This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2015-164064 filed Aug. 21, 2015.
The present invention relates to a roller member, an image carrier device, and an image forming apparatus.
According to an aspect of the invention, there is provided a roller member including a core member; a substantially round-cylindrical elastic member through which the core member extends and having chamfered portions, the chamfered portions each provided at two respective ends of the elastic member and having a surface roughness of about 50 μm or less; and a coating film provided over an outer peripheral surface of the elastic member and at least a part of each of the chamfered portions.
An exemplary embodiment of the present invention will be described in detail based on the following figures, wherein:
A roller member and an image forming apparatus according to an exemplary embodiment of the present invention will now be described with reference to
Image Forming Apparatus
Referring to
Container Section
The container section 14 includes a container member 26 that is drawable from an apparatus body 10A of the image forming apparatus 10 toward the near side in the apparatus-depth direction. The sheet members P are stacked in the container member 26. The container section 14 further includes a feeding roller 30 that feeds each of the sheet members P stacked in the container member 26 into a transport path 28 included in the transport section 16.
Transport Section
The transport section 16 includes plural pairs of transport rollers 32 that transport the sheet member P along the transport path 28.
Image Forming Section
The image forming section 20 includes four image forming units 18Y, 18M, 18C, and 18K provided for yellow (Y), magenta (M), cyan (C), and black (K), respectively. The image forming section 20 further includes a transfer unit 54 that transfers toner images formed by the image forming units 18 for the respective colors to the sheet member P, and a fixing device 34 that fixes the toner images on the sheet member P by applying heat and pressure to the toner images. Hereinafter, the suffixes Y, M, C, and K are omitted occasionally if the elements to be described do not need to be distinguished from one another by the suffixes Y, M, C, and K. Note that the image forming units 18Y, 18M, 18C, and 18K are each an exemplary image carrier device.
Image Forming Unit
The image forming units 18 for the respective colors each include an image carrier 36, a charging device 38 that charges the surface of the image carrier 36, and an exposure device 42 that applies exposure light generated for a corresponding one of the colors to the charged image carrier 36 and thus forms an electrostatic latent image on the image carrier 36. The image forming units 18 further includes a developing device 40 that develops and visualizes the electrostatic latent image into a toner image. The exposure device 42 and the developing device 40 constitute a forming unit 41.
Transfer Unit
The transfer unit 54 is provided above the image forming units 18 for the respective colors. The transfer unit 54 includes a transfer belt 44 as an exemplary endless belt, and a driving roller 46 around which the transfer belt 44 is wrapped. With the rotation of the driving roller 46, the transfer belt 44 is rotated in the direction of an arrow A. The transfer unit 54 further includes a tension applying roller 48 around which the transfer belt 44 is wrapped and that applies tension to the transfer belt 44, an assist roller 50 provided above the tension applying roller 48 and that rotates by following the rotation of the transfer belt 44, and first transfer rollers 56 provided across the transfer belt 44 from the respective image carriers 36.
The transfer unit 54 further includes a second transfer roller 52 provided across the transfer belt 44 from the assist roller 50 and that transfers the toner images transferred to the transfer belt 44 to the sheet member P transported thereto.
The charging device 38 will be described in detail later.
Operation of Image Forming Apparatus
The image forming apparatus 10 forms an image as follows.
First, the charging devices 38 for the respective colors negatively charge the surfaces of the respective image carriers 36 uniformly with a predetermined potential. Subsequently, on the basis of pieces of image data inputted from an external device, the exposure devices 42 for the respective colors apply exposure light to the charged surfaces of the respective image carriers 36, whereby electrostatic latent images are formed, respectively.
Thus, the electrostatic latent images corresponding to the pieces of image data are formed on the surfaces of the image carriers 36, respectively. Then, the developing devices 40 develop and visualize the electrostatic latent images into toner images, respectively. Subsequently, the first transfer rollers 56 transfer the respective toner images formed on the surfaces of the image carriers 36 to the transfer belt 44.
Meanwhile, the sheet member P fed from the container member 26 into the transport path 28 by the feeding roller 30 is transported to a transfer position T, where the transfer belt 44 is in contact with the second transfer roller 52. At the transfer position T, the second transfer roller 52 and the transfer belt 44 transport the sheet member P while nipping the sheet member P therebetween, whereby the toner images on the surface of the transfer belt 44 are transferred to the sheet member P.
Subsequently, the fixing device 34 fixes the toner images transferred to the sheet member P. The sheet member P having the fixed toner images is discharged to the outside of the apparatus body 10A by a pair of transport rollers 32.
Featured Elements
Now, featured elements such as the charging device 38 will be described.
Referring to
Supporting Member
The supporting members 82 are provided at two respective ends of the charging roller 60. The charging roller 60 extends in the axial direction of the image carrier 36. The supporting members 82 each have a groove 82A at which a corresponding one of the two ends of the charging roller 60 is supported. Furthermore, an urging member 58 is provided across a corresponding one of the supporting members 82 from the image carrier 36. The urging members 58 urge the respective supporting members 82, thereby pressing the charging roller 60 against the image carrier 36.
Since the urging members 58 urge the charging roller 60 toward the image carrier 36, a rubber roller portion 62 to be described below is deformed, whereby an outer peripheral surface 62B and chamfered portions 62A of the rubber roller portion 62 are pressed against the image carrier 36.
Charging Roller
Referring to
Exemplary sizes of the elements included in the charging roller 60 according to the present exemplary embodiment are as follows. The shaft member 64 has a diameter of 8 mm and a length of 355 mm. The rubber roller portion 62 has an outside diameter of 12 mm and a length of 320 mm. The rubber roller portion 62 is made of, for example, epichlorohydrin rubber or acrylonitrile-butadiene copolymer rubber. The shaft member 64 is, for example, a SUM-Ni shaft (a shaft made of sulfurized free-machining steel that is plated with nickel).
The two ends of the rubber roller portion 62 are chamfered, whereby the chamfered portions 62A are provided. Referring to
Referring to
The surface roughness of each of the chamfered portions 62A is measurable over the entire periphery thereof by using SURFCOM 1500DX3 (manufactured by TOKYO SEIMITSU CO., LTD.) after the electrically conductive coating film 66 is removed from the chamfered portion 62A by using a solvent that does not melt rubber (for example, lower alcohol such as ethanol or isopropyl alcohol).
An end processing apparatus 100 that chamfers the ends of the rubber roller portion 62 will now be described.
End Processing Apparatus
The end processing apparatus 100 is a machine (see
In
Hereinafter, for distinguishing from the charging roller 60 including the rubber roller portion 62 and the shaft member 64, a structure including the rubber roller member 70, which is yet to be chamfered, and the shaft member 64 is referred to as unprocessed rubber roller 72.
As illustrated in
Rotating Device
The rotating device 120 supports the two ends of the shaft member 64 of the unprocessed rubber roller 72 and rotates the unprocessed rubber roller 72 (the rubber roller member 70) in the peripheral direction (represented by an arrow E in
Cutting Device
The cutting device 130 includes the cutter 132 having the blade 136, and a driving unit 134. The driving unit 134 includes an oscillator (not illustrated) that oscillates the cutter 132 with ultrasonic waves, and a moving member (not illustrated) that moves the cutter 132.
The cutter 132 is made of, for example, carbon steel having a Young's modulus of 1,000 Gpa. Seen in the apparatus-depth direction, the cutter 132 is oriented at an angle with respect to the axis of rotation of the unprocessed rubber roller 72. The edge 136A of the blade 136 of the cutter 132 faces an outer peripheral surface 70C of the rubber roller member 70. The cutter 132 has a thickness of 1 mm at the proximal end thereof. Referring to
The cutter 132 has an amorphous carbon structure (made of tetrahedral amorphous carbon) deposited on the surface thereof. In the present exemplary embodiment, the amorphous carbon structure has a degree of amorphousness (proportion of the amorphous substance) of 60% or higher. The degree of amorphousness is measurable by X-ray diffractometry.
Referring to
As described above, the driving unit 134 moves the cutter 132 in a direction at an angle with respect to the axis of rotation of the unprocessed rubber roller 72 when seen in the apparatus-depth direction. In the present exemplary embodiment, the driving unit 134 moves the cutter 132 at a speed of 0.3 mm/sec.
Furthermore, the driving unit 134 transmits ultrasonic oscillation to the cutter 132 through the supporting portion 134A. Thus, the cutter 132 oscillates in the direction of movement of the cutter 132 with an amplitude of 15 μm or greater and 30 μm or less and at a frequency of 40 kHz.
In the above configuration, the driving unit 134 inserts the cutter 132 into the rubber roller member 70 from the outer peripheral surface 70C of the rubber roller member 70 while oscillating the cutter 132 in the direction in which the cutter 132 is moved. Thus, the blade 136 of the cutter 132 cuts each of the corners 70B of the rubber roller member 70, whereby the rubber roller portion 62 having the chamfered portions 62A (see
In the present exemplary embodiment, the chamfered portions 62A each have a length of chamfering (a length L in
Supporting Pad
The supporting pad 146 has an annular shape having a through hole through which the shaft member 64 is allowed to pass. Referring to
The supporting pad 146 is configured to rotate together with the unprocessed rubber roller 72 in a rotating step to be described later and to support a part of the end face 70A of the rubber roller member 70 in the cutting step to be described later (see
When the cutter 132 is at the retracted position, a clearance of 0.5 mm is provided between the supporting pad 146 and the end face 70A of the rubber roller member 70.
Blowing Member
Referring to
Other Elements
Now, an application apparatus 150 will be described. The application apparatus 150 forms the electrically conductive coating film 66 over the rubber roller portion 62 obtained after the corners 70B of the rubber roller member 70 are cut off. The application apparatus 150 forms the electrically conductive coating film 66 over the rubber roller portion 62 by so-called flow coating and includes, as illustrated in
The electrically conductive coating film 66 prevents the rubber roller portion 62 from being contaminated with external additives contained in toner and other substances.
Method of Manufacturing Charging Roller
Now, a method of manufacturing the charging roller 60 by using the end processing apparatus 100 and associated devices will be described.
Step of Making Unprocessed Rubber Roller
In a step of making the unprocessed rubber roller 72, a round-cylindrical or substantially round-cylindrical rubber member composed of electrically conductive rubber and other miscellaneous substances is provided around the shaft member 64 by extrusion molding, and two ends of the rubber member are cut off, so that the two ends of the shaft member 64 are exposed. Thus, the unprocessed rubber roller 72 including the shaft member 64 and the rubber roller member 70 is obtained. In this step, when the two ends of the rubber member are cut off, a residual stress in the rubber member is released, and the two ends of the rubber roller member 70 are curled up.
Preparation Step
In a preparation step, as illustrated in
In the above state, the cutter 132 at the retracted position is at an angle with respect to the axis of rotation of the unprocessed rubber roller 72 when seen in the apparatus-depth direction, the edge 136A of the cutter 132 faces the outer peripheral surface 70C of the rubber roller member 70, and the supporting pad 146 is positioned across the corner 70B of the rubber roller member 70 from the edge 136A of the cutter 132.
Rotating Step
In a rotating step, as illustrated in
Cutting Step
In a cutting step, the blowing member 138 blows air toward the corner 70B of the rubber roller member 70. Furthermore, as illustrated in
Furthermore, as illustrated in
After the rotation of the rubber roller member 70 is stopped, the driving unit 134 stops oscillating the cutter 132 that is at the cutting position, and moves the cutter 132 to the retracted position as illustrated in
Furthermore, the rotating device 120 releases the two ends of the shaft member 64 of the unprocessed rubber roller 72, and the supporting pad 146 is removed from the shaft member 64 as illustrated in
Thus, the corner 70B of the rubber roller member 70 that is on one side in the apparatus-width direction is cut off, that is, the one end of the rubber roller member 70 is chamfered. Subsequently, the unprocessed rubber roller 72 is turned the other way, and the above steps are repeated, whereby the corner 70B of the rubber roller member 70 that is on the other side in the apparatus-width direction is cut off. Thus, the rubber roller portion 62 including the chamfered portions 62A is obtained.
As described above, the corners 70B of the rubber roller member 70 are each cut off by inserting the blade 136 of the cutter 132 from the outer peripheral surface 70C of the rubber roller member 70 that is rotating into the rubber roller member 70 while oscillating the cutter 132. Therefore, the chamfered portions 62A each have the helical groove 68 (see
Application Step
In an application step, as illustrated in
Through the above steps, as illustrated in
Evaluation
Charging rollers 60 as working examples and charging rollers as comparative examples are evaluated as follows.
[Specifications]
Working Example 1: Surface roughness of chamfered portions 62A: 30 μm
Working Example 2: Surface roughness of chamfered portions 62A: 40 μm
Working Example 3: Surface roughness of chamfered portions 62A: 50 μm
[Comparative Example 1]: Surface roughness of chamfered portions: 90 μm
[Comparative Example 2]: Surface roughness of chamfered portions: 100 μm
[Comparative Example 3]: Surface roughness of chamfered portions: 110 μm
Note that the surface roughness of the chamfered portions in each of Comparative Examples 1 to 3 is increased by abolishing a surface treatment given to the blade 136.
[Conditions for Evaluation]
The charging rollers 60 as Working Examples 1 to 3 and the charging rollers as Comparative Examples 1 to 3 are each attached to an image forming apparatus (DocuCentre Color a450) of Fuji Xerox Co., Ltd., and images are formed on A3-size sheet members by using the image forming apparatus.
Specifically, an image of an area coverage of 5% is formed on each of 30,000 A3-size sheet members in an environment at a low temperature (10° C.) and a low humidity (20% in relative humidity (RH)). Subsequently, an image of an area coverage of 5% is formed on each of 30,000 A3-size sheet members in an environment at a high temperature (28° C.) and a high humidity (75% in RH).
After the above images are formed on the total of 60,000 sheet members, the presence of any wrinkles and peelings of the electrically conductive coating film 66 at the chamfered portions (62A) is checked visually.
[Criteria and Results of Evaluation]
A: No wrinkles nor peelings are observed
B: Wrinkles and/or peelings are observed
[Review]
The surface roughness of the chamfered portions 62A of each of the charging rollers 60 as Working Examples 1 to 3 is 50 μm or less. Therefore, as illustrated in
In contrast, the surface roughness of the chamfered portions of each of the charging rollers as Comparative Examples 1 to 3 is greater than 50 μm. Therefore, as illustrated in
As is obvious from the above results of the evaluation, since the surface roughness of the chamfered portions 62A is set to 50 μm or about 50 μm or less, the probability of the occurrence of wrinkles and peelings of the electrically conductive coating film 66 formed over the chamfered portions 62A is made lower than in the case where the surface roughness of the chamfered portions is greater than 50 μm.
The chamfered portions 62A each have the helical groove 68, which is one continuous groove. Such a configuration is free from the possibility that the electrically conductive coating film 66 may peel at connections of plural grooves. Therefore, the peeling of the electrically conductive coating film 66 is suppressed, compared with the case of the chamfered portion having a plural grooves.
Since the peeling of the electrically conductive coating film 66 is suppressed, the occurrence of nonuniform charging of the surface of the image carrier 36 is suppressed.
In the image forming apparatus 10, since the occurrence of nonuniform changing of the surface of the image carrier 36 is suppressed, the deterioration in the quality of an image outputted is suppressed.
In the above exemplary embodiment, the groove 68 is helical. Alternatively, the groove 68 is not limited to be helical. If the groove 68 is not helical, however, the effect produced by the helical shape of the groove 68 is not produced.
The above exemplary embodiment concerns a case where the groove 68 is provided in each of the chamfered portions 62A. Alternatively, the groove 68 may not necessarily be provided in the chamfered portion 62A.
The above exemplary embodiment concerns a case where a part of each of the chamfered portions 62A is coated with the electrically conductive coating film 66. Alternatively, the entirety of each of the chamfered portions 62A may be coated with the electrically conductive coating film 66.
The above exemplary embodiment concerns a case where the roller member corresponds to the charging roller 60. Alternatively, the roller member may be a transfer roller, a transport roller, or the like.
The foregoing description of the exemplary embodiment of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiment was chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2015-164064 | Aug 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5497219 | Kurokawa | Mar 1996 | A |
5790927 | Ando | Aug 1998 | A |
20070012549 | Kanaris | Jan 2007 | A1 |
20070231719 | Nishimura | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
8-160714 | Jun 1996 | JP |
0973211 | Mar 1997 | JP |
2008-15032 | Jan 2008 | JP |
2009-96085 | May 2009 | JP |
Entry |
---|
Communication dated Jun. 6, 2017 from the Japanese Patent Office in counterpart Japanese application No. 2015-164064. |
Number | Date | Country | |
---|---|---|---|
20170052469 A1 | Feb 2017 | US |