In the trenching industry, earth may be degraded using picks or teeth to break up minerals and rocks. Picks are generally attached to chain driven assemblies and are used for excavating large amounts of hard materials. In trenching, a chain supporting an array of picks may rotate such that the picks engage a surface causing it to break up.
Examples of degradation assemblies from the prior art are disclosed in U.S. Pat. No. 6,824,225 to Stiffler, which is herein incorporated by reference for all that is contains discloses a rotatable cutting bit, and rotatable cutting bit holder assembly and washer that have increased wear resistance characteristics. The assembly incorporates a new holding washer design that has improved rotational characteristics between the cutter bit and top surface of the washer during operation.
U.S. Pat. No. 6,854,810 to Montgomery, Jr., which are all herein incorporated by reference for all that it contains discloses a wear sleeve in a cutter tool assembly that comprises a rearward split ring portion and an intermediate cylindrical ring portion adjacent a forward shoulder portion The outer diameter of the wear sleeve intermediate portion and rearward split ring portion is uniform. The wear sleeve is inserted into the bit holder's stepped bore aperture. The split ring portion is radially compressed by the smaller diameter rearward end as the sleeve is hammered and axially displaced into the bit holder.
The picks typically have a tungsten carbide tip. Efforts have been made to extend the life of these pointed inserts. Examples of such efforts are disclosed in U.S. Pat. No. 6,051,079 to Andersson et al., U.S. Pat. No. 5,417,475 to Graham et al., U.S. Pat. No. 6,733,087 to Hall et al., all of which are herein incorporated by reference for all that they disclose.
A trenching machine for degrading natural and man made formations comprising a roller assembly exteriorly mounted to a chain driven assembly. The roller assembly comprises a plurality of pointed inserts disposed along its outer diameter. The inserts comprise a tip adapted to impact the formation. The trenching machine also comprises a pick assembly exteriorly mounted to the chain driven assembly.
The roller assembly may leave waves or groves in the formation during the trenching process and the pick assembly may be adapted to break any grove or wave left by the roller assembly. The pick assembly may be disposed in a holder that comprises a taper adapted to pass through the formation. The taper may increase from a bottom portion of the pick assembly. The pick assembly and the roller assembly may be bolted, welded, or combination thereof to the chain driven assembly. The pick assembly may further comprise a spring mechanism, which may aid in extending the life of the pick assembly. The roller assembly and the pick assembly may be attached to a link of the chain driven assembly with the pick assembly comprising a positive or negative rake angle. In some embodiments the roller assembly may be offset in direction relative to the link.
The pick assembly may comprise a superhard material selected from the group consisting of cubic boron nitride, diamond, diamond like material, or combinations thereof and may be disposed posterior the roller assembly. The pick assembly may further comprise a bottom portion opposite an end with a pointed geometry with a space intermediate the bottom portion and the holder. The pick assembly may also rotate within the holder. This may aid in resisting wear to a single portion of the pick assembly. The pick assembly may also comprise a lubrication system which may aid in resisting wear to the pick assembly. The roller assembly may also comprise a lubrication system adapted to reduce wear to the roller assembly. The chain driven assembly may comprise a plurality of roller assemblies that may comprise a roller assembly with a different number of pointed inserts than another roller assembly.
The pick assembly may comprise a shear cutter adapted to contact the formation. The pick assembly comprising a shear cutter or a pointed geometry may degrade the wave formation left by the roller assembly. The roller assembly and pick assembly may be connected to a single link and may be within several inches of one another. The width of the pick assembly may be equal to the width of the roller assembly. The link may be part of the chain driven assembly which may be part of a coal mining machine, a trenching machine, or an asphalt milling machine.
In another aspect of the invention, a method comprising the steps of providing a roller assembly exteriorly mounted to a chain driven assembly, and the rollers comprising a plurality of pointed inserts disposed along its outer diameter. The inserts may comprise a tip adapted to impact the formation. The chain driven assembly may be positioned adjacent to the formation. The formation may be degraded by the inserts attached to holders by activating the chain driven assembly. A pick assembly may be positioned posterior the roller assembly in order to facilitate the removal of the degraded formation.
a is a orthogonal diagram of an embodiment of a mining machine.
Force is applied in the direction of arrow 250 loading pressure on the pointed inserts 203. As the wheel 202 rotates about the axle 207 the pointed inserts 203 may rotationally engage the formation 104. The pointed inserts 203 may engage the surface at the impact tip 204, which may be optimized for the wear life of the roller assembly 101. Wear life may be improved because the rotating motion reduces the effects of drag and eventual wear on the pointed inserts 203. The housing 205, the wheel 202, and the pointed inserts 203 may comprise or be coated by a hard material to prevent wear.
The impact tips 204 may comprise a superhard material opposite a bottom portion 290 which may comprise diamond, polycrystalline diamond with a binder concentration of 1 to 40 weight percent, cubic boron nitride, refractory metal bonded diamond, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, diamond impregnated matrix, diamond impregnated carbide, monolithic diamond, polished diamond, course diamond, fine diamond, nonmetal catalyzed diamond, cemented metal carbide, chromium, titanium, aluminum, tungsten, or combinations thereof The superhard material may be a polycrystalline structure with an average grain size of 0.000394 to 0.0394 inches. The roller assembly 101 may create a wave geometry 250 in the formation 104. The pick assembly 201 may be adapted to contact the wave geometry in the formation 104 and facilitate the degrading of the formation 104. The pick assembly 201 may be disposed within a holder 251 that is attached to the chain driven assembly 102. The pick assembly 201 may also comprise a lubrication system 292.
The roller assembly 101 may also comprise pointed inserts 203. The pointed inserts 203 comprise a carbide core 301 attached to an impact tip 204 and is press fit into the wheel 202. In other embodiments, the carbide core 301 may also be brazed onto the exterior of the wheel 202. The carbide core 301 may comprise a tapered end (not shown) opposite the impact tip 204. It is believed that such geometry reduces stress risers in the roller assembly 101.
a is a diagram of a mining machine 1051 incorporating the present invention. The mining machine 1051 comprises a drum 1050 with a plurality of the roller assemblies 101. No pick assemblies are shown in this embodiment, although it is within the scope of the claims to have such. As the mining machine 1051 moves forward the roller assemblies 101 apply a compressive force on the formation through the roller assemblies 101.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation in-part of U.S. patent application Ser. No. 11/748,184 which was filed on May 14, 2007 and is herein incorporated by reference for all that it discloses. This application is also a continuation-in-part of U.S. patent application Ser. No. 11/673,634 which was filed on Feb. 12, 2007 and is herein incorporated by reference for all that it discloses.
Number | Name | Date | Kind |
---|---|---|---|
4035024 | Fink | Jul 1977 | A |
4189183 | Borowski | Feb 1980 | A |
4548442 | Sugden | Oct 1985 | A |
5074063 | Vannette | Dec 1991 | A |
5219380 | Young | Jun 1993 | A |
5295735 | Cobbs | Mar 1994 | A |
5392540 | Cooper | Feb 1995 | A |
RE35088 | Gilbert | Nov 1995 | E |
5490339 | Accettola | Feb 1996 | A |
5655614 | Azar | Aug 1997 | A |
6092611 | Saxman | Jul 2000 | A |
6105694 | Scott | Aug 2000 | A |
6248447 | Griffin et al. | Jun 2001 | B1 |
6341823 | Sollami | Jan 2002 | B1 |
6457267 | Porter | Oct 2002 | B1 |
6543963 | Bruso | Apr 2003 | B2 |
6779948 | Bruso | Aug 2004 | B2 |
6854201 | Hunter | Feb 2005 | B1 |
7150131 | Barker | Dec 2006 | B2 |
7152702 | Bhome et al. | Dec 2006 | B1 |
Number | Date | Country | |
---|---|---|---|
20080283256 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11748184 | May 2007 | US |
Child | 11871878 | US | |
Parent | 11673634 | Feb 2007 | US |
Child | 11748184 | US |