caster 126 to drop). Additionally, the caster wheel assembly 126 keeps the rear portion 114 of the robot body 110 off the floor surface 10 and prevents the robot 100 from scraping the floor surface 10 as it traverses the surface 10 or as the robot 100 climbs obstacles. Additionally, the vertically spring-loaded swivel caster assembly 126 allows for a tolerance in the location of the center of gravity CG to maintain contact between the roller brushes 310a, 310b and the floor 10.
In some implementations, the robot 100 includes at least one clearance regulator 128 disposed on the robot body 110 in a forward portion 112, forward of the drive wheels 124a, 124b. In some examples, the clearance regulator 128 is a roller or wheel rotatably supported by the robot body 110. The clearance regulator 128 may be right and left rollers 128a, 128b disposed forward of the drive wheels 124a, 124b and rearward of the roller brushes 310. The clearance regulators/rollers 128a, 128b may maintain a clearance height C (e.g., at least 5 mm) between a bottom surface 118 of the robot body 110 and the floor surface 10.
Referring to
In some implementations, the wheels 124a, 124b perform differently depending on the direction of the wheel rotation (e.g., thicker floor surface or transition from different surfaces). Traction is the maximum frictional force produced between two surfaces (the robot wheels 124a, 124b and the floor surface 10) without slipping. A clockwise rotation and a counterclockwise rotation of the wheels 124a, 124b only equal if the traction T=0, or if
where β is the angle between the drive wheel suspension arm 123 with respect to a horizontal top portion of the robot body 110. R is the radius of the wheel 124a, 124b, and LA is the length of the wheel arm 123. The traction equals to zero only when the pivot point is on the floor surface 10. Therefore, to improve performance in the weak direction, the pivot point should be as close to zero and therefore as close to the floor surface 10. The lower the pivot point, the better the performance of the wheels 124a, 124b. The following two equations are considered for improving wheel performance:
where β is the angle between the drive wheel suspension arm 123 with respect to a horizontal top portion of the robot body 110. R is the radius of the wheel 124a, 124b, and LA is the length of the wheel arm 123. Fs is the normal spring force and Fn is the maximum allowable weight limit. Based on the above equations, in some examples, for a normal spring force Fs=2.5 lbf (constant), the wheel radius R=41 mm, the wheel arm has a length LA=80 mm, mu=0.8 (coefficient of friction). Additionally, the arm may form an initial angle θ=−16.0°. In some examples, the maximum allowable Fn (Weight Limited)=2.5 lbf per wheel.
In some implementations, the robot 100 has forward body portion 112 having a flat forward face (e.g., a flat linear bumper 130), and a rearward body portion 114 defining a semi-circular shape. When the robot 100 approaches a corner and gets stuck in the corner, the robot 100 may need to drive backwards to escape the corner and/or wall. In some examples, a higher traction is needed when the robot 100 is moving backwards to improve the escape capabilities when the robot 100 is stuck.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.
This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 13/835,501, filed on Mar. 15, 2013, now U.S. Pat. No. 9,326,654, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1829548 | Smellie et al. | Oct 1931 | A |
2578549 | Hooban | Dec 1951 | A |
4357727 | McDowell | Nov 1982 | A |
5341540 | Soupert et al. | Aug 1994 | A |
5452490 | Brundula et al. | Sep 1995 | A |
5537711 | Tseng | Jul 1996 | A |
5787545 | Colens | Aug 1998 | A |
5991951 | Kubo | Nov 1999 | A |
6212732 | Tajima et al. | Apr 2001 | B1 |
6389329 | Colens | May 2002 | B1 |
6532404 | Colens | Mar 2003 | B2 |
6553612 | Dyson et al. | Apr 2003 | B1 |
6594844 | Jones | Jul 2003 | B2 |
6605156 | Clark et al. | Aug 2003 | B1 |
6625843 | Kim et al. | Sep 2003 | B2 |
6690134 | Jones et al. | Feb 2004 | B1 |
6742220 | Nagai et al. | Jun 2004 | B2 |
6781338 | Jones et al. | Aug 2004 | B2 |
6809490 | Jones et al. | Oct 2004 | B2 |
6841963 | Song et al. | Jan 2005 | B2 |
6883201 | Jones et al. | Apr 2005 | B2 |
6965209 | Jones et al. | Nov 2005 | B2 |
6999850 | McDonald | Feb 2006 | B2 |
7155308 | Jones | Dec 2006 | B2 |
7159276 | Omoto et al. | Jan 2007 | B2 |
7171723 | Kobayashi et al. | Feb 2007 | B2 |
7173391 | Jones et al. | Feb 2007 | B2 |
7196487 | Jones et al. | Mar 2007 | B2 |
7248951 | Hulden | Jul 2007 | B2 |
7360277 | Moshenrose et al. | Apr 2008 | B2 |
7389166 | Harwig et al. | Jun 2008 | B2 |
7441298 | Svendsen et al. | Oct 2008 | B2 |
7444206 | Abramson et al. | Oct 2008 | B2 |
7448113 | Jones et al. | Nov 2008 | B2 |
7474941 | Kim et al. | Jan 2009 | B2 |
7503096 | Lin | Mar 2009 | B2 |
7555363 | Augenbraun et al. | Jun 2009 | B2 |
7571511 | Jones et al. | Aug 2009 | B2 |
7578020 | Jaworski et al. | Aug 2009 | B2 |
7603744 | Reindle | Oct 2009 | B2 |
7617557 | Reindle | Nov 2009 | B2 |
7620476 | Morse et al. | Nov 2009 | B2 |
7636982 | Jones et al. | Dec 2009 | B2 |
7784139 | Sawalski et al. | Aug 2010 | B2 |
7849555 | Hahm et al. | Dec 2010 | B2 |
7953526 | Durkos et al. | May 2011 | B2 |
D647265 | Follows et al. | Oct 2011 | S |
8316503 | Follows et al. | Nov 2012 | B2 |
8392021 | Konandreas et al. | Mar 2013 | B2 |
20020016649 | Jones | Feb 2002 | A1 |
20020120364 | Colens | Aug 2002 | A1 |
20020189871 | Won | Dec 2002 | A1 |
20030025472 | Jones et al. | Feb 2003 | A1 |
20030120389 | Abramson et al. | Jun 2003 | A1 |
20040020000 | Jones | Feb 2004 | A1 |
20040049877 | Jones et al. | Mar 2004 | A1 |
20040074038 | Im et al. | Apr 2004 | A1 |
20040187249 | Jones et al. | Sep 2004 | A1 |
20050010331 | Taylor et al. | Jan 2005 | A1 |
20050015914 | You et al. | Jan 2005 | A1 |
20050021181 | Kim et al. | Jan 2005 | A1 |
20050076466 | Yan | Apr 2005 | A1 |
20050204717 | Colens | Sep 2005 | A1 |
20050217042 | Reindle | Oct 2005 | A1 |
20050229340 | Sawalski et al. | Oct 2005 | A1 |
20050246857 | Omoto et al. | Nov 2005 | A1 |
20060020369 | Taylor et al. | Jan 2006 | A1 |
20060064828 | Stein et al. | Mar 2006 | A1 |
20060196003 | Song et al. | Sep 2006 | A1 |
20070006404 | Cheng et al. | Jan 2007 | A1 |
20070136981 | Dilger et al. | Jun 2007 | A1 |
20070244610 | Ozick et al. | Oct 2007 | A1 |
20070266508 | Jones et al. | Nov 2007 | A1 |
20080052846 | Kapoor et al. | Mar 2008 | A1 |
20080058987 | Ozick et al. | Mar 2008 | A1 |
20080091304 | Ozick et al. | Apr 2008 | A1 |
20080276408 | Gilbert, Jr. | Nov 2008 | A1 |
20080282494 | Won et al. | Nov 2008 | A1 |
20080307590 | Jones et al. | Dec 2008 | A1 |
20100049365 | Jones et al. | Feb 2010 | A1 |
20100257690 | Jones et al. | Oct 2010 | A1 |
20100257691 | Jones et al. | Oct 2010 | A1 |
20100263158 | Jones et al. | Oct 2010 | A1 |
20100287717 | Jang et al. | Nov 2010 | A1 |
20100306956 | Follows et al. | Dec 2010 | A1 |
20100313910 | Lee et al. | Dec 2010 | A1 |
20120090126 | Kim et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1428468 | Jun 2004 | EP |
05049566 | Mar 1993 | JP |
05146382 | Jun 1993 | JP |
06007271 | Jan 1994 | JP |
06014853 | Jan 1994 | JP |
H06-59578 | Aug 1994 | JP |
08173355 | Jul 1996 | JP |
H09-263140 | Oct 1997 | JP |
2000354567 | Dec 2000 | JP |
2002112931 | Apr 2002 | JP |
2003000484 | Jan 2003 | JP |
2007185228 | Jul 2007 | JP |
2008000382 | Jan 2008 | JP |
2011016011 | Jan 2011 | JP |
2011115541 | Jun 2011 | JP |
2011188951 | Sep 2011 | JP |
2012-096042 | May 2012 | JP |
2013-045463 | Mar 2013 | JP |
20000002306 | Jan 2000 | KR |
20090038965 | Apr 2009 | KR |
20130021212 | Mar 2013 | KR |
WO-2007065033 | Jun 2007 | WO |
WO-2009117383 | Sep 2009 | WO |
WO-2011121816 | Oct 2011 | WO |
Entry |
---|
International Search Report for related Application No. PCT/US2014/025865 dated Jul. 7, 2014. |
Japanese Office Action Corresponding to Japanese Patent Application No. 2015-511820; dated Aug. 22, 2016; Foreign Text, 4 Pages, English Translation Thereof, 4 Pages. |
Number | Date | Country | |
---|---|---|---|
20160213217 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13835501 | Mar 2013 | US |
Child | 15088802 | US |