The present invention concerns roller skates with a plurality of rollers, and especially inline skates; however, the roller skates according to the present invention can also be two-track roller shoes or skateboards.
Commercial inline skates usually comprise a pair of shoes on the soles of which so-called tracks or supporting frames are secured for a plurality of rollers arranged behind one another that can rotate around parallel rotary axes. The braking of the inline skates usually is done with the aid of a brake pad or rubber stopper, which is secured rigidly at the back end of the supporting frame of one of the two inline skates of each pair and which can be brought into contact with the ground by tipping the entire inline skate through a lifting of the tip of the shoe to which it belongs around the rotary axis of the roller that is farthest back. However, in this type of braking the braking path depends not only on the braking force but also on the frictional coefficient between the brake pad and the ground and thus on the surface properties of the ground. Since, additionally, the braking force cannot be controlled accurately and the shoe to which the braking is applied still rolls on a single roll and thus the traveling stability during braking suffers, very unsatisfactory braking results are achieved frequently, especially by beginning skaters.
Based on this, the task of the invention is to improve a roller skate of the type described at the outset by simplifying the braking, by making the braking force more controllable, and, especially in the case of inline skates, by improving the riding stability during braking.
In order to solve this task, the roller skate according to the invention comprises a first frame part that is rigidly connected to a shoe or can be thus connected, in which at least one front roller is supported rotatably, a second frame part in which at least two back rollers are supported rotatably, whereby the two frame parts can be pivoted with respect to one another around a pivot axis that is parallel to the rotary axes of the rollers, as well as a braking element that can be pressed against at least one of the back rollers by a pivoting of the two frame parts.
The invention will be explained below using the example of inline skates, for which the invention is of special advantage, but it can also find application in other roller skates.
As in the conventional inline skates, in the inline skates according to the invention, during riding on flat ground all rollers are in contact with the ground, but in difference to conventional inline skates, for the purpose of braking, the first frame part is pivoted with respect to the second frame part by a tipping movement of the shoe. Hereby, the front rollers that are supported in the first frame part are lifted from the ground while the back rollers that are supported in the second frame part all remain in contact with the ground, as a result of which the riding stability during braking can be improved significantly. Since, depending on the angle of pivoting of the two frame parts, the braking element is pressed against the two back rollers with a variable force, the braking force can be controlled very accurately by pivoting the tip of the shoe to a different extent away from the ground. Since the surface properties of the rollers and of the braking element are not changed or are changed only insignificantly in the case of moisture, the frictional coefficient between the back rollers to which the braking is applied and the braking element is essentially constant.
According to a preferred embodiment of the invention, the braking element is mounted in the second frame part and can be moved against the force of a return spring, which also serves to pivot back the first frame part with respect to the second frame part after braking, to the extent that the skater does not himself lower the tip of the shoe again downward.
Another preferred embodiment of the invention provides that the braking element can be pressed with essentially the same force against both back rollers. A uniform pressing against both back rollers is preferably achieved by the fact that the braking element is supported on the return spring in a floating manner. The braking element is preferably provided with recesses for a part of the rollers, so that it is not pressed in the region of the running surface but on both sides of this against the side flanks of the rollers. As a result of this, adverse influence on the braking force by possible wear or any dirt that may be on the running surface is avoided.
In order to increase the force introduced into the braking element upon pivoting of the two frame parts, according to an especially preferred embodiment of the invention, in addition to the braking element, the roller skate has a braking lever, which is connected pivotably to one of the two frame parts and the longer power arm of which can receive a force during braking by pivoting of the first frame part with respect to the second frame part, while its shorter work arm acts directly or indirectly on the braking element, increasing the force introduced into the power arm. Moreover, the use of a braking lever between the first frame part and the braking element also permits more accurate application of the braking force.
Expediently, the braking lever is a one arm lever, which is preferably joined to the second frame part pivotably in the direction of travel in front of the pivoting axis of the two frame parts, whereby its power arm is supported behind the pivot axis against the first frame part, and its work arm acts somewhat below the pivot axis on the braking element, in order to press this downward against the back rollers. The pivotable joint between the braking lever and the second frame part is produced expediently with the aid of a hinge bolt, which extends into the braking lever with the aid of aligned cross holes in the braking lever and into two opposite side cheeks of the second frame part. In order to avoid hindrance of the pivoting of the first frame part by the hinge bolt, two opposite side cheeks of the first frame part are expediently provided with recesses along a pivoting path of the hinge bolt.
According to a further advantageous embodiment of the invention, the work arm with a rounded crown of a downward pointing [lifting] projection of the braking lever onto a flat upper side of the braking element, so that upon swiveling the braking lever remains in line contact with the upper side of the braking element. In contrast to that, the power arm is supported, preferably from below, with an upward facing surface against a force-introducing bolt that is placed into the aligned cross holes in opposite side cheeks of the first frame part and is swiveled downward together with the back end of the first frame part when the tip of the shoe together with the front end of the first frame part is lifted from the ground.
The invention will be explained below in more detail with the aid of a practical example shown in the drawing. The following are shown:
As shown best in
The two frame parts 10, 12 are preferably produced from plastic by injection molding, whereby they are either composed of two individual mirror-image halves joined together with spacers and transverse screws (neither of the two are shown) or alternatively it can be formed in one piece with a U-shaped cross-section. The securing of the ball-bearing supported rollers 4, 6, 8, 10 in the frame parts 12, 14 is carried out in the known manner from both sides with fastening screws 15.
For securing to the shoe, the first frame part 12 is provided with two adapters 16, 18 on its top side, which are attached in a longitudinal direction of the inline skates 2 at a horizontal distance to one another above from the front or from the back roller pair 4, 6, or 8, 10, respectively, and they can be screwed onto the shoe through a perpendicular bore 17 in adapter 16, 18, as well as through a corresponding bore in the sole of the shoe.
The adapters 16, 18 each have a bottom part 20, which can be introduced from above between two side cheeks 22 on the top side of the first frame part 12, and they are at a distance to one another that corresponds to the width of the lower part 20 and then it can be rigidly joined from the opposite sides using two screws 24 in each case, to the two side cheeks 22 of frame part 12.
The second frame part 14 can be pivoted with respect to the first frame part 12 around a pivoting axis 24 which is parallel to the rotary axes of rollers 4, 6, 8, 10. The pivoting axis 24 is located above an intermediate space between the two back rollers 8, 10, which are always in contact with the ground, whereby the distance of the pivoting axis 24 from the ground corresponds approximately to the diameter of rollers 4, 6, 8, 10. The pivoting axis 24 is formed by a hollow cylindrical pivoting bolt 26, which can be introduced from one side via aligned through openings 28, 30 in the side cheeks 22 of the first frame part 12 or can be introduced into two parallel side cheeks 32 of the second frame part 14 that overlap the side cheeks 22 on their outsides from below, as shown best in
The inline skate 2 has a brake, which can be activated by a pivoting of the two frame parts 12 with respect to one another, by the skater moving the first frame part 12 by lifting the tip of the shoe from the riding position shown in
As best shown in
As best seen in
The brake pad 34 is provided with a recess 50 that is open downward and to both sides for the return spring 36. The return spring 36 is a helical pressure spring, which rests with its upper front end in a cylindrical, downward opening indentation 52 arranged on the upper end of the recess in the brake pad 34, and with its lower front end it rests on the top side of a transverse bridge 54 that connects the two side cheeks 32 of the second frame part 14. As a holder for the spring 36, a peg 56 is used, which is formed in one piece with the transverse bridge 54 and penetrates from below into the inside of the helical pressure spring 36 and, together with the indentation 52 of the brake pad 34, prevents transverse movements of the helical pressure spring 36, as shown best in
In order to ensure, on the one hand, rapid braking action and the application of a good, continuous braking force, and on the other hand to increase this introduced braking force upon pressing the brake pad 34 against rollers 8, 10, the brake comprises a brake lever 58 which is positioned between the first frame part 12 and the brake pad 34. As best seen in
When the first frame part 12 is pivoted around the pivoting axis 24 from the riding position (
When the inline skater 2 applies the brake by lifting the tip of the shoe, the force introduced from the tip of the foot of the skater into the tip of the shoe is enhanced thus by two levers, on the one hand, by the frame part 12 that can be pivoted around the pivoting axis 24 that forms a two-armed lever with a longer lever arm located in the direction of travel in front of the pivoting axis 24 and a shorter lever arm that is located in the direction of travel behind the pivoting axis, as well as, on the other hand, by the one-armed brake lever 58 that can be pivoted around the hinge bolt 60. This double lever action permits introduction of very high braking forces into rollers 8, 10 with a very small effort, whereby the braking force moreover can be adjusted very accurately by the pivoting angle of the first frame part 12.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 021 455.5 | May 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/03659 | 5/7/2008 | WO | 00 | 6/28/2010 |