The present invention relates to a rolling bearing, which can be applied to, for example, a roller bearing used for a shaft supporting portion as a transmission of an automobile.
JP-A-02-168021 and JP-A-06-42536 each disclose a rolling bearing in which a surface of a rolling element is provided with minute irregularities formed thereon to improve an oil film forming ability. In this conventional technique, as a countermeasure for a damage due to poor lubrication, such as a peeling damage of a roller bearing, there are provided recesses each having a minute concave shape in rolling contact surfaces of rollers and/or raceway surfaces of inner and outer races. When a surface roughness is expressed by a parameter Rqni, a value of a ratio Rqni (L)/Rqni (C) between an axial surface roughness Rqni(L) and a circumferential surface roughness Rqni(C) becomes 1.0 or less, and a parameter Sk value of the surface roughness is set to be −1.6 or less, thereby elongating a life of the rolling bearing if a mating surface is either a rough surface or a smooth-finished surface.
In recent years, there are tendencies of downsizing and increasing power output of a portion in which the rolling bearing is used such as a transmission of an automobile, and a viscosity of a lubricating oil tends to be lower. In other words, in a use environment of the rolling bearing, load and temperature are increasing. Thus, a lubrication environment has been changing to be severer for bearings than ever before. Separations of a surface originating type due to lubrication failure, reduction in fatigue life due to higher contact pressure, and separations under foreign matter contaminated environment tend to occur easily. In this case, it is required to enable enhancement of the life under any lubrication conditions such as low viscosity severe lubrication, the foreign matter contaminated environment, or detergent oil lubrication.
Conventional minute concave recesses are formed so that when a surface roughness is expressed by the parameter Rqni, a value of a ratio Rqni(L)/Rqni(C) of an axial surface roughness Rqni(L) and a circumferential surface roughness Rqni (C) is equal to or lower than 1.0 (Rqni≧0.10), and a surface roughness parameter Sk value is equal to or lower than −1.6, thereby realizing elongated life even if a mating surface is either a rough surface or a smooth-finished surface. However, effects thereof may not be exerted when an oil film is extremely thin under conditions of low viscosity and lean lubrication.
The rolling bearing according to an embodiment of the present invention includes at least on a surface of a rolling element innumerable minute concave recesses randomly formed. An average area of the recesses is in a range of 30 to 100 μm2, and Rymax is in a range of 0.4 to 1.0. At least on the surface of the rolling element, the innumerable minute concave recesses are randomly formed, thereby enhancing an oil film forming ability and realizing elongation in life even under conditions in which the oil film is extremely thin under the low viscosity and the lean lubrication. In particular, by setting the average area of the recesses in a range of 30 to 100 μm2 and Rymax in a range of 0.4 to 1.0, it is possible to prevent an oil film shortage even under the lean lubrication. As compared to the conventional product, it is possible to obtain the longer life even under the conditions in which the oil film is extremely thin.
At least one of an outer member, an inner member, and the rolling element constituting the rolling bearing has a nitrogen-enriched layer. An austenite grain size in the nitrogen-enriched layer may be in a range larger than a grain size No. 10. After forming the nitrogen-enriched layer, by setting the austenite grain size smaller so that the grain size number becomes larger than No. 11, the rolling fatigue life is significantly improved, thereby making it possible to obtain an excellent crack resistance and resistance to dimensional change by aging.
As is commonly known, the rolling bearing is a machine element in which a rotating or rocking shaft is supported by a rolling motion of rolling elements (balls or rollers). Usually, the rolling elements are rotatably interposed between a raceway of an inner race and a raceway of an outer race. However, there are a type having no inner race in which an outer peripheral surface of a shaft directly serves as a raceway surface, and a type having no outer race in which an inner peripheral surface of a gear directly serves as a raceway surface. When terms such as “inner member” and “outer member” are used, there is an intention of preventing exclusion of not only the inner race and the outer race but also shafts, gears, or the like each having a raceway surface. Further when an expression “at least on a surface of a rolling element” is used, there is an intention of preventing exclusion of a rolling bearing in which the minute concave recesses are also formed in a raceway surface, and in a case where the rolling element is a roller, there is an intention of preventing exclusion of a rolling bearing in which the minute concave recesses are formed not only in the raceway surface but also in an end surface.
When the surface roughness of the surface having the recesses formed thereon is indicated by a parameter Rqni, a value of a ratio “Rqni(L)/Rqni(C)” between an axial surface roughness Rqni(L) and a circumferential surface roughness Rqni(C) maybe equal to or lower than 1.0. The parameter Rqni is obtained by integrating a square of a height deviation from a roughness central line to a roughness curve within an interval of a measurement length, and by determining a square root of a mean value within the interval, and is also referred to as a root-mean-square roughness (ISO 4287: 1997). Rqni is determined from a section curve and the roughness curve, which are recorded under magnification, by numerical calculation, and is measured by moving a tracer of a roughness meter in a width direction and a circumferential direction.
The nitrogen-enriched layer is a layer in which a nitrogen content, which is formed in a surface layer of a race (outer race or inner race) or a rolling element, is increased. The layer can be formed by a treatment of, for example, carbonitriding, nitriding, nitrogen immersion, or the like. The nitrogen content in the nitrogen-enriched layer is preferably in a range of 0.1% to 0.7%. When the nitrogen content is less than 0.1%, there is no effect, so a rolling life is reduced particularly under a foreign matter contaminated condition. When the nitrogen content is larger than 0.7%, a hole called void is formed, or a residual austenite amount becomes too large to obtain hardness, thereby causing the life to be shorter. With respect to the nitrogen-enriched layer formed on the race, the nitrogen content is a value in a surface layer of 50 μm of the raceway surface after grinding, the value can be obtained by using, for example, wavelength-dispersive X-ray micro analyzer (EPMA).
Further, when the austenite grain size becomes larger than the grain size No. 10, the austenite grain diameter becomes finer, thereby making it possible to significantly improve the rolling fatigue life. When the austenite grain size is lower than the grain size No. 10, the rolling fatigue life is not significantly improved, so the austenite grain size is made in a range larger than the No. 10. Usually, the austenite grain size is equal to or larger than a grain size No. 11. It is desirable that the austenite grain diameter be as small as possible. However, it is difficult to obtain a grain size larger than a grain size No. 13. Note that the austenite grains of the bearing component as described above do not vary between in a surface portion having the nitrogen-enriched layer and in an inner portion inside the surface portion. Thus, positions to be objects of making the grain size No. be in the above-mentioned range are the surface layer portion and the inner portion. The austenite grains, on which traces of austenite grain boundaries immediately before quenching remain, for example, even after the quenching treatment, refer to grains based on the traces of the austenite grain boundaries.
The nitrogen content in the nitrogen-enriched layer may be in a range of 0.1% to 0.7%.
In a case where themember is a race, the nitrogen content may be a value in a surface layer 50 μm on a raceway surface after grinding.
The above-mentioned and other objects and characteristic points according to the present invention will be more apparent from descriptions made below with reference to the attached drawings.
A rolling bearing includes as main components an inner race, an outer race, and a rolling element. In at least one of a rolling surface and end surfaces of the rolling element and raceway surfaces of inner and outer races (and a cone back face rib surface in a case of an inner race of a tapered roller bearing), innumerable minute concave recesses are formed randomly, thereby obtaining a fine rough surface. In the fine rough surface, an average area of the recesses is in a range of 30 to 100 μm2, and Rymax of the surface in which the recesses are formed is in a range of 0.4 to 1.0. Further, when a surface roughness of each surface is determined in each of an axial direction and a circumferential direction and is indicated by a parameter Rqni, a value of a ratio “Rqni(L)/Rqni(C)” between an axial surface roughness Rqni(L) and a circumferential surface roughness Rqni(C) is equal to or lower than 1.0, and a surface roughness parameter Sk value is equal to or lower than −1.6 in both the axial direction and the circumferential direction. As a surface processing for obtaining such a fine rough surface, while special barrel finishing can be performed to obtain a predetermined finished surface, but a shot or the like may be used. By setting the average area of the minute concave recesses in a range from 30 to 100 μm2, and Rymax of the surface in which the recesses are formed in a range of 0.4 to 1.0 μm, it is possible to exhibit a high oil film forming effect even under conditions in which an oil film is extremely thin. As a result, it is possible to obtain a sufficient long life effect even under an extremely severe lubrication condition in which an oil film parameter λ=0.13.
A measuring method and conditions for the parameters Rymax and Rqni are explained with examples as follows. Note that, when surface properties expressed by those parameters are determined with respect to components such as rolling elements and a bearing ring of a rolling bearing, even a value obtained by performing measurement at one position is reliable enough as a representative value, but it is preferable to perform the measurement at two positions, for example, opposing each other in a diameter direction.
With regard to the minute concave recesses provided in a rolling contact surface of a roller, when an area percentage of the recesses with respect to the entire rolling contact surface falls in a range of 5 to 20%, an average area of the recesses falls in a range of 30 to 100 μm2 while being summed up except for recesses each having an equivalent circular diameter of 3 μmΦ or less. When Rymax of the recesses is outside a range of 0.4 to 1.0 μm, the area percentage of the recesses with respect to the rolling contact surface is more than 20%, and the average area of the recesses is more than 100 μm2, an effective length of contact tends to be reduced, and an effect of a long life tends to be reduced.
In performing quantitative measurement of the recesses, from an image obtained by enlarging the surface of the roller, it is possible to perform quantification using a commercially available image system. Further, use of a surface property testing method and a surface property testing device according to JP-A-2001-183124 allows a stable and accurate measurement. Analysis is performed assuming that flat portions of the surface are indicated as white portions and the minute recesses are indicated as black portions in the image. Measurement conditions are described as follows. Further, when the area and the average area of the recesses are measured with respect to the components such as the rolling elements and the raceway surface of the rolling bearing, even a value obtained by performing measurement at one position is reliable enough as a representative value, but it is preferable to perform the measurement, for example, at two positions.
Used as a test apparatus is a radial load testing machine 11 as schematically shown in
Next,
Description will be made of life tests carried out on conventional tapered roller bearings A and B including tapered rollers having smooth-finished rolling contact surfaces (comparative examples), bearings C to E including tapered rollers having rolling contact surfaces in which innumerable minute concave recesses are randomly formed (comparative example), and bearings F and G (examples) (refer to Table 2). The bearings A to G used are tapered roller bearings in each of which an outer diameter of an outer race is 81 mm and an inner diameter of an inner race is 45 mm. Note that rolling contact surfaces of rollers of the bearings A and B according to comparative examples are subjected to super finishing after grinding and are not machined to have recesses. Each of rolling contact surfaces of rollers of the bearings C to E according to comparative examples and the bearings F and G according to examples are subjected to special barrel finishing so that innumerable minute concave recesses are randomly formed thereon. Note that Rqni (L/C) of each of the roller bearings C to G is equal to or lower than 1.0 and Rqni (L/C) of each of the roller bearings A and B is around 1.0.
A double cylinder testing machine as shown in
Comparative data of the metal contact ratio is shown in
Next,
Due to the above-mentioned heat treatment, as compared to conventional carbonitriding quenching, that is, quenching performed once following a carbonitriding treatment without any other treatment, a cracking resistance can be enhanced while a surface layer portion is carbonitrided, thereby making it possible to reduce a rate of dimensional change by aging. The rolling bearings according to the present invention which are manufactured through the heat treatment pattern of
Next, examples will be described.
By using a JIS standard SUJ2 material (1.0 mass percent C—0.25 mass percent Si—0.4 mass percent Mn—1.5 mass percent Cr), the following tests were conducted, that is, (1) hydrogen amount measurement, (2) grain size measurement, (3) Charpy impact test, (4) breaking stress value measurement, and (5) rolling fatigue test. Table 1 shows results of those.
Production history of each of the samples is described below.
The samples A to D (examples of the present invention): Carbonitriding treatment 850° C., and retention time 150 minutes. An atmosphere was given as a mixed gas of RX gas and an ammonia gas. In the heat treatment pattern as shown in
The samples E and F (comparative examples): The carbonitriding treatment was performed in the same history as that of the examples A to D of the present invention, and the secondary quenching was performed by setting the carbonitriding treatment temperature of 850° C. or higher, that is, 850° C. to 870° C.
Conventional carbonitrided product (comparative example): Carbonitriding treatment 850° C., and retention time 150 minutes. An atmosphere was given as the mixed gas of an RX gas and an ammonia gas. The quenching was performed without any other process from a time when the carbonitriding treatment temperature was obtained and the secondary quenching was not performed.
Normal quenched product (comparative example): The carbonitriding treatment was not performed and the product was heated to 850° C. to be quenched. The secondary quenching was not performed.
Next, testing methods will be described.
(1) Hydrogen Amount Measurement
As a hydrogen amount, an amount of nondiffusible hydrogen in steel was analyzed by a DH-103 type hydrogen analyzer manufactured by LECO Corporation. An amount of diffusible hydrogen is not measured. A specification of the DH-103 type hydrogen analyzer manufactured by LECO Corporation is shown below.
An outline of a measurement procedure is as follows. A sample taken by a dedicated sampler is inserted into the hydrogen analyzer while being contained in the sampler. Diffusible hydrogen inside thereof is introduced to a thermal conductivity detector by a nitrogen carrier gas. The diffusible hydrogen is not subjected to measurement in the example 1. Next, the sample is taken out of the sampler and is heated in a resistance heating furnace, and nondiffusible hydrogen is introduced to the thermal conductivity detector by the nitrogen carrier gas. By measuring the thermal conductivity in the thermal conductivity detector, an amount of the nondiffusible hydrogen can be known.
(2) Grain Size Measurement
A grain size measurement was performed based on an austenite grain size testing method for JIS G 0551 steel.
(3) Charpy Impact Test
A Charpy impact test was performed based on a Charpy impact testing method for a JIS Z 224 metal material. As a test piece, there was used a U notch test piece (JIS No. 3 test piece) according to JIS Z 2202.
(4) Breaking Stress Value Measurement
When a fiber stress on a convex surface of the test piece of
σ1=(N/A)+{M/(Aρ0)} [1+e1/{κ(ρ0+e1)}]
σ2=(N/A)+{M/(Aρ0)} [1−e2/{κ(ρ0−e2)}]
κ=−(1/A)∫A{η/(ρ0+η)}dA
(5) Rolling Fatigue Life
Test conditions of a rolling fatigue life test are shown in Table 5.
The test results of the example 1 shown in Table 4 are described below.
(1) Hydrogen Amount
The conventional carbonitrided product left after being subjected to the carbonitriding treatment has the hydrogen amount of 0.72 ppm, which is a very high value. The reason for this is considered to be because ammonia (NH3) contained in the atmosphere of the carbonitriding treatment degrades so that hydrogen enters inside the steel. On the other hand, in the samples B to D, the hydrogen amount is reduced to 0.37 to 0.40 ppm, which is about a half the above-mentioned value. Such the hydrogen amount is at the same level as that of a normal quenched product.
Due to the reduction of the hydrogen amount as described above, stiffening of the steel caused by solution of hydrogen can be alleviated. That is, due to the reduction of the hydrogen amount, Charpy impact values of the samples B to D of the examples according to the present invention are improved to a large degree.
(2) Grain Size
With regard to the grain size, in a case where the secondary quenching temperature is lower than a temperature of quenching (primary quenching) in the carbonitriding treatment, that is, in the cases of the samples B to D, the austenite grain size is remarkably refined to grain sizes No. 11 to 12. The austenite grains of the samples E and F, the conventional carbonitrided product, and the normal quenched product have a grain size No. 10, and are grains more coarse than those of the samples B to D of the examples according to the present invention.
(3) Charpy Impact Test
According to Table 4, while the Charpy impact value of the conventional carbonitrided product is 5.33 J/cm2, the Charpy impact value of each of the samples B to D of the examples according to the present invention is 6.30 to 6.65 J/cm2, which are higher values. Of those, the one having lower secondary quenching temperature tends to exhibit higher Charpy impact value. The Charpy impact value of the normal quenched product is 6.70 J/cm2 which is a high value.
(4) Breaking Stress Value Measurement
The above-mentioned breaking stress value corresponds to the cracking resistance. According to Table 4, the conventional carbonitrided product has the breaking stress value of 2330 MPa. As compared to this, the breaking stress values of the samples B to D are obtained as improved values, that is, 2650 to 2840 MPa. The breaking stress value of the normal quenched product is 2770 MPa and the improved cracking resistances of the samples B to D are obtained as a benefit of the effects due to the reduction of the hydrogen content as well as the refinement of the austenite grain.
(5) Rolling Fatigue Test
According to
To sum up the above-mentioned results, in each of the samples B to D of the examples of the present invention, the hydrogen content decreases, the austenite grain size is refined to be higher than No. 11, and the Charpy impact value, the cracking resistance, and the rolling fatigue life are improved.
Next, an example 2 will be described. An X material, a Y material, and a Z material below were subjected to a series of tests. As a heat treatment material, JIS standard SUJ2 material (1.0 mass percent C—0.25 mass percent Si—0.4 mass percent Mn—1.5 mass percent Cr) was used commonly for each of the X to Z materials. Manufacturing histories of the X to Z materials are as follows.
(1) Rolling Fatigue Life
Test conditions and a testing device for the rolling fatigue life are, as described above, shown in Table 5 and
According to Table 6, the Y material of the comparative example exhibits a 3.1 times larger L10 life (life in which one of ten test pieces fractures) than that of the X material which is subjected to only the normal quenching in the same manner as in the comparative example. In this case, an effect of a longer life due to the carbonitriding treatment is observed. On the other hand, the Z material of the example according to the present invention exhibits a 1.74 times longer life than that of the B material, and a 5.4 times longer life than that of the X material. An efficient cause of such the improvement is considered to be the refinement of the microstructure.
(2) Charpy Impact Test
Charpy impact test was performed using a U notch test piece by a method according to JISZ2242 as described above. Test results are shown in Table 7.
Charpy impact value of the Y material (comparative example) which was subjected to the carbonitriding treatment was not larger than that of the X material (comparative example) which was subjected to the normal quenching, while the same value as that of the X material was obtained for the Z material.
(3) Static Fracture Toughness Value Test
K1c=(PL√a/BW2) {5.8−9.2(a/W)+43.6(a/W)2−75.3(a/W)3+77.5(a/W)4} (I)
A depth of the precrack is larger than a depth of a carbonitrided layer, so there is no difference between the X material and the Y material according to the comparative examples. However, as compared to the comparative examples, about 1.2 times larger value could be obtained for the Z material of the example according to the present invention.
(4) Static Pressure Breakage Strength Test
As a static pressure breakage test piece, a test piece having a shape shown in
The Y material, which is subjected to the carbonitriding treatment, exhibits a little lower value than the X material which is subjected to the normal quenching. However, the Z material of the example according to the present invention has an enhanced static pressure breakage strength as compared to the Y material and is at a level compared favorably with the X material.
(5) Dimensional Change Rate by Aging
Results of measurement for a dimensional change rate by aging under conditions of retention temperature 130° C., and retention time 500 hours are shown in Table 10 together with a surface hardness and a residual austenite amount (depth of 50 μm).
As compared to the dimensional change rate of the Y material having a large residual austenite amount, the dimensional change rate of the Z material of the example according to the present invention is suppressed to be lower than a half.
Table 11 shows results of a test conducted for a relationship between the nitrogen content and the rolling life under a condition of foreign matter incorporation. In this test, the tapered roller bearing shown in
From Table 13, it is understood that with respect to the examples 1 to 5, the nitrogen content and the life at the time of foreign matter incorporation are substantially proportional to each other. Note that, it is preferable that considering that the rolling life under the condition of foreign matter incorporation of the comparative example 3 having the nitrogen content of 0.72 is reduced to an extreme, an upper limit of the nitrogen content be 0.7.
The embodiments as disclosed here are only examples in all respects, and should not be considered to be limitations. Scope of the present invention is given by scope of claims rather than the above-mentioned descriptions. It is intended that the scope of the present invention includes all modifications within meaning and scope equivalent to the scope of claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-188690 | Jun 2004 | JP | national |
2004-198617 | Jul 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/009449 | 5/24/2005 | WO | 00 | 10/16/2007 |