The present invention relates to a rolling apparatus for flat-rolled metal materials.
In a rolling process of a flat-rolled metal material, it is very important to roll a sheet material in a form free from camber, or in a form not having bend in the left-right direction, in order to avoid not only a plane shape defect and a dimensional accuracy defect of the rolled material but also to avoid sheet pass troubles such as a zigzag movement and a tail crash.
Further, a warp that occurs at the time of rolling a sheet material also has a large influence on productivity of products, such as reduction in rolling efficiency and increase in the number of refining processes. For example, as for the refining processes, there are cases where it is necessary to correct camber or a warp using a leveler or by performing pressing or the like, and in an extreme case, a defect part may have to be cut. Still further, in the case where camber or a warp occurred to a large extent, the rolling facility may be damaged due to the collision of the sheet. In this case, it is not only that the sheet itself loses the product value, but that it brings about tremendous damages such as production interruption and repairing of the rolling facility.
In addition, in order to control the above camber with high accuracy, it is also important to perform an initial setting called zero point adjustment. The zero point adjustment is performed as follows: kiss-roll tightening is conducted by operating a screw down device in a roll-rotating state; and, a point in which a measurement value of a rolling load corresponding to a preset zero point adjustment load (preset to rated load of 15% to 85%) is set as a zero point of a reduction position, and the reduction position is set as a starting point (reference) in reduction control. In this case, the difference between left and right reduction positions, that is, the zero point of reduction leveling is often adjusted simultaneously. Also, as for the zero point adjustment of the reduction leveling, the measurement values of the rolling load on the time of kiss-roll tightening on the operator side and the driving side are adjusted such that the measurement values correspond to the preset zero point adjustment load. Note that the kiss-roll tightening means that, under the state that a rolled material is not present, the upper and lower work rolls are brought into contact with each other and a load is applied between the rolls.
Incidentally, to simplify expressions, the operator side and the driving side of the rolling mill, as the right and left sides when the rolling mill is seen from the front of the rolling direction, will be referred to as “right and left”, respectively.
In view of the problems attributed to such camber, Patent Document 1 suggests a rolling method and a rolling apparatus capable of stably producing a flat-rolled metal material free from camber or having an extremely light camber. Specifically, in the rolling method and the rolling apparatus described in Patent Document 1, a load detection device measures a rolling direction force acting on roll chocks on an operator side and a driving side of a work roll, and a calculation device calculates a difference of the rolling direction forces between the operator side and the driving side. Then, a control device controls a left-right swivelling component of a roll gap of a rolling mill such that the difference becomes zero.
In view of the problem of a warp, Patent Document 2 suggests a rolling method and a rolling apparatus capable of stably producing a flat-rolled metal material having an extremely light warp. Specifically, in the rolling method and the rolling apparatus described in Patent Document 2, load detection devices provided on both entry side and exit side of upper and lower roll chocks of work rolls measure rolling direction forces acting on the upper and lower work roll chocks. Then, a calculation device calculates a difference between the rolling direction force on the upper side and the rolling direction force on the lower side, that is, an upper and lower rolling direction force difference. After that, upper and lower asymmetric components of the rolling apparatus is controlled such that the upper and lower rolling direction force difference is decreased.
In view of the problem of zero point adjustment, in Patent Document 3, it is discovered that a rolling direction force occurs even with zero point adjustment by the kiss roll state, pointed out that the rolling direction force does not affect a roll thrust force, and accordingly, there is proposed a method enabling more precise initial reduction position adjustment (reduction zero point adjustment) of a rolling mill.
Further, in order to produce a flat-rolled metal material free from camber, in a rolling method and a rolling apparatus described in Patent Document 4, rolling direction forces acting on roll chocks on an operator side and a driving side of a work roll are measured, a difference of the rolling direction forces between the operator side and the driving side is calculated, a left-right swivelling component of a roll gap of the rolling mill is controlled by using control gain such that the difference become a control target value, and the control gain is changed depending on a condition during rolling.
Still further, Patent Document 5 suggests a rolling mill and a rolling method capable of producing a flat-rolled metal material free from camber or warp, achieving zero point adjustment with high accuracy, and easily achieving application of a strong roll bending force. In the rolling mill and the rolling method described in Patent Document 5, a work roll chock is pressed against a contact surface with a housing window or a project block of the rolling mill in a rolling direction. Then, a load detection device measures rolling direction forces acting on roll chocks on an operator side and a driving side of a work roll, and a calculation device a calculation device calculates a difference of the rolling direction forces between the operator side and the driving side. A control device calculates left-right swivelling component control quantity of a roll gap of the rolling mill such that the difference become a control target value, and controls the roll gap on the basis of the calculated value of the left-right swivelling component control quantity of the roll gap.
Here, in any of the rolling methods and the rolling apparatuses described in the above Patent Documents 1 to 5, the rolling direction forces are measured. Accordingly, with reference to
The rolling apparatus shown in
Though
The rolling direction force acting on the upper work roll 1 of the rolling apparatus is basically supported by the upper work roll chock 5. Between the upper work roll chock 5 and a housing or a project block, there are provided an upper work roll chock exit side load detection device 121 on an exit side of the upper work roll chock 5 in the rolling direction, and an upper work roll chock entry side load detection device 122 on an entry side of the upper work roll chock 5 in the rolling direction. The upper work roll chock exit side load detection device 121 can detect the force acting between the member such as the housing or the project block and the upper work roll chock 5 on the exit side of the upper work roll chock 5 in the rolling direction. The upper work roll chock entry side load detection device 122 can detect the force acting between the member such as the project block and the upper work roll chock 5 on the entry side of the upper work roll chock 5 in the rolling direction. To simplify the device construction, those load detection devices 121 and 122 preferably and ordinarily have a construction for measuring a compressive force.
The upper work roll chock exit side load detection device 121 and the upper work roll chock entry side load detection device 122 are connected to an upper work roll rolling direction force calculation device 141. The upper work roll rolling direction force calculation device 141 calculates a difference between a load detected by the upper work roll chock exit side load detection device 121 and a load detected by the upper work roll chock entry side load detection device 122, and, on the basis of the calculation result, calculates the rolling direction force acting on the upper work roll chock 5.
In the same manner, as for the lower work roll 2, between the lower work roll chock 6 and the housing or the project block, there are provided an lower work roll chock exit side load detection device 123 on an exit side of the lower work roll chock 6 in the rolling direction, and a lower work roll chock entry side load detection device 124 on an entry side of the lower work roll chock 6 in the rolling direction. The lower work roll chock exit side load detection device 123 and the lower work roll chock entry side load detection device 124 are connected to a lower work roll rolling direction force calculation device 142. The lower work roll rolling direction force calculation device 142 calculates, on the basis of measurement values obtained by those load detection devices 123 and 124, the rolling direction force acting on the lower work roll chock 6 in the same manner as in the upper work roll 1.
Here, taking into consideration the drawings on the figures in Patent Documents 1 to 5 and technical common knowledge in the field of rolling, a load detection device is normally a load cell. It is difficult to attach the load cell on a work roll chock due to size constraint. Accordingly, the load cell is generally attached to a member that faces the work roll chock in a rolling direction, such as a project block or a housing.
In the example shown in
Here, in the example shown in
However, as shown in
In this way, when parts on the side surfaces of the upper work roll chock 5 come into contact with the project blocks 11, 12, and the like, some of the rolling direction force applied to the upper work roll chock 5 from the upper work roll 1 is applied to the parts at which the upper work roll chock 5 comes into contact with the project blocks 11 and 12. Accordingly, it may not be possible for the load detection devices 121 and 122 to accurately detect the rolling direction force.
Further, for example, as shown in
Further,
That is, for example, as shown in
In this way, when parts on the side surfaces of the upper work roll chock 5 come into contact with the project blocks 11, 12, and the like, some of the rolling direction force applied to the upper work roll chock 5 from the upper work roll 1 is applied to the parts at which the upper work roll chock 5 comes into contact with the project blocks 11 and 12. Accordingly, it may not be possible for the load detection devices 121 and 122 to accurately detect the rolling direction force.
The present invention has been made in view of the circumstances described above, and an object of the present invention is to provide a rolling apparatus capable of accurately detecting a rolling direction force applied to a work roll chock.
The inventors of the present invention have conducted studies on rolling apparatuses having various structures, with regard to detection of the rolling direction force applied to the work roll chock.
As a result, the inventors have found that the rotation of the work roll chock can be suppressed by providing multiple load detection devices on a housing on an entry side or an exit side of the work roll chock in the rolling direction and disposing the multiple load detection devices in a manner that the multiple load detection devices are shifted in the rolling direction or in the roll axis direction, and as a result, that the rolling direction force applied to the work roll chock can be accurately detected. Note that a load detection device according to the present invention mainly represents a load cell, and may also be a device of a strain gauge, a magnetostriction type, a capacitance type, a gyro type, a hydraulic type, a piezoelectric type, or the like.
The present invention has been achieved on the basis of the above findings, and the summary is as follows.
(1)
A rolling apparatus for a flat-rolled metal material, the rolling apparatus including at least a pair of upper and lower work rolls, and a pair of upper and lower backup rolls supporting the respective work rolls, the rolling apparatus including:
The rolling apparatus according to (1),
The rolling apparatus according to (1) or (2),
The rolling apparatus according to any one of (1) to (3), further including:
The rolling apparatus according to any one of (1) to (4),
The rolling apparatus according to (5),
The rolling apparatus according to (5),
The rolling apparatus according to (5),
The rolling apparatus according to (7) or (8),
The rolling apparatus according to any one of (7) to (9),
The rolling apparatus according to any one of (1) to (10),
The rolling apparatus according to any one of (1) to (11), further including:
The rolling apparatus according to any one of (1) to (11), further including:
According to the present invention, there is provided a rolling apparatus capable of accurately detecting a rolling direction force applied to a work roll chock.
Hereinafter, referring to the appended drawings, preferred embodiments of the present invention will be described in detail. It should be noted that, in the above description with reference to
As shown in
Further, in the same manner as the rolling apparatuses shown in
As shown in
An upper work roll chock exit side rolling direction force measurement device 21 is provided on an exit side of the upper work roll chock 5 in the rolling direction on an exit side of the housing 10 in the rolling direction. The rolling direction force measurement device 21 detects a force acting between the housing 10 and the upper work roll chock 5 on the exit side, that is, the rolling direction force measurement device 21 detects a rolling direction force acting on the upper work roll chock 5 in the rolling direction toward the exit side. An upper work roll chock entry side rolling direction force measurement device 22 is provided on an entry side of the upper work roll chock 5 in the rolling direction on an entry side of the housing 10 in the rolling direction. The rolling direction force measurement device 22 detects a force acting between the housing 10 and the upper work roll chock 5 on the entry side, that is, the rolling direction force measurement device 22 detects a rolling direction force acting on the upper work roll chock 5 in the rolling direction toward the entry side.
In the same manner, a lower work roll chock exit side rolling direction force measurement device 23 is provided on an exit side of the lower work roll chock 6 in the rolling direction on the exit side project block 11. The rolling direction force measurement device 23 detects a force acting between the exit side project block 11 and the lower work roll chock 6, that is, the rolling direction force measurement device 23 detects a rolling direction force acting on the lower work roll chock 6 in the rolling direction toward the exit side. A lower work roll chock entry side rolling direction force measurement device 24 is provided on an entry side of the lower work roll chock 6 in the rolling direction on the entry side project block 12. The rolling direction force measurement device 24 detects a force acting between the entry side project block 12 and the lower work roll chock 6, that is, the rolling direction force measurement device 24 detects a rolling direction force acting on the lower work roll chock 6 in the rolling direction toward the entry side.
As shown in
In particular, in the present embodiment, during the rolling of the flat-rolled metal material M, the two load detection devices 21a and 21b are always disposed in a manner that the load detection devices 21a and 21b face a side surface of the upper work roll chock 5 even if the position of the upper work roll chock 5 changes in the draft direction within a movable range of the upper work roll chock 5. It is preferred in the present embodiment, even if the position of the upper work roll chock 5 changes in the draft direction within the movable range of the upper work roll chock 5, that one of the load detection devices, that is, the load detection device 21a, be always placed above the roll axis of the upper work roll 1 in the draft direction, and that the other load detection device, that is, the load detection device 21b, be always placed below the roll axis of the upper work roll 1 in the draft direction.
The thus constructed two load detection devices 21a and 21b of the rolling direction force measurement device 21 are connected to an upper work roll chock exit side load calculation device 31 as shown in
In the same manner, the upper work roll chock entry side rolling direction force measurement device 22 includes a first load detection device 22a and a second load detection device 22b. The load detection devices 22a and 22b are both disposed on the housing 10 on the entry side. Further, as shown in
The thus constructed two load detection devices 22a and 22b of the rolling direction force measurement device 22 are connected to an upper work roll chock entry side load calculation device 32 as shown in
In the same manner, the lower work roll chock exit side rolling direction force measurement device 23 includes a first load detection device 23a and a second load detection device 23b. The load detection devices 23a and 23b are both disposed on the exit side project block 11. Further, as shown in
The two load detection devices 23a and 23b of the rolling direction force measurement device 23 are connected to a lower work roll chock exit side load calculation device 33 as shown in
In the same manner, the lower work roll chock entry side rolling direction force measurement device 24 includes a first load detection device 24a and a second load detection device 24b. The load detection devices 24a and 24b are both disposed on the entry side project block 12. Further, as shown in
The two load detection devices 24a and 24b of the rolling direction force measurement device 24 are connected to a lower work roll chock entry side load calculation device 34 as shown in
Next, functions and effects of the thus constructed rolling apparatus will be described.
Taking the upper work roll chock 5 as an example, according to the present embodiment as described above, the two load detection devices 21a and 21b are always disposed in a manner that the load detection devices 21a and 21b face the side surface of the exit side of the upper work roll chock 5. Accordingly, the side surface of the exit side of the upper work roll chock 5 is always supported at multiple points in the draft direction. In this case, the load detection devices 21a and 21b are disposed in a manner that a line extending in the rolling direction and including the roll axis A1, which is the point of effort of the rolling direction force of the upper work roll 1 in the draft direction of the upper work roll 1, is interposed between the load detection devices 21a and 21b. In the same manner, according to the present embodiment, the two load detection devices 22a and 22b are always disposed in a manner that the load detection devices 22a and 22b face the side surface of the entry side of the upper work roll chock 5. Accordingly, the side surface of the entry side of the upper work roll chock 5 is always supported at multiple points in the draft direction. In this case, the load detection devices 22a and 22b are also disposed in a manner that a line extending in the rolling direction and including the roll axis A1, which is the point of effort of the rolling direction force of the upper work roll 1 in the draft direction of the upper work roll 1, is interposed between the load detection devices 22a and 22b.
For example, as shown in
Further, for example, let us assume that the work rolls 1 and 2 and the backup rolls 3 and 4 are worn away and decrease in the roll diameters. In this case, as shown in
However, similarly as the case shown in
Note that, in the embodiments described above, the rolling direction force measurement devices 21, 22, 23, and 24 each have two load detection devices which are disposed with predetermined spaces therebetween in the draft direction. However, the present invention is not limited such an example, and the rolling direction force measurement devices may each have three or more load detection devices which are disposed with a predetermined space therebetween in the draft direction. Also in this case, the load detection devices of each the rolling direction force measurement device are always disposed in a manner that at least two load detection devices face a side surface of a work roll chock even if the position of the work roll chock changes in the draft direction. In this case, at least two load detection devices are always disposed in a manner that a line extending in the rolling direction and including a roll axis, which is a point of effort of the rolling direction force, is interposed between the at least two load detection devices. Note that it is preferred that the load detection devices of each of the rolling direction force measurement devices be disposed such that the load detection devices are spaced apart as much as possible from each other within the above range.
Next, on the basis of
As shown in
The following description will be made using the load detection devices 21a and 21b of the upper work roll chock exit side rolling direction force measurement device 21 as examples. In a rolling apparatus capable of performing roll shifting, the position of the upper work roll chock 5 in the roll axis direction may change owing to shift roll at the time of rolling the flat-rolled metal material M. In this case, in the rolling apparatus according to the present embodiment, even if the positions of the load detection devices 21a and 21b of the upper work roll chock 5 in the roll axis direction change, the two load detection devices 21a and 21b are always disposed in a manner that the load detection devices 21a and 21b face a side surface of the upper work roll chock 5.
It is preferred that the load detection devices 21a and 21b be disposed in a manner that a line extending in the rolling direction and including the center of a radial bearing 5a, which is a point of effort of the rolling direction force, is interposed between the load detection devices 21a and 21b. That is, even if the position of the upper work roll chock 5 in the roll axis direction changes, one of the load detection devices, that is, the load detection device 21a, is always disposed in a manner that the load detection device 21a faces the side surface of the upper work roll chock 5 at an upper work roll 1 side with respect to the center (line C shown in the figure) of the radial bearing 5a provided to the upper work roll chock 5 in the roll axis direction. Further, the other load detection device, that is, the load detection device 21b, is disposed in a manner that the load detection device 21b faces the side surface of the upper work roll chock 5 at the side opposite to the upper work roll 1 side with respect to the center C of the radial bearing 5a in the roll axis direction.
Note that, although the rolling direction force measurement devices 21 and 22 of the upper work roll chock 5 have been described in the above description based on
Functions and effects of the rolling apparatus constructed as shown in
For example, as shown in
Note that, in the present embodiment, the multiple entry side load detection devices of the entry side rolling direction force measurement device are disposed at the same positions in the draft direction and in the roll axis direction as the multiple exit side load detection devices of the exit side rolling direction force measurement device. However, it is not necessary that the positions of the load detection devices in the draft direction and in the roll axis direction be the same. Note that, however, when the positions of the load detection devices in the draft direction and in the roll axis direction are the same, a rolling direction force can be calculated more accurately with a smaller number of load detection devices, since functions of both directions can be given to one load detection device.
Next, on the basis of
For example, it is highly likely that the upper work roll chock 5 tilts due to a change in a roll gap or a roll diameter. Accordingly, as shown in
In this way, in the rolling apparatus according to the present embodiment, at least one of the rolling direction force measurement devices 21, 22, 23, and 24 may have multiple load detection devices. A rolling direction force measurement device of a work roll chock which is more likely to be tilted is preferentially provided with multiple load detection devices, and thus, the rolling direction force of the rolling apparatus can be measured stably in general, while reducing the cost.
Next, a fourth construction example of a rolling apparatus according to an embodiment of the present invention will be described. The rolling apparatuses of the first to third construction examples described above are each provided with the rolling direction force measurement device at each of the both sides, that is, the rolling direction entry side and the rolling direction exit side, of each of the work roll chocks 5 and 6. However, for example, in the case where the axis of the work roll is offset with respect to the axis of the backup roll in the rolling direction to forcedly apply the rolling direction force to the work roll, or in the case where pressing means for biasing the work roll chock in the rolling direction is installed to forcedly apply the rolling direction force to the work roll chock, it is not necessary to provide the rolling direction force measurement device to each of the both rolling direction entry side and rolling direction exit side.
For example, only the rolling direction force measurement devices 21 and 23 at the rolling direction exit side may be provided and the rolling direction force measurement devices 22 and 24 at the rolling direction entry side may not be provided. On the contrary, only the rolling direction force measurement devices 22 and 24 at the rolling direction entry side may be provided and the rolling direction force measurement devices 21 and 23 at the rolling direction exit side may not be provided. In anyway, in the rolling apparatus according to an embodiment of the present invention, as long as there is provided at least one of the rolling direction force measurement devices 21, 22, 23, and 24, it is not necessary that other rolling direction force measurement devices be provided.
Next, a fifth construction example of a rolling apparatus according to an embodiment of the present invention will be described. In the first construction example, as shown in
For example, as shown in
Next, a sixth construction example of a rolling apparatus according to an embodiment of the present invention will be described. As shown in
In this case, for example, the upper work roll chock 5 is supported by the cover 25 covering the load detection devices 21a and 21b and the cover 26 covering the load detection devices 22a and 22b. In the same manner, the lower work roll chock 6 is supported by the cover 27 covering the load detection devices 23a and 23b and the cover 28 covering the load detection devices 24a and 24b. In this case, with increase in lengths L of the covers 25, 26, 27, and 28 in the draft direction, the areas being in contact with the side surfaces of the work roll chocks 5 and 6 increase, and sufficient contact lengths with the work roll chocks can be always maintained. In this way, the tilts of the work roll chocks 5 and 6 can be prevented. For example, there may be a case where there is no sufficient space between two load detection devices in the draft direction depending on the shape and structure (including inner structure) of the housing and the project block. In this case, the same effect of the work roll chock-tilt prevention can be obtained by providing the cover to the load detection devices.
Note that, in the example shown in
Heretofore, the construction examples of the rolling apparatuses according to the present embodiment have been described. In a rolling apparatus of the present embodiment, at least one rolling direction force measurement device has two load detection devices which are always disposed in the draft direction of a work roll in a manner that the load detection devices face a side surface of the work roll chock on a housing or a project block. In this case, the load detection devices are disposed in a manner that a line extending in the rolling direction and including a roll axis, which is a point of effort of the rolling direction force of the work roll in the draft direction of the work roll, is interposed between the load detection devices. In this way, the side surface of the work roll chock is always supported at multiple points in the draft direction, the multiple points having a line extending in the rolling direction and including the point of effort of the rolling direction force interposed therebetween, and thus, the tilt of the work roll chock can be prevented.
Further, in the rolling apparatus, at least one rolling direction force measurement device may have two load detection devices which are always disposed in the roll axis direction of a work roll in a manner that the load detection devices face a side surface of the work roll chock on a housing or a project block. In this case, the load detection devices are disposed in a manner that a line extending in the rolling direction and including the center of a radial bearing, which is a point of effort of the rolling direction force of the work roll in the roll axis direction of the work roll, is interposed between the load detection devices. In this way, the side surface of the work roll chock is always supported at multiple points in the roll axis direction, the multiple points having a line extending in the rolling direction and including the point of effort of the rolling direction force interposed therebetween, and thus, the tilt of the work roll chock can be prevented.
It is not necessary that multiple load detection devices be disposed in both the draft direction and the roll axis direction. The multiple load detection devices may be disposed in a manner that they are shifted either only in the draft direction or only in the roll axis direction. That is, as long as the length of contact between the load detection device and the work roll chock in the draft direction or in the roll axis direction is sufficient and no tilt is likely to occur, it is not necessary to provide multiple load detection devices in that direction. Consequently, multiple load detection devices may be disposed in the draft direction and one load detection device may be disposed in the roll axis direction, for example.
When a rolling direction force measurement device of a rolling apparatus has multiple load detection devices in the draft direction and multiple load detection devices in the roll axis direction, three load detection devices 22a, 22b, and 22c are disposed in a triangular shape as shown in
When the load detection devices 22a, 22b, and 22c are arranged in this manner, the point of effort of the rolling direction force is located within an area S having a triangular shape defined by connecting three load detection devices 22a, 22b, and 22c. Accordingly, even if the work roll 1 moves in the draft direction or in the roll axis direction, at least two load detection devices are always supporting the work roll chock 5 in the state of interposing therebetween the point of effort of the rolling direction force, and thus, the tilt of the work roll chock can be prevented. Note that two load detection devices 22a and 22c are disposed above the roll axis A1 of the work roll 1 in the draft direction in
In order for the rolling direction force measurement device having multiple load detection devices to reliably prevent the tilt of the work roll chock in the draft direction and in the roll axis direction, it is preferred to dispose at least three load detection devices as shown in
That is, as shown in
In this manner, the point of effort of the rolling direction force is located within an area S having a quadrilateral shape defined by connecting four load detection devices 22a, 22b, 22c, and 22d. Accordingly, even if the work roll 1 moves in the draft direction or in the roll axis direction, at least two load detection devices are always supporting the work roll chock 5 in the state of interposing therebetween the point of effort of the rolling direction force, and thus, the tilt of the work roll chock can be prevented.
Note that, although the shape of the area S having the point of effort of the rolling direction force located therein is a triangle in
Next, there will be described a method of controlling a rolling apparatus on the basis of the thus detected rolling direction force.
As shown in
In the same manner, the lower work roll chock exit side load calculation device 33 and the lower work roll chock entry side load calculation device 34 are connected to a lower work roll chock rolling direction force calculation device 42. The lower work roll chock rolling direction force calculation device 42 calculates a difference of a calculation result obtained by the lower work roll chock exit side load calculation device 33 and a calculation result obtained by the lower work roll chock entry side load calculation device 34, and, on the basis of the calculation result, calculates the rolling direction force on the lower work roll chock 6.
In the case of controlling a zigzag movement and a camber, an operator side work roll chock rolling direction force calculation device 43 calculates the sum of the calculation result of the upper work roll chock rolling direction force calculation device 41 and the calculation result of the lower work roll chock rolling direction force calculation device 42, to calculate the rolling direction resultant force acting on the upper work roll 1 and the lower work roll 2 on the operator side. The calculation processing described above is conducted not only for the operator side but also for the driving side by using entirely the same device construction (not shown), and the rolling direction resultant force acting on the upper work roll 1 and the lower work roll 2 on the driving side is calculated by a driving side work roll chock rolling direction force calculation device 44.
After that, an operator side/driving side rolling direction force calculation device 45 calculates the difference between the calculation results on the operator side and the calculation results on the driving side, and in this way, the difference of the rolling direction forces acting on the upper and lower work roll chocks between the operator side and the driving side is calculated.
Next, a control quantity calculation device 46 sets the difference of the rolling direction forces acting on the work roll chocks 5 and 6 between the operator side and the driving side to a suitable target value and calculates a left-right swivelling component control quantity of the roll gap of the rolling mill on the basis of the calculation result of the difference of the rolling direction forces between the operator side and the driving side for preventing the camber. Here, the control quantity is calculated by PID calculation that takes a proportional (P) gain, an integration (I) gain, and a differential (D) gain into consideration, for example, on the basis of the left-right difference of the rolling direction force. A control device 47 controls the left-right swivelling component of the roll gap of the rolling mill on the basis of this control quantity calculation result. In this way, rolling free from the occurrence of camber or having extremely slight camber can be accomplished.
Note that, in the calculation processing described above, only addition and subtraction are basically done on the outputs of 16 load detection devices on both operator side and driving side before the calculation result of the operator side/driving side rolling direction force calculation device 45 is obtained. Therefore, the sequence of calculation processing described above may be arbitrarily changed. For example, it is possible to first add the outputs of the upper and lower exit side load detection devices, then to calculate the difference from the addition result on the entry side and to finally calculate the difference between the operator side and the driving side. Alternatively, it is possible to first calculate the difference of the outputs of the load detection devices at the respective positions on the operator side and the driving side, then to calculate the sum of the upper and lower detection devices and to finally calculate the difference between the entry side and the exit side.
In the case of controlling a warp, the operator side work roll chock rolling direction force calculation device 43 calculates the difference between the calculation result of the upper work roll chock rolling direction force calculation device 41 and the calculation result of the lower work roll chock rolling direction force calculation device 42, to calculate the difference of the rolling direction forces acting on the work roll chocks on the operator side between the upper side and the lower side. The calculation processing described above is conducted not only for the operator side but also for the driving side by using entirely the same device construction (not shown), and the difference of the rolling direction forces acting on the work roll chocks on the driving side between the upper side and the lower side is calculated by the driving side work roll chock rolling direction force calculation device 44. The operator side/driving side rolling direction force calculation device 45 totalizes the calculation results on the operator side and the calculation results of the driving side (difference between the upper side and the lower side), and in this way, the difference of the rolling direction forces acting on the work roll chocks between the upper side and the lower side is calculated.
Next, the control quantity calculation device 46 sets the difference of the rolling direction forces acting on the work roll chocks between the upper side and the lower side to a suitable target value and calculates an upper side-lower side swivelling component control quantity of a roll speed of the rolling mill on the basis of the calculation result of the difference of the rolling direction forces between the upper side and the lower side for preventing the warp. Here, the control quantity is calculated by PID calculation that takes a proportional (P) gain, an integration (I) gain, and a differential (D) gain into consideration, for example, on the basis of the upper side-lower side rolling direction force.
Then, the control device 47 controls the upper side-lower side swivelling component control quantity of the roll speed of the upper drive electric motor 35 and the lower drive electric motor 36 of the rolling mill on the basis of this control quantity calculation result. In this way, rolling free from the occurrence of warp or having extremely slight warp can be accomplished.
Note that, although the roll speed of the rolling mill is used here as the upper side-lower side swivelling component control quantity, a frictional coefficient between a rolling roll and a material to be rolled, a difference in temperature of a material to be rolled between the upper surface and the lower surface, an angle of incidence of a material to be rolled, a position of the work roll chock in the horizontal direction, top and bottom rolling torques, or the like may be also used.
In the case of zero point adjustment, after going through the same processes as the calculation processes of the zigzag movement and camber control described above, the operator side/driving side rolling direction force calculation device 45 calculates the difference between the calculation results on the operator side and the calculation results on the driving side, and in this way, calculates the difference of the rolling direction forces acting on the work roll chocks between the operator side and the driving side.
Then, the hydraulic screw down devices 9 are operated simultaneously on the operator side and on the driving side and are tightened until the sum of right and left counterforces of a backup roll is equal to a preset value (zero point adjustment load), and, under that state, leveling operation for rendering the difference of the rolling direction forces between the operator side and the driving side zero is executed.
Subsequently, the control quantity calculation device 46 calculates the control quantity of the hydraulic screw down device 9 such that the difference of the rolling direction forces acting on the work roll chocks 5 and 6 between the operator side and the driving side become zero and that the zero point adjustment load is maintained, on the basis of the results of the difference of the rolling direction forces between the operator side and the driving side (difference between the operator side and the driving side) calculated by the operator side/driving side rolling direction force calculation device 45. Then, the control device 47 controls the reduction position of a roll of the rolling mill on the basis of the control quantity calculation result. In this way, the difference of the rolling direction forces acting on the work roll chocks between the operator side and the driving side is set to zero, and the reduction position at that point is set as the zero point of the reduction position of the operator side and the driving side individually.
Note that, as described above, the difference of the rolling direction forces acting on the work roll chocks (upper work roll chock 5 and lower work roll chock 6) between the operator side and the driving side is not influenced by a roll thrust force. Therefore, even if a thrust force occurs between the rolls, the zero point setting of the reduction leveling can be accomplished with extremely high accuracy.
Heretofore, preferred embodiments of the present invention have been described in detail with reference to the appended drawings, but the present invention is not limited thereto. It should be understood by those skilled in the art that various changes and alterations may be made without departing from the spirit and scope of the appended claims.
Note that, in the embodiments described above, there has been used a four high rolling mill having only the work rolls and the backup rolls for the description, but the present invention is not limited thereto. The technology according to the present invention can be also applied to a six high rolling mill which has intermediate rolls, for example.
Number | Date | Country | Kind |
---|---|---|---|
2012-143454 | Jun 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/067408 | 6/25/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/003016 | 1/3/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5806360 | Dumas | Sep 1998 | A |
20060230799 | Ogawa et al. | Oct 2006 | A1 |
20090151413 | Ogawa et al. | Jun 2009 | A1 |
20120000543 | Keintzel | Jan 2012 | A1 |
20130000371 | Kasai | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1761540 | Apr 2006 | CN |
1527618 | Jan 1970 | DE |
2757701 | Jul 1978 | DE |
3811875 | Apr 1989 | DE |
3807654 | Sep 1989 | DE |
CA 2575328 | Dec 2006 | DE |
1607149 | Dec 2005 | EP |
1544754 | Apr 1979 | GB |
58-218326 | Dec 1983 | JP |
EP 0685273 | Dec 1995 | JP |
WO 0112353 | Feb 2001 | JP |
WO 0164360 | Sep 2001 | JP |
CA 2392114 | Feb 2003 | JP |
2006-82118 | Mar 2006 | JP |
2007-260775 | Oct 2007 | JP |
2008-161934 | Jul 2008 | JP |
2009-208151 | Sep 2009 | JP |
WO 2011129453 | Oct 2011 | JP |
2012-148339 | Aug 2012 | JP |
814498 | Mar 1981 | SU |
WO 2004082860 | Sep 2004 | WO |
WO 2011129453 | Oct 2011 | WO |
Entry |
---|
Extended European Search Report, dated Jun. 1, 2015, for European Application No. 13810177.9. |
Chinese Office Action for Chinese Application No. 201380003802.1, dated Dec. 29, 2014, with a partial English translation. |
International Search Report issued in PCT/JP2013/067408 dated Sep. 3, 2013. |
Written Opinion of the International Searching Authority issued in PCT/JP2013/067408 dated Sep. 3, 2013. |
Number | Date | Country | |
---|---|---|---|
20140283573 A1 | Sep 2014 | US |