This application claims priority to PCT International Patent Application No. PCT/SG2019/050363 filed Jul. 25, 2019, which claims the priority benefit of Singaporean Patent Application No. 10201905150P filed Jun. 6, 2019, both of which are hereby incorporated by reference in their entireties.
Various embodiments generally relate to a roller shutter for mitigating an impact force.
Roller shutter has been commonly installed at the entrance of various types of premises such as retail shops, warehouses, buildings, hangars, garages, etc. for controlling physical access into the enclosed space of the respective premises. When the shutter curtain of the roller shutter is down, it provides some form of protection against environmental factors such as wind and/or rain. It also provides certain amount of security protection against intrusion or breaking in. A typical roller shutter generally includes a plurality of horizontally extending slats connected to each other to form the shutter curtain. The shutter curtain is being wound on and/or off a drum to raise or lower the shutter curtain. Further, the shutter curtain is typically guided by guide channels along the two sides of the entrance. Such conventional roller shutter may suffice for the purpose of simple protection against wind and/or rain, or limited protection against intrusion or breaking in. However, strong wind during storm or typhoon, or an explosion or a blast which may apply a sudden impact force on the roller shutter may cause the individual slats of the shutter curtain to break into pieces and dislodge from the shutter curtain to become flying shrapnel that may cause further property damage or personnel injury.
Accordingly, there is a need for an effective roller shutter to address the above issues, for example to mitigate the sudden impact force on the roller shutter.
According to various embodiments, there is provided a roller shutter. The roller shutter may include a rotatable drum having a rotational axis. The roller shutter may include a shutter curtain including a series of three or more elongate slats pivotally interlocked in a longitudinal-edge-to-longitudinal-edge arrangement one after another and arranged parallel to the rotational axis of the rotatable drum in a manner so as to be capable of being wound on and off the rotatable drum together in an interlocked state. According to various embodiments, each of the elongate slats may have a first longitudinal end portion and a second longitudinal end portion, wherein the first and second longitudinal end portions may be respectively aligned to form a first side border and a second side border, respectively, of the shutter curtain. According to various embodiments, the first longitudinal end portion and the second longitudinal end portion of each elongate slat may be respectively provided with at least one eyelet-structure which protrudes therefrom, whereby a first row of eyelet-structures and a second row of eyelet-structures are formed along the first and second side borders, respectively, of the shutter curtain. The roller shutter may further include at least a first cord and a second cord. According to various embodiments, the first cord may be strung loosely through all eyelet-structures of the first row of eyelet-structures and the second cord may be strung loosely through all eyelet-structures of the second row of eyelet-structures. According to various embodiments, each cord may be configured to confine all eyelet-structures of respective row of eyelet-structures within a length of each cord.
In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments are described with reference to the following drawings, in which:
Embodiments described below in the context of the apparatus are analogously valid for the respective methods, and vice versa. Furthermore, it will be understood that the embodiments described below may be combined, for example, a part of one embodiment may be combined with a part of another embodiment.
It should be understood that the terms “on”, “over”, “top”, “bottom”, “down”, “side”, “back”, “left”, “right”, “front”, “lateral”, “side”, “up”, “down” etc., when used in the following description are used for convenience and to aid understanding of relative positions or directions, and not intended to limit the orientation of any device, or structure or any part of any device or structure. In addition, the singular terms “a”, “an”, and “the” include plural references unless context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise.
Various embodiments generally relate to a roller shutter. In particular, various embodiments generally relate to a roller shutter for resisting strong wind forces and/or for mitigating a sudden impact force of an explosion or a blast. In resisting strong wind forces and/or mitigating the sudden impact force, the roller shutter according to various embodiments may minimize breakage or fracture. Further, the roller shutter according to various embodiments may be configured such that the risk of broken or fractured slats being dislodged from the shutter curtain be minimized or eliminated. According to various embodiments, the roller shutter may be configured to prevent the slats of the shutter curtain from breaking into pieces and/or dislodging to become flying shrapnel.
According to various embodiments, the shutter curtain 120 may include a series of three or more elongate slats 130. Accordingly, the three or more elongate slats 130 may be arranged in sequence to form a set of three or more successive elongate slats 130. According to various embodiments, the series of three or more elongate slats 130 may be pivotally interlocked in a longitudinal-edge-to-longitudinal-edge arrangement one after another. Accordingly, the three or more elongate slats 130 may be connected or engaged in a manner in which two immediately adjacent elongate slats 130 may be connected or engaged along respective longitudinal edges 132 between the two immediately adjacent elongate slats 130 so as to be locked or attached to each other along their respective longitudinal edges 132. According to various embodiments, the two immediately adjacent elongate slats 130 may be pivotable relative to each other about a pivoting axis along a connection or an engagement between the respective longitudinal edges 132 of the two immediately adjacent elongate slats 130, and may be so connected or engaged such that the two immediately adjacent elongate slats 130 may be non-separable in a direction perpendicular to the pivoting axis.
According to various embodiments, the series of three or more elongate slats 130 may be arranged parallel to the rotational axis 112 of the rotatable drum 110. Accordingly, the shutter curtain 120 may be oriented such that each of the three or more elongate slats 120 may be extending longitudinally in a direction parallel to the rotational axis 112 of the rotatable drum 110. Hence, the longitudinal edges 132 of each elongate slat 120 may be parallel to the rotational axis 112 of the rotatable drum 110. According to various embodiments, with the series of three or more elongate slats 130 being arranged parallel to the rotational axis 112 of the rotatable drum 110, the series of three or more elongate slats 130 of the shutter curtain 120 may be wound on and off the rotatable drum 110 together in an interlocked state. Accordingly, the series of three or more elongate slats 130, which may be articulated to one another as a whole, may be wound onto the rotatable drum 110 so as to raise the shutter curtain 120 and may be unwound from the rotatable drum 110 so as to lower the shutter curtain 120.
According to various embodiments, each of the elongate slats 130 may have a first longitudinal end portion 134 and a second longitudinal end portion 136. According to various embodiments, the first and second longitudinal end portions 134, 136 of each elongate slat 130 may be respective portions at respective extremity, lengthwise, of said elongate slat 130. According to various embodiments, the first and second longitudinal end portions 134, 136 may be respectively aligned to form a first side border 124 and a second side border 126, respectively, of the shutter curtain 120. According to various embodiments, all the first longitudinal end portions 134 of the series of three or more elongate slats 130 may be aligned or brought into alignment to form a continuous line so as to form the first side border 124 of the shutter curtain 120. According to various embodiments, all the second longitudinal end portions 136 of the series of three or more elongate slats 130 may be aligned or brought into alignment to form a continuous line so as to form the second side border 126 of the shutter curtain 120.
According to various embodiments, the first longitudinal end portion 134 and the second longitudinal end portion 136 of each elongate slat 130 of the series of three or more elongate slats 130 may be respectively provided with at least one eyelet-structure 140 which protrudes therefrom. According to various embodiments, each elongate slat 130 of the series of three or more elongate slats 130 may include at least one eyelet-structure 140 protruding or jutting out from the first longitudinal end portion 134 of said elongate slat 130. According to various embodiments, each elongate slat 130 of the series of three or more elongate slats 130 may include at least one eyelet-structure 140 protruding or jutting out from the second longitudinal end portion 136 of said elongate slat 130. Accordingly, every one of the three or more elongate slats 130 may include at least one eyelet-structure 140 protruding from respective first longitudinal end portion 134 thereof and at least one eyelet-structure 140 protruding from respective second longitudinal end portion 136 thereof.
According to various embodiments, a first row 144 of eyelet-structures 140 and a second row 146 of eyelet-structures 140 may be formed along the first and second side borders 124, 126, respectively, of the shutter curtain 120. According to various embodiments, all the eyelet-structures 140 of all the first longitudinal end portions 134 of the series of three or more elongate slats 130 may be arranged or placed in succession into a line so as to make up the first row 144 of eyelet-structures 140 running alongside the first side border 124 of the shutter curtain 120. According to various embodiments, holes of all the eyelet-structures 140 of all the first longitudinal end portions 134 of the series of three or more elongate slats 130 may be in line with each other. According to various embodiments, all the eyelet-structures 140 of all the second longitudinal end portions 136 of the series of three or more elongate slats 130 may be arranged or placed in succession into a line so as to make up the second row 146 of eyelet-structures 140 running alongside the second side border 126 of the shutter curtain 120. According to various embodiments, holes of all the eyelet-structures 140 of all the second longitudinal end portions 136 of the series of three or more elongate slats 130 may be in line with each other.
According to various embodiments, the roller shutter 100 may include a first cord 154 and a second cord 156. According to various embodiments, each of the first cord 154 and the second cord 156 may include, but not limited to, a steel wire, a steel cable, or a steel cord. According to various embodiments, the first cord 154 may be strung loosely through all the eyelet-structures 140 of the first row 144 of eyelet-structures 140. Accordingly, all the eyelet-structures 140 of the first row 144 of eyelet-structures 140 may be connected by the first cord 154 which is passed through or threaded through respective eyeholes 141 of all the eyelet-structures 140 of the first row 144 of eyelet-structures 140. According to various embodiments, the second cord 156 may be strung loosely through all the eyelet-structure 140 of the second row 146 of eyelet-structures 140. Accordingly, all the eyelet-structures 140 of the second row 146 of eyelet-structures 140 may be connected by the second cord 156 which is passed through or threaded through respective eyeholes 141 of all the eyelet-structures 140 of the second row 146 of eyelet-structures 140.
According to various embodiments, each cord 154, 156 may be configured to confine all eyelet-structures 140 of respective row 144, 146 of eyelet-structures 140 within a length of each cord 154, 156. According to various embodiments, the first cord 154 may be configured to keep or retain all the eyelet-structures 140 of the first row 144 of eyelet-structures 140 within bounds or limits as defined by the length of the first cord 154. Accordingly, all the eyelet-structures 140 of the first row 144 of eyelet-structures 140 may be placed or put upon the first cord 154 in a manner so as to be non-separable from the first cord 154 and be restrained from sliding out of the first cord 154. According to various embodiments, the second cord 156 may be configured to keep or retain all the eyelet-structures 140 of the second row 146 of eyelet-structures 140 within bounds or limits as defined by the length of the second cord 156. Accordingly, all the eyelet-structures 140 of the second row 146 of eyelet-structures 140 may be placed or put upon the second cord 156 in a manner so as to be non-separable from the second cord 156 and be restrained from sliding out of the second cord 156.
According to various embodiments, as shown in
According to various embodiments, not shown, each cord may include a first cord end having a first stopper element which is configured to prevent the first cord end of said cord from sliding out of the respective row of eyelet-structures, and a second cord end having a second stopper element which is configured to prevent the second cord end of said cord from sliding out of the respective row of eyelet-structures. According to various embodiments, with the first stopper element and the second stopper element respectively disposed at the first cord end and the second cord end, respectively, of said cord, the first stopper element at the first cord end may serve as a physical barrier to restrain or restrict or obstruct the eyelet-structures from sliding out from the first cord end and the second stopper element at the second cord end may serve as a physical barrier to restrain or restrict or obstruct the eyelet-structures from sliding out from the second cord end. According to various embodiments, the first stopper element and the second stopper element each may include, but not limited to, a crimp end, a cord end cap, a knotted end, a bulged end, or an expanded end.
According to various embodiments, the first cord 154 and the second cord 156 may respectively cooperate with the first row 144 of eyelet-structures 140 and the second row 146 of eyelet-structures 140 in a manner so as to collectively provide additional securing points and/or holding points for the respective elongate slats such that the respective elongate slats 130 may be retained or held even if the respective elongate slats 130 are broken or fracture from an impact force. According to various embodiments, the first cord 154 and the second cord 156 together with the first row 144 of eyelet-structures 140 and the second row 146 of eyelet-structures 140 may be an assemblage of interacting and/or interdependent features forming a unified whole system for mitigating an impact force.
According to various embodiments, the at least one eyelet-structure 140 of each longitudinal end portion 134, 136 of each elongate slat 130 may be protruding in a longitudinal direction of said elongate slat 130. Accordingly, each elongate slat 130 of the series of three or more elongate slats may include at least one eyelet-structure 140 protruding from the first longitudinal end portion 134 thereof in a direction of a length of said elongate slat 130 and at least one eyelet-structure 140 protruding from the second longitudinal end portion 134 thereof in the direction of the length of said elongate slat 130. According to various embodiments, the at least one eyelet-structure 140 of each longitudinal end portion 134, 136 of each elongate slat 130 may be oriented with an axis of a hole of the at least one eyelet-structure 140 of each longitudinal end portion 134, 136 of each elongate slat 130 in a direction parallel to a breadth of said elongate slat 130. Accordingly, the axis of the hole of the at least one eyelet-structure 140 of each longitudinal end portion 134, 136 of each elongate slat 130 may be parallel to a perpendicular direction extending between two longitudinal edges of said elongate slat 130.
According to various embodiments, as shown in
According to various embodiments, the roller shutter 100 may further include a plurality of elongate reinforcing members 260, 360a, 360b (see
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, the interconnecting base portion 175 of the first and second longitudinal end portions 134, 136 may include at least one hole 177. According to various embodiments, the at least one reinforcing member 260 may be inserted through the at least one hole 177 of the interconnecting base portion 175 so as to be extending within the at least one elongate slat 130. According to various embodiments, the at least one eyelet-structure 140 at the first longitudinal end portion 134 of the at least one elongate slat 130 may then be fastened or bond to the first longitudinal end 264 of the at least one elongate reinforcing member 260 and the at least one eyelet-structure 140 at the second longitudinal end portion 136 of the at least one elongate slat 130 may then be fastened or bond to the second longitudinal end 266 of the at least one elongate reinforcing member 260. Accordingly, in this manner, the first longitudinal end 264 of the at least one elongate reinforcing member 260 may be joined to the first longitudinal end portion 134 of the at least one elongate slat 130 via the first longitudinal end cover 174 and the at least one eyelet-structure 140 at the first longitudinal end portion 134, and the second longitudinal end 266 of the at least one elongate reinforcing member 260 may be joined to the second longitudinal end portion 136 of the at least one elongate slat 130 via the second longitudinal end cover 176 and the at least one eyelet-structure 140 at the second longitudinal end portion 136.
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, the interconnecting base portion 175 of the first and second longitudinal end portions 134, 136 as well as the first and second intermediate brackets 178, 179 may include at least one hole 177. According to various embodiments, the first reinforcing member 360a may be inserted through the at least one hole 177 of the interconnecting base portion 175 of the first longitudinal end cover 174 so as to be extending longitudinally inwards from the first longitudinal end portion 134 of the at least one elongate slat 130. According to various embodiments, the second reinforcing member 360b may be inserted through the at least one hole 177 of the interconnecting base portion 175 of the second longitudinal end cover 176 so as to be extending longitudinally inwards from the second longitudinal end portion 136 of the at least one elongate slat 130. According to various embodiments, the at least one eyelet-structure 140 at the first longitudinal end portion 134 of the at least one elongate slat 130 may then be fastened or bond to the first longitudinal end 364a of the first elongate reinforcing member 360a and the at least one eyelet-structure 140 at the second longitudinal end portion 136 of the at least one elongate slat 130 may then be fastened or bond to the first longitudinal end 364b of the second elongate reinforcing member 360b. According to various embodiments, the second longitudinal end 366a of the first elongate reinforcing member 360a may be fastened or bonded to the at least one hole 177 of the interconnecting base portion 175 of the first intermediate bracket 178, and the second longitudinal end 366b of the second elongate reinforcing member 360b may be fastened or bonded to the at least one hole 177 of the interconnecting base portion 175 of the second intermediate bracket 179. Accordingly, in this manner, the first elongate reinforcing member 360a may be joined to the at least one elongate slat 130 via the first longitudinal end cover 174, the at least one eyelet-structure 140 at the first longitudinal end portion 134 and the first intermediate bracket 178. Further, the second elongate reinforcing member 360b may be joined to the at least one elongate slat 130 via the second longitudinal end cover 176, the at least one eyelet-structure 140 at the second longitudinal end portion 136 and the second intermediate bracket 179.
According to various embodiments, as shown in
According to various embodiments, each of the elongate slats 130 of the shutter curtain 120 of the roller shutter 100 may include the at least one elongate reinforcing member 260 of
According to various embodiments, the roller shutter 100 may further include the retaining arrangement 480 (or the retaining-and-alignment arrangement) configured to align a bottom rail 428 of the shutter curtain 120 to a predetermined position on a ground and to retain or restrain the bottom rail 428 from sideways or lateral movements in said position when the shutter curtain 120 is lowered. According to various embodiments, the retaining arrangement 480 may be configured such that the bottom rail 428 of the shutter curtain 120 may be brought into alignment with the predetermined position on the ground as the shutter curtain 120 is being lowered. Further, the retaining arrangement 480 may be configured such that the bottom rail 428 may not be easily moved out of alignment (or moved sideways or moved laterally) or may be held in place with respect to horizontal movement once the shutter curtain 120 is fully lowered. Accordingly, the retaining arrangement 480 may be configured for laterally retaining the bottom rail 428 against sideways, or horizontal, or lateral movements.
According to various embodiments, the retaining arrangement 480 may include two bollards 482a, 482b fixed to the ground and two corresponding caps 484a, 484b attached to the bottom rail 428 of the shutter curtain 120. According to various embodiments, as the two corresponding caps 484a, 484b fit over the two bollards 482a, 482b when the shutter curtain 120 is lowering, the bottom rail 428 of the shutter curtain 120 may be adjusted according to a straight line joining the two bollards 482a, 482b. According to various embodiments, each of the two bollards 482a, 482b may include, but not limited to, a conical bollard or a frusto-conical bollard. According to various embodiments, each of the two bollards 482a, 482b may have a height higher than a height of the bottom rail 428 of the shutter curtain 120. According to various embodiments, each of the two corresponding caps 484a, 484b may include a cavity with a shape that correspond to the shape of the bollard 482a, 482b which the corresponding cap 484a, 484b is to be fitted on. According to various embodiments, the two bollards 482a, 482b may be fixed to the ground in a spaced apart manner such that, when the shutter curtain is lowered, a first bollard 482a may be adjacent a first longitudinal end 427 of the bottom rail 428 of the shutter curtain 120 and a second bollard 482b may be adjacent to a second longitudinal end 429 of the bottom rail 428 of the shutter curtain 120. Accordingly, the first cap 484a may be attached, via a first connecting portion 486a, to the first longitudinal end 427 of the bottom rail 428 of the shutter curtain 120 and the second cap 484b may be attached, via a second connecting portion 486b, to the second longitudinal end 429 of the bottom rail 428 of the shutter curtain 120.
According to various embodiments, the second cord end 153 of the respective cords 154, 156 may be threaded through the first and second connecting portions 486a, 486b respectively. According to various embodiments, the stopper element 155 of the second cord end 153 of the respective cords 154, 156 may be configured to retain or confine the bottom rail 428 within the length of the respective cords 154,156. According to various embodiments, the stopper element 155 of the second cord end 153 of the respective cords 154, 156 may serve as a physical barrier to restrain or restrict or obstruct the respective first and second connecting portions 486a, 486b from sliding out from the second cord end 153 of the respective cords 154, 156. With the second cord end 153 of the respective cords 154, 156 being coupled to the bottom rail 428 and the first and second cap 484a, 484b via the respective first and second connecting portion 486a, 486b, the second cord end 153 of the respective cords 154, 156 may be restrained by the retaining arrangement 480 from sideways or lateral movements due to the bottom rail 428 being restrained or retained by the retaining arrangement 480 when the shutter curtain 120 is lowered. According to various embodiments, with the first and second cords 154, 156 extending from the rotatable drum 110 to the bottom rail 428, all the slats 130 of the shutter curtain 120 (including the bottom rail 428) may be confined within the length of the respective cords 154, 156. Accordingly, when the shutter curtain 120 is lowered, the shutter curtain 120 may weigh down the second cord end 153 of the respective cords 154, 156 to the ground. Hence, the respective cords 154, 156 may be extending from the rotatable drum 110 to the ground such that the respective cords 154, 156 may provide additional support to the shutter curtain 120 in a manner so as to mitigate impact force applied on the shutter curtain 120.
According to various embodiments, the roller shutter 500 may include the retaining arrangement 580 (or the retaining-and-alignment arrangement). According to various embodiments, the retaining arrangement 580 may, similar to the retaining arrangement 480 of
According to various embodiments, the alignment arrangement 580 may differ from the alignment arrangement 480 of
According to various embodiments, the second cord end 153 of the respective cords 154, 156 may be coupled to the respective first and second insert members 584a, 584b. According to various embodiments, the respective first and second insert members 584a, 584b may respectively serve as the stopper element 155 of the second cord end 153 of the respective cords 154, 156. Accordingly, the stopper element 155 of the second cord end 153 of the respective cords 154, 156 may respectively serve as a physical barrier to restrain or restrict or obstruct the respective rows of eyelet-structures 140 from sliding out from the second cord end 153 of the respective cords 154, 156. With the second cord end 153 of the respective cords 154, 156 being coupled to the bottom rail 428, via the respective first and second insert members 584a, 584b, the second cord end 153 of the respective cords 154, 156 may be restrained by the retaining arrangement 580 from sideways or lateral movements due to the bottom rail 428 being restrained or retained by the retaining arrangement 580 when the shutter curtain 120 is lowered. According to various embodiments, with the first and second cords 154, 156 extending from the rotatable drum 110 to the bottom rail 428, all the slats 130 of the shutter curtain 120 may be confined within the length of the respective cords 154, 156. Accordingly, when the shutter curtain 120 is lowered, the shutter curtain 120 may weigh down the second cord end 153 of the respective cords 154, 156 to the ground. Hence, the respective cords 154, 156 may be extending from the rotatable drum 110 to the ground such that the respective cords 154, 156 may provide additional support to the shutter curtain 120 in a manner so as to mitigate impact force applied on the shutter curtain 120.
According to various embodiments, the roller shutter 500 may further include a sliding guide arrangement 590 which may include a first guiding rod 592a and a second guiding rod 592b fixed to the ground in an upright orientation and spaced apart in a manner so as to be respectively disposed adjacent the first and second side borders 124, 126, respectively, of the shutter curtain 120 when the shutter curtain 120 is lowered. Accordingly, the first guiding rod 592a and the second guiding rod 592b may be erected from the ground upwards and set apart from each other by a distance equivalent or close to a width of the shutter curtain 120 measured from the first side border 124 to the second side border 126. According to various embodiments, the sliding guide arrangement 590 may further include a first sliding element 594a and a second sliding element 594b attached to the first longitudinal end 427 and the second longitudinal end 429, respectively, of the bottom rail 428 of the shutter curtain 120. Accordingly, the first sliding element 594a may be protruding from the first longitudinal end 427 of the bottom rail 428 of the shutter curtain 120 and the second sliding element 594b may be protruding from the second longitudinal end 429 of the bottom rail 428 of the shutter curtain 120. According to various embodiments, the first sliding element 594a may attached to the first longitudinal end 427 of the bottom rail 428 via the first insert member 584a, and the second sliding element 594b may be attached to the second longitudinal end 429 of the bottom rail 428 via the second insert member 584b. According to various embodiments, the first sliding element 594a may be in engagement with the first guiding rod 592a and the second sliding element 594b is in engagement with the second guiding rod 592b. According to various embodiments, each of the first and second sliding elements 594a, 594b may be of a hollow cylindrical shape having a central through-hole whereby the first guiding rod 592a is passed through the central through-hole of the first sliding element 594a and the second guiding rod 592b is passed through the central through-hole of the second sliding element 594b such that each of the first and second sliding elements 594a, 594b may slide along respective first and second guiding rod 592a, 592b.
According to various embodiments, the roller shutter 700 of
According to various embodiments, the shutter curtain 120 of the roller shutter 700 of
According to various embodiments, each of the elongate slats 130 of the shutter curtain 120 of the roller shutter 700 of
According to various embodiments, the first longitudinal end portion 134 and the second longitudinal end portion 136 of each elongate slat 130 of the series of three or more elongate slats 130 may be respectively provided with at least one double-eyelets-structure 740 which protrudes therefrom. According to various embodiments, each elongate slat 130 of the series of three or more elongate slats 130 may include at least one double-eyelets-structure 740 protruding or jutting out from the first longitudinal end portion 134 of said elongate slat 130. According to various embodiments, each elongate slat 130 of the series of three or more elongate slats 130 may include at least one double-eyelets-structure 740 protruding or jutting out from the second longitudinal end portion 136 of said elongate slat 130. Accordingly, every one of the three or more elongate slats 130 may include at least one double-eyelets-structure 740 protruding from respective first longitudinal end portion 134 thereof and at least one double-eyelets-structure 740 protruding from respective second longitudinal end portion 136 thereof.
According to various embodiments, each double-eyelets-structure 740 may include an elongate part extending longitudinally from respective elongate slat 130. According to various embodiments, the elongate part of said double-eyelets-structure 740 may be extending from respective longitudinal end portions 134, 136 of respective elongate slat 130 along the longitudinal direction of the respective elongate slat 130. According to various embodiments, the elongate part of said double-eyelets-structure 740 may include two eyeholes, an inner eyehole 741a and an outer eyehole 741b, forming the double eyelets. According to various embodiments, the inner eyehole 741a may be located proximal to the respective longitudinal end portions 134,135 of respective elongate slat 130 and the outer eyehole 741b may be located distal away from the respective longitudinal end portions 134,135 of respective elongate slat 130. According to various embodiments, the two eyeholes 741a, 741b may be lined abreast so as to be aligned side-by-side along the longitudinal direction of the respective elongate slat 130.
According to various embodiments, the first row 744 of double-eyelets-structures 740 and the second row 746 of double-eyelets-structures 740 may be formed along the first and second side borders 124, 126, respectively, of the shutter curtain 120. According to various embodiments, all the double-eyelets-structures 740 of all the first longitudinal end portions 134 of the series of three or more elongate slats 130 may be arranged or placed in succession into a line so as to make up the first row 744 of double-eyelets-structures 740 running alongside the first side border 124 of the shutter curtain 120. According to various embodiments, the inner eyeholes 741a (or inner holes) of all the double-eyelets-structures 740 of all the first longitudinal end portions 134 of the series of three or more elongate slats 130 may be in line with each other, and the outer eyeholes 741b (or outer holes) of all the double-eyelets-structures 740 of all the first longitudinal end portions 134 of the series of three or more elongate slats 130 may be in line with each other. According to various embodiments, all the double-eyelets-structures 740 of all the second longitudinal end portions 136 of the series of three or more elongate slats 130 may be arranged or placed in succession into a line so as to make up the second row 746 of double-eyelets-structures 740 running alongside the second side border 126 of the shutter curtain 120. According to various embodiments, the inner eyeholes 741a (or inner holes) of all the double-eyelets-structures 740 of all the second longitudinal end portions 136 of the series of three or more elongate slats 130 may be in line with each other, and outer eyeholes 741b (or outer holes) of all the double-eyelets-structures 740 of all the second longitudinal end portions 136 of the series of three or more elongate slats 130 may be in line with each other.
According to various embodiments, the roller shutter 700 of
According to various embodiments, each of the four cords 754a, 754b, 756a, 756b may be configured to confine all double-eyelets-structures 740 of respective row 744, 746 of double-eyelets-structures 740 within a length of each cord 754a, 754b, 756a, 756b. According to various embodiments, the first inner cord 754a may be configured to keep or retain, via the inner eyeholes 741a, all the double-eyelets-structures 740 of the first row 744 of double-eyelets-structures 740 within bounds or limits as defined by the length of the first inner cord 754a. Accordingly, all the double-eyelets-structures 740 of the first row 744 of double-eyelets-structures 740 may be placed or put upon, via the inner eyeholes 741a, the first inner cord 754a in a manner so as to be non-separable from the first inner cord 754a and be restrained from sliding out of the first inner cord 754a. According to various embodiments, the first outer cord 754b may be configured to keep or retain, via the outer eyeholes 741b, all the double-eyelets-structures 740 of the first row 744 of double-eyelets-structures 740 within bounds or limits as defined by the length of the first outer cord 754b. Accordingly, all the double-eyelets-structures 740 of the first row 744 of double-eyelets-structures 740 may be placed or put upon, via the outer eyeholes 741b, the first outer cord 754b in a manner so as to be non-separable from the first outer cord 754b and be restrained from sliding out of the first outer cord 754b. According to various embodiments, the length of the first inner cord 754a may be the same as the length of the first outer cord 754b.
According to various embodiments, the second inner cord 756a may be configured to keep or retain, via the inner eyeholes 741a, all the double-eyelets-structures 740 of the second row 746 of double-eyelets-structures 740 within bounds or limits as defined by the length of the second inner cord 756a. Accordingly, all the double-eyelets-structures 740 of the second row 746 of double-eyelet-structures 740 may be placed or put upon, via the inner eyeholes 741a, the second inner cord 756a in a manner so as to be non-separable from the second inner cord 756a and be restrained from sliding out of the second inner cord 756a. According to various embodiments, the second outer cord 756b may be configured to keep or retain, via the outer eyeholes 741b, all the double-eyelets-structures 740 of the second row 746 of double-eyelets-structures 740 within bounds or limits as defined by the length of the second outer cord 756b. Accordingly, all the double-eyelets-structures 740 of the second row 746 of double-eyelet-structures 740 may be placed or put upon, via the outer eyeholes 741b, the second outer cord 756b in a manner so as to be non-separable from the second outer cord 756b and be restrained from sliding out of the second outer cord 756b. According to various embodiments, the length of the second inner cord 756a may be the same as the length of the second outer cord 756b. According to various embodiments all the four cords 754a, 754b, 756a, 756b may have the same length.
According to various embodiments, as shown in
According to various embodiments, not shown, each cord may include a first cord end having a first stopper element which is configured to prevent the first cord end of said cord from sliding out of the respective row of eyelet-structures, and a second cord end having a second stopper element which is configured to prevent the second cord end of said cord from sliding out of the respective row of eyelet-structures. According to various embodiments, with the first stopper element and the second stopper element respectively disposed at the first cord end and the second cord end, respectively, of said cord, the first stopper element at the first cord end may serve as a physical barrier to restrain or restrict or obstruct the eyelet-structures from sliding out from the first cord end and the second stopper element at the second cord end may serve as a physical barrier to restrain or restrict or obstruct the eyelet-structures from sliding out from the second cord end. According to various embodiments, the first stopper element and the second stopper element each may include, but not limited to, a crimp end, a cord end cap, a knotted end, a bulged end, or an expanded end.
According to various embodiments, the first inner cord 754a, the first outer cord 754b, the second inner cord 756a and the second outer cord 756b may respectively cooperate with the first row 744 of double-eyelets-structures 740 and the second row 746 of double-eyelets-structures 740 in a manner so as to collectively provide additional securing points and/or holding points for the respective elongate slats such that the respective elongate slats may be retained or held even if the respective elongate slats are broken or fracture from an impact force. According to various embodiments, the first inner cord 754a, the first outer cord 754b, the second inner cord 756a and the second outer cord 756b together with the first row 744 of double-eyelets-structures 740 and the second row 746 of double-eyelets-structures 740 may be an assemblage of interacting and/or interdependent features forming a unified whole system for mitigating an impact force.
According to various embodiments, the at least one double-eyelets-structure 740 of each longitudinal end portion 134, 136 of each elongate slat 130 may be protruding in the longitudinal direction of said elongate slat 130. Accordingly, each elongate slat 130 of the series of three or more elongate slats may include at least one double-eyelets-structure 740 protruding from the first longitudinal end portion 134 thereof in a direction of a length of said elongate slat 130 and at least one double-eyelets-structure 740 protruding from the second longitudinal end portion 134 thereof in the direction of the length of said elongate slat 130. According to various embodiments, the at least one double-eyelets-structure 740 of each longitudinal end portion 134, 136 of each elongate slat 130 may be oriented with an axis of respective eyeholes of the at least one double-eyelets-structure 740 of each longitudinal end portion 134, 136 of each elongate slat 130 in a direction parallel to a breadth of said elongate slat 130. Accordingly, the respective axis of the inner and outer eyeholes 741a, 741b of the at least one double-eyelets-structure 140 of each longitudinal end portion 134, 136 of each elongate slat 130 may be parallel to a perpendicular direction extending between two longitudinal edges of said elongate slat 130.
According to various embodiments, as shown in
According to various embodiments, the roller shutter 700 of
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, the at least one reinforcing member 260 may be inserted through the first longitudinal end cover 174 and the second longitudinal end cover 176 so as to be extending within the at least one elongate slat 130. According to various embodiments, the at least one double-eyelets-structure 740 at the first longitudinal end portion 134 of the at least one elongate slat 130 may then be fastened or bond to the first longitudinal end 264 of the at least one elongate reinforcing member 260 and the at least one double-eyelets-structure 740 at the second longitudinal end portion 136 of the at least one elongate slat 130 may then be fastened or bond to the second longitudinal end 266 of the at least one elongate reinforcing member 260. Accordingly, in this manner, the first longitudinal end 264 of the at least one elongate reinforcing member 260 may be joined to the at least one double-eyelets-structure 740 at the first longitudinal end portion 134 of the at least one elongate slat 130 with the at least one double-eyelets-structure 740 outside the first longitudinal end cover 174, and the second longitudinal end 266 of the at least one elongate reinforcing member 260 may be joined to the at least one double-eyelets-structure 740 at the second longitudinal end portion 136 of the at least one elongate slat 130 with the at least one double-eyelets-structure 740 outside the second longitudinal end cover 176.
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, as shown in
According to various embodiments, the first reinforcing member 360a may be inserted through the first longitudinal end cover 174 so as to be extending longitudinally inwards from the first longitudinal end portion 134 of the at least one elongate slat 130. According to various embodiments, the second reinforcing member 360b may be inserted through the second longitudinal end cover 176 so as to be extending longitudinally inwards from the second longitudinal end portion 136 of the at least one elongate slat 130. According to various embodiments, the at least one double-eyelets-structure 740 at the first longitudinal end portion 134 of the at least one elongate slat 130 may then be fastened or bond to the first longitudinal end 364a of the first elongate reinforcing member 360a and the at least one double-eyelets-structure 740 at the second longitudinal end portion 136 of the at least one elongate slat 130 may then be fastened or bond to the first longitudinal end 364b of the second elongate reinforcing member 360b. According to various embodiments, the second longitudinal end 366a of the first elongate reinforcing member 360a may be fastened or bonded to the first intermediate bracket 178, and the second longitudinal end 366b of the second elongate reinforcing member 360b may be fastened or bonded to the second intermediate bracket 179. Accordingly, in this manner, the first elongate reinforcing member 360a may be joined to the at least one elongate slat 130 via the first longitudinal end cover 174, the at least one double-eyelets-structure 740 at the first longitudinal end portion 134, and the first intermediate bracket 178. Further, the second elongate reinforcing member 360b may be joined to the at least one elongate slat 130 via the second longitudinal end cover 176, the at least one double-eyelets-structure 740 at the second longitudinal end portion 136, and the second intermediate bracket 179.
According to various embodiments, as shown in
According to various embodiments, each of the elongate slats 130 of the shutter curtain 120 of the roller shutter 700 of
According to various embodiments, the roller shutter 700 may, similar to the roller shutter 100 of
According to various embodiments, the retaining arrangement 1080 may include two bollards 1082a, 1082b fixed to the ground and two corresponding caps 1084a, 1084b attached to the bottom rail 428 of the shutter curtain 120. According to various embodiments, as the two corresponding caps 1084a, 1084b fit over the two bollards 1082a, 1082b when the shutter curtain 120 is lowering, the bottom rail 428 of the shutter curtain 120 may be adjusted according to a straight line joining the two bollards 1082a, 1082b. According to various embodiments, each of the two bollards 1082a, 1082b may include, but not limited to, a conical bollard or a frusto-conical bollard. According to various embodiments, each of the two bollards 1082a, 1082b may have a height higher than a height of the bottom rail 428 of the shutter curtain 120. According to various embodiments, each of the two corresponding caps 1084a, 1084b may include a cavity with a shape that correspond to the shape of the bollard 1082a, 1082b which the corresponding cap 1084a, 1084b is to be fitted on. According to various embodiments, the two bollards 1082a, 1082b may be fixed to the ground in a spaced apart manner such that, when the shutter curtain is lowered, a first bollard 1082a may be adjacent a first longitudinal end 427 of the bottom rail 428 of the shutter curtain 120 and a second bollard 1082b may be adjacent to a second longitudinal end 429 of the bottom rail 428 of the shutter curtain 120. Accordingly, the first cap 1084a may be attached, via a first connecting portion 1086a, to the first longitudinal end 427 of the bottom rail 428 of the shutter curtain 120 and the second cap 1084b may be attached, via a second connecting portion 1086b, to the second longitudinal end 429 of the bottom rail 428 of the shutter curtain 120.
According to various embodiments, the second cord end 153 of the respective first inner cord 754a and first outer cord 754b may be threaded through the first connecting portion 1086a. According to various embodiments, the second cord end 153 of the respective second inner cord 756a and second outer cord 756b may be threaded through the second connecting portion 1086b. According to various embodiments, the stopper element 155 of the second cord end 153 of the respective cords 754a, 754b, 756a, 756b may be configured to retain or confine the respective first and second connecting portions 1086a, 1086b within the length of the respective cords 754a, 754b, 756a, 756b. According to various embodiments, the stopper element 155 of the second cord end 153 of the respective cords 754a, 754b, 756a, 756b may serve as a physical barrier to restrain or restrict or obstruct the respective first and second connecting portions 1086a, 1086b from sliding out from the second cord end 153 of the respective cords 754a, 754b, 756a, 756b. With the second cord end 153 of the respective cords 754a, 754b, 756a, 756b being coupled to the bottom rail 428 and the first and second cap 1084a, 1084b via the respective first and second connecting portion 1086a, 1086b, the second cord end 153 of the respective cords 754a, 754b, 756a, 756b may be restrained by the retaining arrangement 480 from sideways or lateral movements due to the bottom rail 428 being restrained or retained by the retaining arrangement 1080 when the shutter curtain 120 is lowered. According to various embodiments, with the four cords 754a, 754b, 756a, 756b extending from the rotatable drum 110 to the bottom rail 428, all the slats 130 of the shutter curtain 120 (including the bottom rail 428) may be confined within the length of the respective cords 754a, 754b, 756a, 756b. Accordingly, when the shutter curtain 120 is lowered, the shutter curtain 120 may weigh down the second cord end 153 of the respective cords 754a, 754b, 756a, 756b to the ground. Hence, the respective cords 754a, 754b, 756a, 756b may be extending from the rotatable drum 110 to the ground such that the respective cords 754a, 754b, 756a, 756b may provide additional support to the shutter curtain 120 in a manner so as to mitigate impact force applied on the shutter curtain 120.
According to various embodiments, the roller shutter 1100 may include the retaining arrangement 1180 (or the retaining-and-alignment arrangement). According to various embodiments, the retaining arrangement 1180 may, similar to the retaining arrangement 1080 of
According to various embodiments, the alignment arrangement 1180 may differ from the alignment arrangement 1080 of
According to various embodiments, the second cord end 153 of the respective first inner cord 754a and first outer cord 754b may be threaded through the first connecting portion 1186a. According to various embodiments, the second cord end 153 of the respective second inner cord 756a and second outer cord 756b may be threaded through the second connecting portion 1186b. According to various embodiments, the stopper element 155 of the second cord end 153 of the respective cords 754a, 754b, 756a, 756b may be configured to retain or confine the respective first and second connecting portions 1186a, 1186b within the length of the respective cords 754a, 754b, 756a, 756b. According to various embodiments, the stopper element 155 of the second cord end 153 of the respective cords 754a, 754b, 756a, 756b may serve as a physical barrier to restrain or restrict or obstruct the respective first and second connecting portions 1186a, 1186b from sliding out from the second cord end 153 of the respective cords 754a, 754b, 756a, 756b. With the second cord end 153 of the respective cords 754a, 754b, 756a, 756b being coupled to the bottom rail 428 and the first and second insert members 1184a, 1184b via the respective first and second connecting portion 1186a, 1186b, the second cord end 153 of the respective cords 754a, 754b, 756a, 756b may be restrained by the retaining arrangement 1180 from sideways or lateral movements due to the bottom rail 428 being restrained or retained by the retaining arrangement 1180 when the shutter curtain 120 is lowered. According to various embodiments, with the four cords 754a, 754b, 756a, 756b extending from the rotatable drum 110 to the bottom rail 428, all the slats 130 of the shutter curtain 120 (including the bottom rail 428) may be confined within the length of the respective cords 754a, 754b, 756a, 756b. Accordingly, when the shutter curtain 120 is lowered, the shutter curtain 120 may weigh down the second cord end 153 of the respective cords 754a, 754b, 756a, 756b to the ground. Hence, the respective cords 754a, 754b, 756a, 756b may be extending from the rotatable drum 110 to the ground such that the respective cords 754a, 754b, 756a, 756b may provide additional support to the shutter curtain 120 in a manner so as to mitigate impact force applied on the shutter curtain 120.
According to various embodiments, the roller shutter 1100 may further include a sliding guide arrangement 1190 which may include a first guiding rod 1192a and a second guiding rod 1192b fixed to the ground in an upright orientation and spaced apart in a manner so as to be respectively disposed adjacent the first and second side borders 124, 126, respectively, of the shutter curtain 120 when the shutter curtain 120 is lowered. Accordingly, the first guiding rod 1192a and the second guiding rod 1192b may be erected from the ground upwards and set apart from each other by a distance equivalent or close to a width of the shutter curtain 120 measured from the first side border 124 to the second side border 126. According to various embodiments, the sliding guide arrangement 1190 may further include a first sliding element 1194a and a second sliding element 1194b attached to the first longitudinal end 427 and the second longitudinal end 429, respectively, of the bottom rail 428 of the shutter curtain 120. Accordingly, the first sliding element 1194a may be protruding from the first longitudinal end 427 of the bottom rail 428 of the shutter curtain 120 and the second sliding element 1194b may be protruding from the second longitudinal end 429 of the bottom rail 428 of the shutter curtain 120. According to various embodiments, the first sliding element 1194a may attached to the first longitudinal end 427 of the bottom rail 428 via the first insert member 1184a and the first connecting portion 1186a, and the second sliding element 1194b may be attached to the second longitudinal end 429 of the bottom rail 428 via the second insert member 1184b and the second connecting portion 1186b. According to various embodiments, the first sliding element 1194a may be in engagement with the first guiding rod 1192a and the second sliding element 1194b is in engagement with the second guiding rod 1192b. According to various embodiments, each of the first and second sliding elements 1194a, 1194b may be of a hollow cylindrical shape having a central through-hole whereby the first guiding rod 1192a is passed through the central through-hole of the first sliding element 1194a and the second guiding rod 1192b is passed through the central through-hole of the second sliding element 1194b such that each of the first and second sliding elements 1194a, 1194b may slide along respective first and second guiding rod 1192a, 1192b.
While the various embodiments as described and as shown in the drawings include eyelet-structure with either one eyehole (single-eyelet-structure) or two eyehole (i.e. double-eyelets-structure), it is understood that the eyelet-structure of the roller shutter according to various embodiments may include any number of eyeholes, for example one eyehole or two eyeholes or three eyeholes or more. Accordingly, the roller shutter may also include a corresponding number of cords for threading through the respective number of eyeholes in the manner as described earlier.
The following examples pertain to various embodiments.
Example 1 is a roller shutter including:
In Example 2, the subject matter of Example 1 may optionally include that each cord may include a first cord end fixedly coupled to the rotatable drum and a second cord end having a stopper element which is configured to prevent the second cord end of said cord from sliding out of the respective row of eyelet-structures.
In Example 3, the subject matter of Example 1 may optionally include that each cord may include a first cord end having a first stopper element which may be configured to prevent the first cord end of said cord from sliding out of the respective row of eyelet-structures, and a second cord end having a second stopper element which may be configured to prevent the second cord end of said cord from sliding out of the respective row of eyelet-structures.
In Example 4, the subject matter of Example 2 or Example 3 may optionally include that respective stopper element may include a crimp end, a cord end cap, a knotted end, a bulged end, or an expanded end.
In Example 5, the subject matter of any one of Examples 1 to 4 may optionally include that the at least one eyelet-structure of each longitudinal end portion of each elongate slat may be protruding in a longitudinal direction of said elongate slat, and wherein the at least one eyelet-structure may be oriented with an axis of a hole of the at least one eyelet-structure of each longitudinal end portion of each elongate slat in a direction parallel to a breadth of said elongate slat.
In Example 6, the subject matter of any one of Examples 1 to 5 may optionally include that each of the elongate slats may include two eyelet-structures protruding from each longitudinal end portion of said elongate slat.
In Example 7, the subject matter of any one of Examples 1 to 6 may optionally include a plurality of elongate reinforcing members, each of the elongate slats including at least one elongate reinforcing member extending within said elongate slat in a manner so as to be aligned longitudinally to said elongate slat.
In Example 8, the subject matter of Example 7 may optionally include that the at least one elongate reinforcing member of at least one elongate slat may extend across an entire length of said elongate slat.
In Example 9, the subject matter of Example 8 may optionally include that the at least one eyelet-structure of each longitudinal end portion of the at least one elongate slat may be integral with the at least one reinforcing member extending within the at least one elongate slat.
In Example 10, the subject matter of Example 7 may optionally include that the at least one elongate slat may include a first elongate reinforcing member and a second elongate reinforcing member, wherein the first elongate reinforcing member may extend longitudinally inwards from the first longitudinal end portion of the at least one elongate slat for more than a tenth, or a fifth, or a quarter of a length of the at least one elongate slat and the second elongate reinforcing member may extend longitudinally inwards from the second longitudinal end portion of the at least one elongate slat for more than a tenth, or a fifth, or a quarter of a length of the at least one elongate slat.
In Example 11, the subject matter of Example 10 may optionally include that the at least one eyelet-structure of the first longitudinal end portion of the at least one elongate slat may be integral with the first elongate reinforcing member, and the at least one eyelet-structure of the second longitudinal end portion of the at least one elongate slat may be integral with the second elongate reinforcing member.
In Example 12, the subject matter of any one of Examples 1 to 11 may optionally include a retaining arrangement configured to align a bottom rail of the shutter curtain to a predetermined position on a ground and to retain or restrain the bottom rail from sideways or lateral movements in said position when the shutter curtain is lowered.
In Example 13, the subject matter of Example 12 may optionally include that the retaining arrangement may include two bollards fixed to the ground and two corresponding caps attached to the bottom rail of the shutter curtain.
In Example 14, the subject matter of Example 12 may optionally include that the retaining arrangement may include two brackets, each bracket having a Y-shaped slot, fixed to the ground and two corresponding insert members attached to the bottom rail of the shutter curtain.
In Example 15, the subject matter of any one of Examples 12 to 14 may optionally include a sliding guide arrangement which may include a first guiding rod and a second guiding rod fixed to the ground in an upright orientation and spaced apart in a manner so as to be respectively disposed adjacent the first and second side borders, respectively, of the shutter curtain when the shutter curtain is lowered, and a first sliding element and a second sliding element attached to a first longitudinal end and a second longitudinal end, respectively, of the bottom rail of the shutter curtain, wherein the first sliding element is in engagement with the first guiding rod and the second sliding element is in engagement with the second guiding rod.
In Example 16, the subject matter of any one of Examples 1 to 15 may optionally include that each eyelet-structure may include or may be a double-eyelets-structure such that the first row of eyelet-structures may form a first row of double-eyelets-structures and the second row of eyelet-structures may form a second row of double-eyelets-structures, wherein the roller shutter may further include a third cord and a fourth cord, and wherein the first cord may be strung loosely through all inner eyeholes of the double-eyelets-structures of the first row of double-eyelets-structures, the second cord may be strung loosely through all inner eyeholes of the double-eyelets-structures of the second row of eyelet-structures, the third cord may be strung loosely through all outer eyeholes of the double-eyelets-structures of the first row of double-eyelets-structures, and the fourth cord may be strung loosely through all outer eyeholes of the double-eyelets-structures of the second row of double-eyelets-structures.
Various embodiments have provided a roller shutter that may be effective in mitigating a sudden impact force, whereby risk of broken or fractured slats being dislodged from the shutter curtain be minimized or eliminated. Accordingly, the roller shutter of the various embodiments may be used in area where there is high explosion or blast risk.
While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes, modification, variation in form and detail may be made therein without departing from the scope of the invention as defined by the appended claims. The scope of the invention is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.
Number | Date | Country | Kind |
---|---|---|---|
10201905150P | Jun 2019 | SG | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SG2019/050363 | 7/25/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/246941 | 12/10/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
366837 | Howson | Jul 1887 | A |
405450 | Wilson | Jun 1889 | A |
983342 | Bauer | Feb 1911 | A |
2152117 | Wade | Mar 1939 | A |
3954379 | Klocke | May 1976 | A |
5365993 | Jella | Nov 1994 | A |
5377738 | Cooper | Jan 1995 | A |
6279276 | Knoll | Aug 2001 | B1 |
6371189 | Azoulai | Apr 2002 | B1 |
6631749 | Zabala | Oct 2003 | B1 |
8453705 | Miller | Jun 2013 | B2 |
9637973 | Berman et al. | May 2017 | B1 |
20050082020 | Miller | Apr 2005 | A1 |
20110265959 | Frede | Nov 2011 | A1 |
20170356239 | Ouyang | Dec 2017 | A1 |
20170356240 | Balbach | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
3035140 | Mar 2018 | CA |
207944872 | Oct 2018 | CN |
208267721 | Dec 2018 | CN |
2823078 | Nov 1979 | DE |
29620659 | Jan 1997 | DE |
10222724 | Feb 2003 | DE |
1239943 | Jul 1971 | GB |
2410523 | Aug 2005 | GB |
2017-227039 | Dec 2017 | JP |
2018-9356 | Jan 2018 | JP |
10-2004-0027576 | Apr 2004 | KR |
10-2008-0003740 | Jan 2008 | KR |
M500142 | May 2015 | TW |
2016081576 | May 2016 | WO |
Entry |
---|
Strohs, DE 2823078; Machine translation retrieved from https://worldwide.espacenet.com/publicationDetails/biblio?CC=DE&NR=2823078A1&KC=A1&FT=D&ND=3&date=19791129&DB=&locale=en_EP (Year: 1979). |
Machine Translation in English of DE2823078, 5 pages. |
Machine Translation in English of DE 10222724, 16 pages. |
Machine Translation in English of DE29620659, 15 pages. |
Machine Translation in English of CN207944872, 15 pages. |
International Search Report dated Oct. 8, 2019 in corresponding PCT/SG2019/050363 filed Jul. 25, 2019, 4 pages. |
Written Opinion dated Oct. 8, 2019 in corresponding PCT/SG2019/050363 filed Jul. 25, 2019, 5 pages. |
International Preliminary Report on Patentability dated Oct. 10, 2020 in corresponding PCT/SG2019/050363 filed Jul. 25, 2019, 4 pages. |
Examination Report dated Mar. 28, 2020 in corresponding Australian Patent Application No. 2019341063, 3 pages. |
Machine Translation in English of JP20189356, 22 pages. |
Office Action dated Jun. 17, 2020 in corresponding Taiwanese Patent Application No. 108126418, 12 pages. |
English translation of Jun. 17, 2020 Office Action in corresponding Taiwanese Patent Application No. 108126418, 9 pages. |
Machine Translation of JP2017227039, 21 pages. |
Machine Translation of CN208267721, 8 pages. |
Extended European Search Report dated May 19, 2021 in corresponding European Patent Application No. 19856411.4, 7 pages. |
Korean Office Action (with English summary) dated Jun. 15, 2021 in corresponding Korean Patent Application No. 10-2020-7033944. 5 pages. |
Machine Translation of KR20040027576, 10 pages. |
Machine Translation of KR20080003740, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210047881 A1 | Feb 2021 | US |