1. Technical Field
The present disclosure relates to a roller or a roller unit of an image scanner, a facsimile, or the like, for example, a paper feeder provided with the roller or the roller unit, and an image reader.
2. Description of the Related Art
In recent years image readers with a paper feeder such as an automatic document feeder (ADF) installed thereon are in common use. A separation roller and a retarding roller, on the opposite side from the separation roller, are disposed in the middle of a document transport path of the paper feeder in order to prevent the feeding of multiple document sheets.
The document which is transported to the separation roller is pinched by the separation roller and the retarding roller. At this time, if two documents enter the space between the separation roller and the retarding roller together, the transportation of the document which comes into contact with the retarding roller, which is rotating backward or is stationary, is prevented, and only the topmost document is separated from the other document and is fed out.
In order to reliably separate the documents, it is necessary to render the area (the nipping amount) over which the separation roller and the retarding roller come into contact with the documents sufficiently large to obtain a sufficient friction force for the retarding roller. Therefore, flexibility is demanded of the retarding roller such that the portion of the retarding roller which comes into contact with the separation roller easily warps. Wear resistance is also demanded of the retarding roller in order to suppress running costs.
Japanese Patent Unexamined Publication No. 2005-82376 discloses a retarding roller which is formed of two types of material in order to realize both flexibility and wear resistance. With this retarding roller, the roller is formed of soft urethane to secure flexibility, and the outer circumferential surface of the roller is covered with ethylene propylene diene M-class rubber (EPDM) to secure wear resistance.
An object of the disclosure is to obtain a sufficient nipping amount even if the retarding roller is formed of a single material having sufficient wear resistance.
A roller of the disclosure includes a cylindrical roller, in which M arc-shaped long holes (where M is an integer greater than or equal to 4) are formed in each of N layers (where N is an integer greater than or equal to 2) which are circular and concentric to a center axial line of the roller such that spokes between the long holes in each layer do not overlap in a circumferential direction between adjacent layers.
According to the disclosure, it is possible to obtain a sufficient nipping amount even if the roller is formed of a single material having sufficient wear resistance.
Hereinafter, detailed description will be given of the exemplary embodiments of the disclosure with reference to the drawings.
When image reader 10 of
Paper feed roller 3 and separation roller 4 are rotationally driven by a motor, and rotate in a document feeding direction (arrow A direction). Document 2 is pulled inside the apparatus together with the rotation of paper feed roller 3, and enters a nipping portion X between separation roller 4 and retarding roller 5.
In a case in which retarding roller 5 is in direct contact with separation roller 4, retarding roller 5 follows separation roller 4 to rotate in the paper feeding direction. Even in a case in which only a single document 2 enters nipping portion X, retarding roller 5 follows document 2 to rotate in the paper feeding direction, and document 2 proceeds. Meanwhile, in a case in which two or more documents enter nipping portion X, since the inter-sheet friction of documents 2 is smaller than the friction between separation roller 4 and a first document 2 and the friction between retarding roller 5 and a second document 2, only the first document 2 which is in contact with separation roller 4 is separated from the second document onward to proceed.
Image reader 10 uses imaging devices 6a and 6b to read images of document 2 which passes nipping portion X, and subsequently outputs document 2 to output portion 7.
Next, description will be given of a roller (retarding roller 5) according to the exemplary embodiment using
Retarding roller 5 (the roller) is formed of a synthetic rubber (an industrial rubber material) such as ethylene propylene diene M-class rubber (EPDM) or polyurethane, or alternatively, silicone. The synthetic rubber and the silicone have sufficient wear resistance, are deformed by a comparatively small external force, and have the elasticity to swiftly return to the original shape when the external force is released.
Retarding roller 5 is cylindrical. The inner diameter of the cylinder is from 10 to 36 mm inclusive, the outer diameter is 24 to 56 mm inclusive, and the outer diameter is greater than or equal to 14 mm larger than the inner diameter. When retarding roller 5 is attached to the paper feeder, a rotating shaft is inserted into a central through hole 11 (an inner circumferential surface). Alternatively, a rotating shaft and a cylindrical sleeve (a wheel) are inserted into a central through hole 11 (an inner circumferential surface).
In retarding roller 5, M arc-shaped long holes 12 (where M is an integer greater than or equal to 4, M=8 in
In each layer, it is preferable that long holes 12 are formed at an equal interval, and it is preferable that long holes 12 are formed in the same shape. It is preferable that the length of long holes 12 in the circumferential direction in an ith layer (where i is an integer from 1 to N−1) is longer than long holes 12 of the i+1th layer. It is preferable that the length (width) of long holes 12 in the ith layer in the radial direction is longer than long holes 12 of the i+1th layer.
Long holes 12 are formed such that spokes 13 in adjacent layers (an ith layer and an i+1th layer) do not overlap in the circumferential direction. In particular, it is preferable that long holes 12 are formed such that spokes 13 of the i+1th layer are present on a plane passing through the center of long holes 12 of the ith layer in the circumferential direction and center axial line C. In other words, it is preferable that long holes 12 are formed such that the distance from each of two adjacent spokes 13 in the ith layer to spoke 13 of the i+1th layer which is positioned between the two spokes 13 in the circumferential direction is equal.
Next, description will be given of a warped state of retarding roller 5 using
In the case of
In the case of
In
In
In this manner, according to the exemplary embodiment, M arc-shaped long holes are formed in each of N layers which are circular and concentric to the center axial line of retarding roller 5 (the roller) such that the spokes between the long holes in each layer do not overlap in the circumferential direction between adjacent layers. Accordingly, even if retarding roller 5 is formed of a single material which has sufficient wear resistance, since the portion of retarding roller 5 which comes into contact with separation roller 4 warps easily, it is possible to increase the area (the nipping amount) which comes into contact with the document which is transported, and it is possible to obtained sufficient friction force.
If the long holes which are formed in the retarding roller are only in one layer, the pressure applied to the document becomes uneven depending on the position at which contact is made with the retarding roller. As in the exemplary embodiment, by forming long holes 12 in two or more layers in retarding roller 5, it is possible to render the pressure applied to document 2 uniform.
By using silicone with favorable sliding properties as the material of the roller, particularly in a bottom pick-up system paper feeder which picks up sheets sequentially from the bottommost document 2 to perform the paper feeding, as illustrated in
In exemplary embodiment 1, description is given of a case in which the wheel is an ordinary cylindrical shape, and the characteristics of the shape of the roller are modified. In exemplary embodiment 2, description is given of a case in which the characteristics of the shape of the wheel are modified.
Hereinafter, description is given of the roller unit according to the exemplary embodiment using
Wheel 55 (the wheel substrate) is formed of a resin material with elasticity such as polypropylene, or nylon 66. Wheel 55 is cylindrical. The inner diameter of the cylinder is from 5 to 31 mm inclusive, the outer diameter is from 19 to 51 mm inclusive, and the outer diameter is greater than or equal to 14 mm larger than the inner diameter. When wheel 55 is attached to the paper feeder, a rotating shaft is inserted into through hole 21 (the inner circumferential surface) of the center.
In wheel 55, M arc-shaped long holes 22 (where M is an integer greater than or equal to 4, M=8 in
In each layer, it is preferable that long holes 22 are formed at an equal interval, and it is preferable that long holes 22 are formed in the same shape. It is preferable that the length of long holes 22 in the circumferential direction in an ith layer (where i is an integer from 1 to N−1) is longer than long holes 22 of the i+1th layer. It is preferable that the length (the width) of long hole 22 of the ith layer in the radial direction is longer than that of long hole 22 of the i+1th layer.
Long holes 22 are formed such that spokes 23 in adjacent layers (an ith layer and an i+1th layer) do not overlap in the circumferential direction. In particular, it is preferable that long holes 22 are formed such that spokes 23 of the i+1th layer are present on a plane passing through the center of long holes 22 of the ith layer in the circumferential direction and center axial line C. In other words, it is preferable that long holes 22 are formed such that the distance from each of two adjacent spokes 23 in the ith layer to spoke 23 of the i+1th layer which is positioned between the two spokes 23 in the circumferential direction is equal.
Both ends 25a and 25b of outer circumferential surface 24 of wheel 55 are protruding circles with a larger diameter than the other portions of outer circumferential surface 24.
Retarding roller 5a (the roller core) is formed of silicone. Retarding roller 5a is cylindrical. The inner diameter of the cylinder is from 19 to 51 mm inclusive, the outer diameter is 24 to 56 mm inclusive, and the outer diameter is greater than or equal to 5 mm larger than the inner diameter.
The inner diameter of retarding roller 5a is slightly smaller than the diameter of outer circumferential surface 24 of wheel 55. The width of retarding roller 5a is substantially equal to the distance between the inner surfaces of both ends 25a and 25b of outer circumferential surface 24 of wheel 55. In a case in which retarding roller 5a is attached to wheel 55, outer circumferential surface 24 of wheel 55 and inner circumferential surface 11a of retarding roller 5a are in contact with each other over the entire surfaces thereof.
Next, description will be given of a warped state of a roller unit using
In the case of
In the case of
In
In the same manner as in exemplary embodiment 1, even in exemplary embodiment 2, in
In this manner, according to the exemplary embodiment, in a roller unit in which a cylindrical retarding roller 5a is attached to wheel 55, M arc-shaped long holes are formed in each of N layers which are circular and concentric to the center axial line of wheel 55 such that the spokes between the long holes in each layer do not overlap in the circumferential direction between adjacent layers. Accordingly, even if retarding roller 5a is formed of a single material which has sufficient wear resistance, since the portion of retarding roller 5a which comes into contact with separation roller 4 warps easily, it is possible to increase the area (the nipping amount) which comes into contact with the document which is transported, and it is possible to obtained sufficient friction force.
According to the exemplary embodiment, since it is possible to render retarding roller 5a, which is a consumable, a simple cylindrical shape, it is possible to suppress costs.
If the long holes which are formed in the wheel are only in one layer, the pressure applied to the document becomes uneven depending on the position at which contact is made with the retarding roller. As in the exemplary embodiment, by forming long holes 22 in two or more layers in wheel 55, it is possible to render the pressure applied to document 2 uniform.
The abovementioned description is given of an exemplary embodiment with reference to the drawings, and it goes without saying that the disclosure is not limited to the examples given. It is clear to a person skilled in the art that various modifications and corrections may be made within the scope disclosed in the claims. Naturally, such modifications and corrections are understood to fall within the technical scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2016-022742 | Feb 2016 | JP | national |
2016-046001 | Mar 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
1451517 | Smith | Apr 1923 | A |
4823689 | Kishino | Apr 1989 | A |
6769679 | Ishibashi | Aug 2004 | B2 |
9108470 | Tercha | Aug 2015 | B2 |
20030193127 | Ishibashi | Oct 2003 | A1 |
20040163558 | Itoh | Aug 2004 | A1 |
20100033774 | Ridl | Feb 2010 | A1 |
20140210922 | Stephens et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
700623 | Sep 2010 | CH |
62-251516 | Nov 1987 | JP |
2003-300640 | Oct 2003 | JP |
2005-82376 | Mar 2005 | JP |
2015-224094 | Dec 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20170225916 A1 | Aug 2017 | US |