The present invention relates to a rolling diaphragm pump.
For example, in a production process for a semiconductor, a liquid crystal device, an organic EL device, a solar cell, etc., a rolling diaphragm pump may be used as a pump for feeding a chemical solution when the chemical solution is applied or dispensed.
In such a type of rolling diaphragm pump, for example, as described in PATENT LITERATURE 1, the volume of a pump chamber (pressure chamber) sealed by a rolling diaphragm within a cylinder is changed by reciprocation of a piston housed within the cylinder, whereby a chemical solution is sucked into the pump chamber and discharged from the pump chamber.
The piston is connected to an electric motor as a drive source via a shaft and a ball screw which are disposed coaxially with the axis of the piston. Rotational motion of the electric motor is converted into linear motion by the ball screw, etc., thereby causing the piston to reciprocate.
The above rolling diaphragm pump requires the electric motor, which is a drive source, the ball screw for converting rotational motion of the electric motor into linear motion, etc. Thus, the structure is complicated, so that there is a problem that the rolling diaphragm pump is very costly. Particularly, when the discharge amount of the pump is increased, the size of the electric motor needs to be increased to obtain a required load, and thus the cost of the pump is significantly increased.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a rolling diaphragm pump that can inhibit an increase in cost with a simple configuration.
A rolling diaphragm pump according to the present invention includes: a housing; a piston disposed so as to be slidable relative to an inner peripheral surface of the housing and reciprocatable in an axial direction of the housing; a rolling diaphragm having a movable portion disposed at one end portion in the axial direction of the piston and reciprocatable together with the piston, a fixed portion fixed to the housing, and a flexible connecting portion connecting the movable portion and the fixed portion to each other; a pump chamber defined by the rolling diaphragm at one side in the axial direction within the housing and into and from which a transport fluid is sucked and discharged by changing a volume of an interior of the pump chamber by deformation of the connecting portion due to reciprocation of the piston; and a working fluid chamber defined by another end portion in the axial direction of the piston at another side in the axial direction within the housing and into and from which a working fluid is supplied and discharged, thereby causing the piston to reciprocate.
According to the present invention, the piston reciprocates when the working fluid is supplied into and discharged from the working fluid chamber, and the volume of the interior of the pump chamber is changed by deformation of the rolling diaphragm due to the reciprocation, whereby the transport fluid can be sucked and discharged. Accordingly, the electric motor, the ball screw, etc., in the conventional art are unnecessary, so that the rolling diaphragm pump can be made with a simple configuration, and an increase in cost can be inhibited.
Preferably, the piston has a sliding portion slidable relative to the inner peripheral surface of the housing, a closely-contacted portion having an outer peripheral surface with which the deformed connecting portion can be brought into close contact, and a connection portion connecting the sliding portion and the closely-contacted portion to each other, and the sliding portion, the closely-contacted portion, and the connection portion are formed as a single member.
In this case, since the sliding portion and the closely-contacted portion are integrally formed with the connection portion therebetween, the sliding portion and the closely-contacted portion do not need to be connected to each other by a connection means, and a locking portion for locking the connection means does not need to be provided to each of the sliding portion and the closely-contacted portion. Accordingly, occurrence of distortion in the sliding portion and the closely-contacted portion due to a load concentrated on the locking portions during reciprocation of the piston can be inhibited. In addition, since the sliding portion, the connection portion, and the closely-contacted portion are formed as a single member, the piston can be easily produced.
According to the present invention, an increase in cost can be inhibited with a simple configuration.
Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
The housing 2 has a cylinder 11 and a pump head 12. The cylinder 11 has a cylinder body 13 formed in a cylindrical shape, and a bottom plate 14 having a disc shape and fixed to a lower end in the axial direction of the cylinder body 13. The cylinder body 13 and the bottom plate 14 are formed, for example, from a metal such as aluminum.
The cylinder body 13 has a first flange portion 13a integrally formed at the outer periphery of an upper end portion thereof in the axial direction, and a second flange portion 13b integrally formed at the outer periphery of a lower end portion thereof in the axial direction.
The outer shape of the first flange portion 13a is formed, for example, as a regular quadrangle shape, and an insertion hole 13c is formed at each of the four corners of the first flange portion 13a so as to penetrate in the thickness direction of the first flange portion 13a (the up-down direction). The second flange portion 13b is formed, for example, in an annular shape. A ventilation port 15 is formed in the cylinder body 13 so as to penetrate in the thickness direction of the cylinder body 13 (the right-left direction). A decompression device (not shown) such as a vacuum pump or an aspirator is connected to the ventilation port 15.
A supply/discharge port 16 for supplying and discharging pressurized air and decompressed air into and from the housing 2 is formed in the bottom plate 14. One end of the supply/discharge port 16 is open at a center portion of the upper surface of the bottom plate 14, and another end of the supply/discharge port 16 is open at the outer peripheral surface of the bottom plate 14. Although not shown, the other end of the supply/discharge port 16 is connected to either an air supply device such as an air compressor that supplies pressurized air or a decompression device such as a vacuum pump or an aspirator that forcibly discharges pressurized air, by switching a valve.
The pump head 12 is formed from a fluorine resin such as polytetrafluoroethylene (PTFE) in a cylindrical shape with a lid. The pump head 12 is disposed on the upper surface of the first flange portion 13a of the cylinder body 13 so as to close the opening of the cylinder body 13. The pump head 12 has an inner diameter substantially equal to that of the cylinder body 13. Accordingly, the internal space of the pump head 12, together with the internal space of the cylinder body 13, forms a housing space in which the piston 3 can be housed.
A flange plate 17 formed from a metal (for example, stainless steel such as SUS304) is mounted on the upper end surface in the axial direction of the pump head 12. The flange plate 17 is formed, for example, in a regular quadrangle shape such that the outer shape of the flange plate 17 is substantially the same as that of the first flange portion 13a of the cylinder body 13. An insertion hole 17a is formed at each of the four corners of the flange plate 17 so as to penetrate in the thickness direction of the flange plate 17 (the up-down direction).
A single connection port 18 and a plurality of connection ports 19 are formed in an upper end portion in the axial direction of the pump head 12 so as to penetrate in the thickness direction of the pump head 12. The connection port 18 is used as a discharge port for discharging a liquid within a pump chamber 5 (described later) for purposes such as air release. The connection ports 19 are used as suction ports for sucking a liquid into the pump chamber 5 or as discharge ports for discharging a liquid from the pump chamber 5.
One end portion of a tubular connector 21 having external threads at both end portions thereof is mounted on the connection port 18 so as to penetrate the flange plate 17. A nut for fixing a tube inserted through the connector 21 is mounted on another end portion of the connector 21. Similarly, one end portion of a tubular connector 22 having external threads at both end portions thereof is mounted on each connection port 19 so as to penetrate the flange plate 17. A nut for fixing a tube inserted through the connector 22 is mounted on another end portion of the connector 22. In the present embodiment, five connection ports 19 and five connectors 22 are provided. The number of connection ports 18 (connectors 21) and the number of connection ports 19 (connectors 22) are not limited to those in the present embodiment. In addition, the method for connecting each tube is not limited to that in the present embodiment.
Although not shown, the connector 22 used as a suction port and mounted on the connection port 19 (for example, a connector 22a shown in
The piston 3 is disposed so as to be slidable relative to the inner peripheral surface of the housing 2 and also disposed so as to be reciprocatable in the axial direction of the housing 2 (the up-down direction). The piston 3 is formed, for example, in a columnar shape as a single member made of a synthetic resin such as polypropylene (PP). A through hole 3a is formed in a center portion of the piston 3 so as to be coaxial with the axis of the piston 3 and penetrate in the axial direction.
The piston 3 of the present embodiment has, in order from the lower end thereof toward the upper end thereof in the axial direction, a sliding portion 31 (a hatched portion at the lower side in
An annular seal groove 31b is formed on the outer peripheral surface 31a of the sliding portion 31 over the entire periphery thereof, and an O-ring 34 is mounted in the seal groove 31b. The O-ring 34 is formed, for example, from a rubber material such as a fluorine rubber. A sliding ring 35 is mounted in the seal groove 31b at the outer side in the radial direction of the O-ring 34, and the gap between the sliding portion 31 and the sliding ring 35 is sealed by the elastic force of the O-ring 34 (also see
The closely-contacted portion 33 is a portion having an outer peripheral surface 33a with which a connecting portion 43 described later is brought into close contact. The closely-contacted portion 33 of the present embodiment has a smaller outer diameter than the sliding portion 31, and an annular gap is formed between the outer peripheral surface 33a of the closely-contacted portion 33 and the inner peripheral surface 13d of the cylinder body 13. In addition, the closely-contacted portion 33 is formed so as to be longer in the axial direction than the sliding portion 31 (see
The connection portion 32 is a portion integrally connecting the sliding portion 31 and the closely-contacted portion 33 to each other. The connection portion 32 of the present embodiment has an outer diameter equal to that of the closely-contacted portion 33, and an annular gap is formed between an outer peripheral surface 32a of the connection portion 32 and the inner peripheral surface 13d of the cylinder body 13. In addition, the connection portion 32 is formed so as to be longer in the axial direction than the closely-contacted portion 33 (see
The through hole 3a has a hole diameter that is slightly changed and increased at a lower portion in the axial direction of the connection portion 32 (see
The sliding portion 31 and the closely-contacted portion 33 may be connected to each other by a connection means such as a rod that is a separate member, instead of the connection portion 32. However, in this case, a locking portion for locking the connection means (for example, a portion for screwing the rod) needs to be provided to each of the sliding portion 31 and the closely-contacted portion 33. Thus, during reciprocation of the piston 3, a load is concentrated on the locking portions respectively provided to the sliding portion 31 and the closely-contacted portion 33.
Therefore, when the pump 1 including the connection means and the locking portions is used over a long period of time, distortion may occur in the sliding portion 31 and the closely-contacted portion 33. Particularly, in the case where the sliding portion 31 and the closely-contacted portion 33 are formed from a resin material as in the present embodiment, the distortion easily occurs. When distortion occurs in the closely-contacted portion 33, the liquid discharge amount of the pump 1 may be changed. In addition, when distortion occurs in the sliding portion 31, the sealing performance by the O-ring 34 and the sliding ring 35 for sealing the gap between the outer peripheral surface of the sliding ring 35 and the inner peripheral surface 13d of the cylinder body 13 may be decreased.
On the contrary, in the present embodiment, since the sliding portion 31 and the closely-contacted portion 33 are integrally formed with the connection portion 32 therebetween, the connection means and the locking portions are unnecessary. Accordingly, occurrence of distortion in the sliding portion 31 and the closely-contacted portion 33 can be inhibited, so that a change in the liquid discharge amount of the pump 1 and a decrease in the sealing performance between the outer peripheral surface of the sliding ring 35 and the inner peripheral surface 13d of the cylinder body 13 can be effectively inhibited. In addition, since the sliding portion 31, the connection portion 32, and the closely-contacted portion 33 are formed as a single member, the piston 3 can be easily produced.
In
The fixed portion 42 of the rolling diaphragm 4 is fitted into an annular recess 13e formed on the upper surface of the first flange portion 13a of the cylinder body 13, and is located between the cylinder body 13 and the pump head 12. In this state, as shown in
Referring back to
A screw hole 41a is formed in the lower surface of the movable portion 41, and a front end portion of the through bolt 36 inserted through the through hole 3a of the piston 3 is screwed into the screw hole 41a. Accordingly, the movable portion 41 is fixed to the closely-contacted portion 33 of the piston 3, so that the movable portion 41 can be moved downward together with the piston 3 in a suction process described later.
The connecting portion 43 of the rolling diaphragm 4 connects the inner end in the radial direction of the fixed portion 42 and the outer end in the radial direction of the movable portion 41 to each other. In addition, the connecting portion 43 is formed thin (in a thin film shape) so as to have flexibility. Meanwhile, the movable portion 41 and the fixed portion 42 are formed sufficiently thicker than the connecting portion 43 so as to have rigidity.
In the state shown in
Moreover, when the piston 3 moves to a most retracted position shown in
In
The pump chamber 5 is defined by the rolling diaphragm 4 at the upper side in the axial direction (one side in the axial direction) within the housing 2 and formed such that the volume of the interior of the pump chamber 5 is changeable.
The pump chamber 5 of the present embodiment is formed by being surrounded by the movable portion 41 and the connecting portion 43 of the rolling diaphragm 4 and the pump head 12, and communicates with the connection port 18 and the connection ports 19. The volume of the interior of the pump chamber 5 is changed by reciprocation of the piston 3.
The working fluid chamber 6 is defined by a lower end portion in the axial direction (another end portion in the axial direction) of the piston 3 at the lower side in the axial direction (another side in the axial direction) within the housing 2. The working fluid chamber 6 communicates with the supply/discharge port 16. The piston 3 reciprocates in the housing 2 by supplying and discharging pressurized air and decompressed air (working fluid) into and from the working fluid chamber 6 using the air supply device and the decompression device connected via the supply/discharge port 16.
The decompression chamber 7 is defined between the pump chamber 5 and the working fluid chamber 6 within the housing 2 by the piston 3, the connecting portion 43 of the rolling diaphragm 4, and the cylinder body 13. The decompression chamber 7 communicates with the ventilation port 15. During drive of the pump 1, the pressure of the decompression chamber 7 is reduced to a predetermined pressure (negative pressure) by the decompression device connected via the ventilation port 15.
In the above configuration, a discharge process in which the piston 3 advances toward the upper side in the axial direction by supplying pressurized air into the working fluid chamber 6, and a suction process in which the piston 3 retracts toward the lower side in the axial direction by forcibly discharging pressurized air within the working fluid chamber 6 to the outside to reduce the pressure of the interior of the working fluid chamber 6, are repeatedly performed. Accordingly, a liquid stored in the liquid tank or the like can be supplied from the pump 1 to the liquid supply portion.
That is, in the suction process, the movable portion 41 of the rolling diaphragm 4 moves downward so as to follow the retraction of the piston 3 (changes from a state shown in
Moreover, in the discharge process, the movable portion 41 of the rolling diaphragm 4 moves upward so as to follow the advancement of the piston 3 (changes from the state shown in
In the suction process and the discharge process, the pressure of the decompression chamber 7 is reduced to a predetermined pressure (negative pressure) by the decompression device connected via the ventilation port 15. Therefore, the connecting portion 43 of the rolling diaphragm 4 can be reliably brought into close contact with each of the inner peripheral surface 13d of the cylinder body 13 and the outer peripheral surface 33a of the closely-contacted portion 33.
Due to the above, the piston 3 reciprocates when pressurized air and decompressed air are supplied into and discharged from the working fluid chamber 6, and the volume of the interior of the pump chamber 5 is changed by deformation of the connecting portion 43 of the rolling diaphragm 4 due to the reciprocation, whereby the liquid can be sucked and discharged. Accordingly, the electric motor, the ball screw, etc., in the conventional art are unnecessary, so that the pump 1 can be made with a simple configuration, and an increase in cost can be inhibited.
In the present embodiment, in the suction process, decompressed air is supplied into the working fluid chamber 6 by the decompression device, but the supply/discharge port 16 of the working fluid chamber 6 may be opened to the atmosphere instead of supplying decompressed air, and the piston 3 may be caused to retract toward the lower side in the axial direction by using the pressure of the liquid within the pump chamber 5. In this case, the movable portion 41 of the rolling diaphragm 4 retracts together with the piston 3 by the pressure of the liquid, and thus the through bolt 36 for fixing the movable portion 41 to the piston 3 is unnecessary. In addition, the connecting portion 43 of the rolling diaphragm 4 can be brought into close contact with each of the inner peripheral surface 13d of the cylinder body 13 and the outer peripheral surface 33a of the closely-contacted portion 33 by the pressure of the liquid, and thus the decompression chamber 7 and the ventilation port 15 are also unnecessary.
An annular projection 12a formed on the lower surface of the pump head 12 so as to project therefrom is stuck into the groove 42a. By this stuck structure, the liquid within the pump chamber 5 is prevented from leaking through between the joint surfaces to the outside. A lip seal structure or an O-ring seal structure may be used instead of the stuck structure, or at least two of the stuck structure, a lip seal structure, and an O-ring seal structure may be used in combination.
In the first flange portion 13a of the cylinder body 13, an annular seal groove 13f is formed on the bottom surface of the recess 13e, and an O-ring 27 is mounted in the seal groove 13f. The O-ring 27 is formed, for example, from a rubber material such as a fluorine rubber and is pressed against the lower surface of the fixed portion 42. The decompression chamber 7 (see
In
The first proximity sensor 51 detects a position of the piston 3 at which the suction process is ended (a position in
The second proximity sensor 52 detects a position of the piston 3 at which the discharge process is ended (a position in
The third proximity sensor 53 detects a position of the piston 3 immediately before the piston 3 advances to the most advanced position (see
Each of the proximity sensors 51 to 53 is a magnetic proximity sensor, and detects the magnetism of an annular permanent magnet 56 (see
The permanent magnet 56 is fitted on the outer periphery of the connection portion 32 of the piston 3 in the decompression chamber 7, and has an outer diameter substantially equal to that of the sliding portion 31. The permanent magnet 56 is held by the piston 3 in a state where the lower end surface of the permanent magnet 56 is brought into contact with a step surface 37 between the sliding portion 31 and the connection portion 32 due to the weight of the permanent magnet 56. Accordingly, the permanent magnet 56 reciprocates together with the piston 3.
In
A long hole 60a is formed in the mounting plate 60 so as to extend in the longitudinal direction of the mounting plate 60 and penetrate in the thickness direction of the mounting plate 60. A pair of nuts 54 and 55 screwed onto an end portion of each of the proximity sensors 51 to 53 at the detection surface side are disposed at the long hole 60a in a state where the mounting plate 60 is interposed between the nuts 54 and 55. Accordingly, each of the proximity sensors 51 to 53 is fixed to the mounting plate 60 by tightening the nuts 54 and 55.
A guide groove 13g is formed on the outer peripheral surface of the cylinder body 13 so as to extend along the axial direction, and the nut 55 screwed at the outer end in the axial direction of each of the proximity sensors 51 to 53 is fitted into the guide groove 13g. Accordingly, rotation of the nut 55 about an axis thereof is restricted.
Therefore, each of the proximity sensors 51 to 53 can be easily fixed to the mounting plate 60 by rotating the nut 54, which is not fitted into the guide groove 13g, in the tightening direction. In addition, each of the proximity sensors 51 to 53 is made to become movable along the guide groove 13g and the long hole 60a by loosening the corresponding tightened nut 54. Accordingly, the mounting position (detection position) of the proximity sensors 51 to 53 with respect to the housing 2 can be individually adjusted.
In
In the present embodiment, the cylinder body 13 has the annular stopper 28 integrally formed on the inner peripheral surface thereof so as to project radially inward. The stopper 28 has an inner diameter larger than the outer diameter of the connection portion 32 of the piston 3 and smaller than the outer diameter of the permanent magnet 56. The stopper 28 is formed on the inner peripheral surface of the cylinder body 13 at a position where the upper end surface of the permanent magnet 56 comes into contact with the lower end surface of the stopper 28 when the piston 3 advances to the most advanced position. The stopper 28 may be provided as a member separate from the cylinder body 13.
Owing to the above configuration, the piston 3 can be restricted from advancing to the upper side in the axial direction with respect to the most advanced position, by the stopper 28. When the piston 3 is located at the most advanced position, the upper surface of the movable portion 41 of the rolling diaphragm 4 is located below a top surface 12b within the pump head 12.
Therefore, the upper surface of the movable portion 41 can be prevented from coming into contact with the top surface 12b of the pump head 12, by the stopper 28 restricting the piston 3 from advancing to the upper side in the axial direction with respect to the most advanced position. As a result, particles (fine dust), etc., can be inhibited from being generated from the movable portion 41.
In the present embodiment, since the permanent magnet 56 to be detected by the proximity sensors 51 to 53 also serves as a member that comes into contact with the stopper 28, a member that comes into contact with the stopper 28 does not need to be additionally provided at the piston 3 side. Accordingly, the pump 1 can be made with a simple configuration.
At a portion of the cylinder body 13 at which the stopper 28 is formed, the above-described ventilation port 15 is formed so as to penetrate in the radial direction from the outer peripheral surface of the cylinder body 13 toward the inner peripheral surface of the stopper 28. Accordingly, the ventilation port 15 is formed at a portion of the cylinder body 13 that is thick in the radial direction, and thus a decrease in the rigidity of the cylinder body 13 can be inhibited as compared to the case where the ventilation port 15 is formed at a portion of the cylinder body 13 that is thin in the radial direction.
The ventilation port 15 may be formed above the stopper 28 of the cylinder body 13. However, as shown in
Therefore, in the case where the ventilation port 15 is formed at the portion of the cylinder body 13 at which the stopper 28 is formed as in the present embodiment, the overall length in the axial direction (up-down direction) of the housing 2 can be shortened as much as possible, as compared to the case where the ventilation port 15 is formed above the stopper 28 of the cylinder body 13.
As the shape of the recess 33b of the closely-contacted portion 33 of the piston 3, various variations are conceivable as shown in
A center portion of the movable portion 41 of the rolling diaphragm 4 needs to be thick such that the front end portion of the through bolt 36 can be screwed thereinto.
In the case where the entirety of the movable portion 41 of the rolling diaphragm 4 is made thick as shown in
In the case where only the center portion of the movable portion 41 of the rolling diaphragm 4 is made suddenly thick as shown in
Also, in the case where a large part of the movable portion 41 of the rolling diaphragm 4 excluding the outer peripheral portion thereof is made suddenly thick as shown in
Therefore, in the present embodiment (see
The embodiments disclosed herein are merely illustrative in all aspects and should be considered not restrictive. The scope of the present invention is defined by the scope of the claims rather than the meaning described above, and is intended to include meaning equivalent to the scope of the claims and all modifications within the scope.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-007267 | Jan 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/041230 | 11/6/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/142455 | 7/25/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3204858 | Dros | Sep 1965 | A |
6079959 | Kingsford et al. | Jun 2000 | A |
20080260551 | Simmons | Oct 2008 | A1 |
20130259708 | Du | Oct 2013 | A1 |
20150300491 | Teshima | Oct 2015 | A1 |
20160273527 | Teshima et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2000514525 | Oct 2000 | JP |
2015098855 | May 2015 | JP |
WO-9802659 | Jan 1998 | WO |
Entry |
---|
International Search Report PCT/JP2018/041230 dated Jan. 22, 2019 (1 page). |
Number | Date | Country | |
---|---|---|---|
20210123429 A1 | Apr 2021 | US |