Wellbores for the oil and gas industry are commonly drilled by a process of rotary drilling. In conventional wellbore drilling, a drill bit is mounted on the end of a drill string, which may be several miles long. At the surface of the wellbore, a rotary drive or top drive turns the drill string, including the drill bit arranged at the bottom of the hole to increasingly penetrate the subterranean formation, while drilling fluid is pumped through the drill string to remove cuttings. In other drilling configurations, the drill bit may be rotated using a downhole mud motor arranged axially adjacent the drill bit and powered using the circulating drilling fluid.
One common type of drill bit used to drill wellbores is known as a “fixed cutter” or a “drag” bit. This type of drill bit has a bit body formed from a high strength material, such as tungsten carbide or steel, or a composite/matrix bit body, having a plurality of cutters (also referred to as cutter elements, cutting elements, or inserts) attached at selected locations about the bit body. The cutters may include a substrate or support stud made of carbide (e.g., tungsten carbide), and an ultra-hard cutting surface layer or “table” made of a polycrystalline diamond material or a polycrystalline boron nitride material deposited onto or otherwise bonded to the substrate. Such cutters are commonly referred to as polycrystalline diamond compact (“PDC”) cutters.
In fixed cutter drill bits, PDC cutters are rigidly secured to the bit body, such as being brazed within corresponding cutter pockets defined on blades extending from the bit body. The PDC cutters may be positioned along the leading edges of the blades of the bit body so that the PDC cutters engage the formation during drilling. In use, high forces are exerted on the PDC cutters, particularly in the forward-to-rear direction. Over time, the portion of each cutter that continuously contacts the formation, referred to as the working surface or cutting edge, eventually wears down and/or fails.
The following figures are included to illustrate certain aspects of the present disclosure, and should not be viewed as exclusive embodiments. The subject matter disclosed is capable of considerable modifications, alterations, combinations, and equivalents in form and function, without departing from the scope of this disclosure.
The present disclosure relates to earth-penetrating drill bits and, more particularly, to rolling type depth of cut control elements that can be used in drill bits.
The embodiments of the present disclosure describe rolling element assemblies that can be secured within corresponding pockets provided on a drill bit. Each rolling element assembly includes a rolling element, of which at least a portion has a cylindrical shape that may serve as a cylindrical bearing portion for the rolling element and, accordingly, which may define a rotational axis of the rolling element. Each rolling element is strategically positioned and secured on the bit body so that the rolling element engages the formation during drilling. Depending on the selected positioning of the rolling element with respect to the bit body, the rolling element may either roll against the formation about its own rotational access, slide against the formation, or a combination of rolling and sliding against the formation, in response to the drill bit rotating in engagement with the formation. The rolling element assemblies in one example are retained within the corresponding pockets on the bit body using various retention mechanism configurations.
The orientation of each rolling element with respect to the bit body is strategically selected to produce any of a variety of different functions and/or effects. The strategically selected orientation includes, for example, a selected side rake and/or a selected back rake. In some cases, the rolling element may be configured as a rolling cutting element that both rolls along the formation (e.g., by virtue of a selected range of side rake) and cuts (e.g., by virtue of the selected back rake and/or side rake) the formation, while drilling. More particularly, the rolling cutting element may be positioned to cut, dig, scrape, or otherwise remove material from the formation using a portion of the rolling element (e.g., a polycrystalline diamond table) that is positioned to engage the formation.
As described in some examples detailed below, a rolling cutting element may be configured to rotate freely about its rotational axis, optionally up to at least 3600, and preferably continuously through full 360° revolutions about the rolling element rotational axis. Accordingly, the entire outer edge of a rolling cutting element may be used as a cutting edge. Thus, in use, up to the entire outer edge of a rolling cutting element may be exposed to the formation over time during drilling, rather than only a limited portion of the cutting edge in a conventional fixed cutter. Thus, a greater total arcuate length of the cutting edge will be exposed to the formation, as compared with conventional cutters, in which only a limited portion of the cutting edge contacts the formation. As a result, for a given cutting edge configuration, the rolling cutting element is expected to last longer than a conventional cutter. The ability of the rolling element to rotate about its own rotational axis may also result in a more uniform cutting edge wear.
In other examples detailed below, the rolling element can be configured as a depth of cut control (DOCC) element that rolls along the formation. The manner in which the rolling element is rotationally coupled to the bit body may expose a full length of the rolling element (i.e., the linear length of the rolling element in the direction of the rotational axis), so that in a DOCC application, the entire length of the rolling element may bear against the formation. In particular, each rolling element (whether a rolling cutting element or a rolling DOCC element) may be rotatably secured to the bit body about its rolling element axis by a housing that defines an optionally-cylindrical bearing surface against which a cylindrical bearing portion of the rolling element slidingly rotates. The bearing surface on the housing may partially encircle the cylindrical bearing portion to leave a full length of the rolling element exposed. Thus, in a rolling DOCC element configuration, the orientation of the rolling element may be selected so that that full length of the rolling element may bear against the formation. As with rolling cutting elements, rolling DOCC elements may exhibit enhanced wear resilience and allow for additional weight-on-bit without negatively affecting torque-on-bit. This may allow a well operator to minimize damage to the drill bit, thereby reducing trips and non-productive time, and decreasing the aggressiveness of the drill bit without sacrificing its efficiency. The rolling DOCC elements described herein may also reduce friction at the interface between the drill bit and the formation, and thereby allow for a steady depth of cut, which results in better tool face control.
In yet other cases, the rolling element assemblies described herein may operate as a hybrid between a rolling cutting element and a rolling DOCC element. As described in more detail below, this may be accomplished by orienting the rotational axis of the rolling element on a plane that does not pass through the longitudinal axis 107 of the drill bit 100 nor is the plane oriented perpendicular to a plane that does pass through the longitudinal axis 107.
Those skilled in the art will readily appreciate that the presently disclosed embodiments may improve upon hybrid rock bits, which use a large roller cone element as a depth of cut limiter by sacrificing diamond volume. In contrast, the presently disclosed rolling element assemblies are small in comparison and its enablement will not result in a significant loss of diamond volume on a fixed cutter drag bit.
Referring to
The drill bit 100 has a bit body 102 that includes radially and longitudinally extending blades 104 having leading faces 106. The bit body 102 may be made of steel or a matrix of a harder material, such as tungsten carbide. The bit body 102 rotates about a longitudinal drill bit axis 107 to drill into a subterranean formation under an applied weight-on-bit. Corresponding junk slots 112 are defined between circumferentially adjacent blades 104, and a plurality of nozzles or ports 114 can be arranged within the junk slots 112 for ejecting drilling fluid that cools the drill bit 100 and otherwise flushes away cuttings and debris generated while drilling.
The bit body 102 further includes a plurality of cutters 116 disposed within a corresponding plurality of cutter pockets sized and shaped to receive the cutters 116. Each cutter 116 in this example is more particularly a fixed cutter, secured within a corresponding cutter pocket via brazing, threading, shrink-fitting, press-fitting, snap rings, or the like. The fixed cutters 116 are held in the blades 104 and respective cutter pockets at predetermined angular orientations and radial locations to present the fixed cutters 116 with a desired back rake angle against the formation being penetrated. As the drill string is rotated, the fixed cutters 116 are driven through the rock by the combined forces of the weight-on-bit and the torque experienced at the drill bit 100. During drilling, the fixed cutters 116 may experience a variety of forces, such as drag forces, axial forces, reactive moment forces, or the like, due to the interaction with the underlying formation being drilled as the drill bit 100 rotates.
Each fixed cutter 116 may include a generally cylindrical substrate made of an extremely hard material, such as tungsten carbide, and a cutting face that is secured to the substrate. The cutting face may include one or more layers of an ultra-hard material, such as polycrystalline diamond, polycrystalline cubic boron nitride, impregnated diamond, etc., which generally forms a cutting edge and the working surface for each fixed cutter 116. The working surface is typically flat or planar, but may also exhibit a curved exposed surface that meets the side surface at a cutting edge.
Generally, each fixed cutter 116 may be manufactured using tungsten carbide as the substrate. While the fixed cutter 116 can be formed using a cylindrical tungsten carbide “blank” as the substrate, which is sufficiently long to act as a mounting stud for the cutting face, the substrate may equally comprise an intermediate layer bonded at another interface to another metallic mounting stud. To form the cutting face, the substrate may be placed adjacent a layer of ultra-hard material particles, such as diamond or cubic boron nitride particles, and the combination is subjected to high temperature at a pressure where the ultra-hard material particles are thermodynamically stable. This results in recrystallization and formation of a polycrystalline ultra-hard material layer, such as a polycrystalline diamond or polycrystalline cubic boron nitride layer, directly onto the upper surface of the substrate. When using polycrystalline diamond as the ultra-hard material, the fixed cutter 116 may be referred to as a polycrystalline diamond compact cutter or a “PDC cutter,” and drill bits made using such PDC fixed cutters 116 are generally known as PDC bits.
As illustrated, the drill bit 100 may further include a plurality of rolling element assemblies 118, shown as rolling element assemblies 118a and 118b. The orientation of a rotational axis of each rolling element assembly 118a,b with respect to a tangent to an outer surface of the blade 104 may dictate whether the particular rolling element assembly 118a,b operates as a rolling DOCC element, a rolling cutting element, or a hybrid of both. As mentioned above, rolling DOCC elements may prove advantageous in allowing for additional weight-on-bit (WOB) to enhance directional drilling applications without over engagement of the fixed cutters 116. Effective DOCC also limits fluctuations in torque and minimizes stick-slip, which can cause damage to the fixed cutters 116.
With reference to
If, however, the rotational axis A of the rolling element 122 is substantially perpendicular to the leading face 106 of the blade 104, then the rolling element assembly 118a,b may substantially operate as a rolling cutting element. Said differently, if the rotational axis A of the rolling element 122 lies on a plane that is perpendicular to a plane passing through the longitudinal axis 107 (
Accordingly, as depicted in
Traditional load-bearing type cutting elements for DOCC unfavorably affect torque-on-bit (TOB) by simply dragging, sliding, etc. along the formation, whereas a rolling DOCC element, such as the presently described rolling element assemblies 118b, may reduce the amount of torque needed to drill a formation because it rolls to reduce friction losses typical with load bearing DOCC elements. A rolling DOCC element will also have reduced wear as compared to a traditional bearing element. As will be appreciated, however, one or more of the rolling element assemblies 118b can also be used as rolling cutting elements, which may increase cutter effectiveness since it will distribute heat more evenly over the entire cutting edge and minimize the formation of localized wear flats on the rolling cutting element.
For example, the bit face profile 128 may include a gage zone 130a located opposite a gage zone 130b, a shoulder zone 132a located opposite a shoulder zone 132b, a nose zone 134a located opposite a nose zone 134b, and a cone zone 136a located opposite a cone zone 136b. The fixed cutters 116 included in each zone may be referred to as cutting elements of that zone. For example, fixed cutters 116a included in gage zones 130 may be referred to as gage cutting elements, fixed cutters 116b included in shoulder zones 132 may be referred to as shoulder cutting elements, fixed cutters 116c included in nose zones 134 may be referred to as nose cutting elements, and fixed cutters 116d included in cone zones 136 may be referred to as cone cutting elements.
Cone zones 136 may be generally concave and may be formed on exterior portions of each blade 104 (
As illustrated, the blade profile 138 may include an inner zone 142 and an outer zone 144. The inner zone 142 may extend outward from the longitudinal axis 107 to a nose point 146, and the outer zone 144 may extend from the nose point 146 to the end of the blade 104. The nose point 146 may be a location on the blade profile 138 within the nose zone 134 that has maximum elevation as measured by the bit longitudinal axis 107 (vertical axis) from reference line 140 (horizontal axis). A coordinate on the graph in
Depending on how the rotational axis A (
Moreover, depending on how they are oriented with respect to the longitudinal axis 107, each rolling element assembly 118a,b (
Back rake can be defined as the angle subtended between the Z1 axis of a given rolling element 122 and the Z-R plane. More particularly, as the Z1 axis of a given rolling element 122 rotates offset backward or forward from the Z-R plane, the amount of offset rotation is equivalent to the measured back rake. If, however, the Z1 axis of a given rolling element 122 lies on the Z-R plane, the back rake for that rolling element 122 will be 0°.
In some embodiments, one or more of the rolling element assemblies 118a,b may exhibit a side rake that ranges between 0° and 45° (or 0° and −45°). In some embodiments, one or more of the rolling element assemblies 118a,b may exhibit a side rake that ranges between 45° and 90° (or −45° and −90°). In other embodiments, one or more of the rolling element assemblies 118a,b may exhibit a back rake that ranges between 0° and 45° (or 0° and −45°). The selected side rake will affect the amount of rolling versus the amount of sliding that a rolling element 122 included with the rolling element assembly 118a,b will undergo, whereas the selected back rake will affect how a cutting edge of the rolling element 122 engages the formation (e.g., the first and second formations 124, 126 of
Referring again to
For instance, in an alternative embodiments, one or more of the rolling element assemblies 118a,b may be located in a kerf forming region 120 located between adjacent fixed cutters 116. During operation, the kerf forming region 120 may result in the formation of kerfs on the underlying formation being drilled. One or more of the rolling element assemblies 118a,b may be located on the bit body 102 such that they will engage and otherwise extend across one or multiple formed kerfs during drilling operations. In such an embodiment, the rolling element assemblies 118a,b may also function as prefracture elements that roll on top of or otherwise crush the kerf(s) formed on the underlying formation between adjacent fixed cutters 116. In other cases, one or more of the rolling element assemblies 118a,b may be positioned on the bit body 102 such that they will proceed between adjacent formed kerfs during drilling operations. In yet other embodiments, one or more of the rolling element assemblies 118a,b may be located at or adjacent the apex of the drill bit 100 (i.e., at or near the longitudinal axis 107). In such embodiments, the drill bit 100 may fracture the underlying formation more efficiently.
In some embodiments, as illustrated, the rolling element assemblies 118a,b may each be positioned on a respective blade 104 such that the rolling element assemblies 118a,b extend orthogonally from the outer surface 119 (
The top and bottom housing members 204a,b in this example may each include a substrate 208 and a diamond table 210 disposed on the substrate 208. The substrate 208 may be formed of a variety of hard or ultra-hard materials including, but not limited to, steel, steel alloys, tungsten carbide, cemented carbide, and any derivatives and combinations thereof. Suitable cemented carbides may contain varying proportions of titanium carbide (TiC), tantalum carbide (TaC), and niobium carbide (NbC). Additionally, various binding metals may be included in the substrate 208, such as cobalt, nickel, iron, metal alloys, or mixtures thereof. In the substrate 208, the metal carbide grains are supported within a metallic binder, such as cobalt. In other cases, the substrate 208 may be formed of a sintered tungsten carbide composite structure or a diamond ultra-hard material, such as polycrystalline diamond or thermally stable polycrystalline diamond (TSP).
The diamond table 210 may be made of a variety of ultra-hard materials including, but not limited to, polycrystalline diamond (PCD), thermally stable polycrystalline diamond (TSP), cubic boron nitride, impregnated diamond, nanocrystalline diamond, ultra-nanocrystalline diamond, and zirconia. Such materials are very hard-wearing and are suitable for use in bearing surfaces as herein described. While the illustrated embodiments show the diamond table 210 and the substrate 208 as two distinct components of the rolling element 208, those skilled in the art will readily appreciate that the diamond table 210 and the substrate 208 may alternatively be integrally formed and otherwise made of the same materials, without departing from the scope of the disclosure.
The rolling element 206 may be formed of any solid material that is preferably has good hardness, durability, and other mechanical properties that would provide good service life in the uses described herein. In this example, the rolling element 206 may include a substrate 212 similar to the substrate 208 and made of the same materials noted above that have good hardness and wear resistance. The rolling element 206 may also include, by way of example, opposing diamond tables 214a and 214b disposed on the opposing ends of the substrate 212. The diamond tables 214a,b may be made of the same materials as the diamond tables 210 noted above, and which also have good hardness and wear resistance. In at least one embodiment, the diamond tables 214a,b may alternatively be made of zirconia. It should be noted that not all features of the drawing are to scale, and that a thickness or an axial extent of both the diamond tables 214a,b may not be the same, and one of the diamond tables 214a,b may thicker than the other or omitted from the rolling element 206 altogether. In some embodiments, the substrate 212 may be absent and the rolling element 206 may be made entirely of the material of the diamond tables 214a,b.
The rolling element 206 may comprise and otherwise include one or more cylindrical bearing portions. More particularly, in this example, the entire rolling element 206 is cylindrical and made of hard, wear-resistant materials, and thus any portion of the rolling element 206 may be considered as a cylindrical bearing portion to the extent it slidingly engages a bearing surface of the housing 201 (e.g. the concave groove 218) when rolling, such as would be expected during drilling operations. In some embodiments, for example, one or both of the diamond tables 214a,b may be considered cylindrical bearing portions for the rolling element 206. In other embodiments, one or both of the diamond tables 214a,b may be omitted from the rolling element 206 and the substrate 212 may alternatively be considered as a cylindrical bearing portion. In yet other embodiments, the entire cylindrical or disk-shaped rolling element 206 may be considered as a cylindrical bearing portion and may be made of any of the hard or ultra-hard materials mentioned herein, without departing from the scope of the disclosure.
As illustrated, the top housing member 204a may provide or otherwise define a slot 216 that receives and constrains the rolling element 206 for rotation within the housing 201. As introduced above, the rolling element 206 may exhibit a length L extending between the opposing axial ends thereof and the slot 216 may be sized slightly larger than the length L. As a result, an arcuate portion of the rolling element 206 may be able to extend through the slot 216 such that the entire length L becomes exposed and otherwise protrudes out of the top element 204a a short distance. Accordingly, as the rolling element 206 rotates about its rotational axis A during operation, an arcuate portion of the rolling element 206 is exposed through the slot 216, thereby allowing the entire outer circumferential surface of the rolling element 206 across the length L to be used for cutting or engaging the underlying formation. As protruded from the diamond table 210 of the top element 204a, in some embodiments, the rolling element 206 may be able to provide DOCC for a drill bit (i.e., the drill bit 100 of
As illustrated, the diamond table 210 of the bottom housing member 204b may define or otherwise provide a concave groove 218 (optionally, a cylindrical groove) used as at least a portion of a bearing surface to guide the rolling element 206 and decrease the contact stresses between the bottom housing member 204b and the rolling element 206. As will be appreciated, the bottom housing member 204b will experience most of the load exerted on the rolling element 206. Accordingly, it may prove advantageous to have the ultra-hard material of the diamond table 210 of the bottom element 204b in direct contact with the ultra-hard material of the diamond tables 214a,b of the rolling element 206 during operation, which will help to reduce the amount of friction and wear as the rolling element 206 rolls against the formation. Moreover, such embodiments reduce or eliminate the need for lubrication between the bottom housing member 204b and the rolling element 206. In contrast, the top housing member 204a should see only minimal loads under normal operation conditions. It should be noted that, given the design of the rolling element assembly 200, a force exerted on the rolling element 206 and/or the diamond table 210 of the bottom housing member 204b during a drilling operation may primarily be of a compressive nature.
In some embodiments, the bearing surfaces of the rolling element assembly 200 may be polished so as to reduce friction between opposing surfaces. For instance, surfaces of the rolling element assembly 200 that may be polished to reduce friction include, but are not limited to, the rolling element 206, the slot 216, any internal surface of the top element 204a, the bottom element 204b, and the concave groove 218. In at least one embodiment, such surfaces may be polished to a surface finish of about 40 micro-inches or better.
The slot 216 may further include or otherwise define opposing side surfaces 304 (only one shown). In some embodiments, the side surfaces 304 may engage the opposing diamond tables 214a,b of the rolling element 206. Accordingly, in at least one embodiment, the side surfaces 304 may be substantially parallel to the opposing diamond tables 214a,b. In other embodiments, however, the opposing side surfaces 304 may be provided or otherwise machined at an angle or radius with respect to the opposing diamond tables 214a,b, without departing from the scope of the disclosure.
The slot 216 in
Referring now to
As illustrated, the rolling element assembly 500 may include a housing 502 configured to receive and retain the rolling element 206 therein. In the illustrated embodiment, the housing 502 includes a first side member 504a and a second side member 504b, where the first and second side members 504a,b operate as a clamshell-like structure that partially encloses and retains the rolling element 206 therein. As discussed above, the rolling element 206 may include the substrate 212 and the opposing diamond tables 214a,b disposed on opposing ends of the substrate 212, but may alternatively omit one or both of the diamond tables 214a,b, or the entire rolling element 206 may comprise an ultra-hard material similar to the diamond tables 214a,b. Moreover, any portion of the rolling element 206 may be considered as a bearing portion configured to bear against and otherwise engage any internal surface of the housing 502 and/or the underlying formation being drilled during drilling operations. In
The housing 502 may be configured to partially enclose the rolling element 206 such that a portion of the rolling element 206 protrudes or otherwise extends through a slot 506 defined by the housing 502 and, more particularly, cooperatively defined by the first and second side members 504a,b. As a result, an arcuate portion of the rolling element 206 is able to extend through the slot 506 such that the entire length L becomes exposed and otherwise protrudes out of the housing 502 a short distance. As the rolling element 206 rotates about its rotational axis A during operation, an arcuate portion of the rolling element 206 is exposed through the slot 506, thereby allowing the entire outer circumferential surface of the rolling element 206 across the length L to be used for cutting or engaging the underlying formation. Accordingly, as protruding from the housing 502, the rolling element 206 may operate as a rolling DOCC element for a drill bit (i.e., the drill bit 100 of
Similar to the slot 216 of
Similar to the slot 216, and as best seen in
In some embodiments, as best seen in
The substrate 512 may be similar to the substrate 212 of the rolling element 206 and made of the same materials noted above, and the opposing diamond tables 514a,b may be similar to the diamond tables 214a,b of the rolling element 206 and may also be made of the same materials noted above. In another embodiment, one or both of the diamond tables 514a,b may be omitted and the substrate 512 may serve as the bearing surface. In such embodiments, the substrate 512 may be made of the same materials of the diamond tables 514a,b or any other hard or ultra-hard material such as, but not limited to steel, a coated surface, or a matrix material comprising an ultra-hard material selected from the group consisting of microcrystalline tungsten carbide, cast carbides, cemented carbides, spherical carbides, or a combination thereof.
As will be appreciated, the bearing element 508 will assume most (if not all) of the load exerted on the rolling element 206 during operation. Accordingly, it may prove advantageous to have the bearing surface of the bearing element 508 in direct contact with the ultra-hard material of the diamond tables 214a,b of the rolling element 206 during operation, which will help to reduce the amount of friction and wear as the rolling element 206 rolls while contacting the formation. Moreover, such embodiments reduce or eliminate the need for lubrication between the bearing element 508 and the rolling element 206.
The first and second side members 504a,b may be made of tungsten carbide, steel, an engineering metal, a coated material (i.e., using processes such as chemical vapor deposition, plasma vapor deposition, etc.), and other hard or suitable abrasion resistant materials. Each side member 504a,b may provide and otherwise define a side surface 516 (only one shown in
In other embodiments, or in addition thereto, one or both of the side surfaces 516 may have a bearing element 518 (illustrated in phantom in
Accordingly, the housing 502 may define or provide one or more internal bearing surfaces, such as the inner surface 507 of the slot 506, the side surfaces 516, and the bearing element 508. Moreover, any of the bearing surfaces of the rolling element assembly 500 may be polished so as to reduce friction between opposing moving surfaces. For instance, surfaces of the rolling element assembly 500 that may be polished to reduce friction include, but are not limited to, the rolling element 206, the inner surface 507, the bearing element 508, the side surfaces 516, and the bearing element(s) 518 (if used) secured to the side surfaces 516. In at least one embodiment, such surfaces may be polished to a surface finish of about 40 micro-inches or better.
It should be noted that, although the rolling element assembly 500 has been described as retaining one rolling element 206, embodiments of the disclosure are not limited thereto and the rolling element assembly 500 (or any of the rolling element assemblies described herein) may include and otherwise use two or more rolling elements 206, without departing from the scope of the disclosure. In such embodiments, the multiple rolling elements 206 may be supported by a single bearing element 508 or each rolling element 206 may be supported by individual bearing elements 508. Moreover, the housing 502 may be modified accordingly to retain/accommodate the increased number of rolling elements 206 and/or bearing elements 508.
Referring now to
The rolling element assembly 500 may be secured within the pocket 602 via a variety of means and mechanisms. In some embodiments, for example, the rolling element assembly 500 may be secured within the pocket 602 by brazing, welding, threading, an industrial adhesive, press-fitting, shrink-fitting, one or more mechanical fasteners (e.g., screws, bolts, snap rings, pins, ball bearing retention mechanism, etc.), or any combination thereof. In other embodiments, however, the rolling element assembly 500 may be secured in the pocket 602 using the locking element 604. Once properly installed, the locking element 604 may prevent the rolling element assembly 500 from detaching and otherwise withdrawing from the pocket 602 due to the forces that act on the rolling element assembly 500 during drilling operations. As illustrated, the locking element 604 may be configured to be inserted into a cavity 606 cooperatively defined by the housing 502 and the pocket 602. More particularly, the cavity 606 may be formed by a pocket groove 608a defined in the pocket 602 and a corresponding housing groove 608b defined on the outer surface of each of the first and second side members 504a,b.
As depicted in
Suitable materials for the locking element 604 may include, but are not limited to, a low-temperature metal, a shaped memory metal, spring steel, and any combination thereof. Other suitable materials include a liquid epoxy, an elastomer, a ceramic material, or a plastic material that may be injected into the cavity 606 and hardened to form a solid structure. The liquid epoxy may be used alone, or in combination with any other materials, such as a metal locking ring or a metal locking wire. In yet other embodiments, the locking element 604 may comprise an adhesive that may fill any void in the cavity 606 that is not already filled, for example, by a lock ring or the lock wire inserted therein. It should be understood that, although the cavity 606 formed by the corresponding housing grooves 608b and pocket grooves 608a is illustrated as being “U” shaped, the cavity 606 may have any suitable shape, such as a “U” shape with ninety-degree angles, a “V” shape, an arc or semi-circle shape, or a polygon shape.
Referring again to
Unlike the rolling element assembly 500 of
Similar to the rolling element assembly 500 of
As will be appreciated, the second side member 504b (not illustrated) may also provide corresponding bearing elements 518 on corresponding structural components. In at least one embodiment, however, the second side member 504b may be shaped and otherwise configured to receive the bearings 518 on the opposing surfaces 516 and the inner arcuate surface 702 of the first side member 504a. In other embodiments, first and second side members 504a,b may cooperatively secure the bearings 518 on the opposing surfaces 516 and the inner arcuate surface 702 of the housing 502, without departing from the scope of the disclosure.
It should be noted that any of the rolling element assemblies described herein may include one or more side members similar to the side member 504a and including one or more bearings 518, without departing from the scope of the disclosure.
Referring now to
Similar to the rolling element assemblies 500 and 700, the rolling element assembly 800 may be secured in the cutting element pocket 602 (
Unlike the rolling element assemblies 500 and 700, however, in the rolling element assembly 800, a side surface 806 of the rolling element 206 may be configured to contact and ride against an opposing inner surface of the pocket 602 (
Referring now to
The housing 902 may be configured to partially enclose the rolling element 206 such that a portion of the rolling element 206 protrudes or otherwise extends through a slot 906 defined by the housing 902 and, more particularly, cooperatively defined by the first and second side members 904a,b. The dimensions of the slot 906 may be less than the diameter of the rolling element 206 and, as a result, the housing 902 may be configured to secure the rolling element 206 within the housing 902 via the slot 906. The slot 906 may be sized and otherwise configured to allow the entire length L of the rolling element 206 to protrude out of the housing 502 a short distance. As the rolling element 206 rotates about its rotational axis A during operation, an arcuate portion of the rolling element 206 is exposed through the slot 906, thereby allowing the entire outer circumferential surface of the rolling element 206 across the length L to be used for cutting or engaging the underlying formation.
The slot 906 may include at least one curved or tapered inner surface 908 (
The housing 902 (i.e., the first and second side members 904a,b) may further provide and otherwise define an inner arcuate surfaces 910 (
Each side member 904a,b may also provide and otherwise define a side surface 912 (partially shown in
Accordingly, the housing 902 may define or provide one or more internal bearing surfaces, such as the inner surfaces 908 of the slot 906, the first and second side members 904a,b, and the inner arcuate surfaces 910. Moreover, any of the bearing surfaces of the rolling element assembly 900 may be polished so as to reduce friction between opposing moving surfaces. For instance, surfaces of the rolling element assembly 900 that may be polished to reduce friction include, but are not limited to, the rolling element 206, the surface 908, the arcuate surface(s) 910, the side surfaces 912, and any bearing element (if used) secured to the side surfaces 912. In at least one embodiment, such surfaces may be polished to a surface finish of about 40 micro-inches or better.
As protruding from the housing 902, the rolling element 206 may be configured to operate as a rolling DOCC element for a drill bit (i.e., the drill bit 100 of
Moreover, the drill bit 1000 may further include one or more rolling element assemblies 900 selectively positioned at various locations on the blades 104. More particularly, the drill bit 1000 may include a first rolling element assembly 900a and a second rolling element assembly 900b. As illustrated, the first rolling element assembly 900a may be positioned in a primary row of fixed cutters 116 and the second rolling element assembly 900b may be positioned in a row of cutting elements behind the primary fixed cutters 116. In operation, either of the first or second rolling element assemblies 900a,b may function as rolling DOCC elements. In other embodiments, one or both of the first and second rolling element assemblies 900a,b may function as rolling cutting elements or a hybrid rolling DOCC/cutting element, depending on its orientation on the particular blade 104.
The first rolling element assembly 900a may be secured within a cutter pocket 1002 adjacent one or more fixed cutters 116. Similar to any of the fixed cutters 116, first rolling element assembly 900a may be secured in the corresponding cutter pocket 1002 via a variety of means and mechanisms such as, but not limited to, brazing, welding, threading, industrial adhesives, press-fitting, shrink-fitting, one or more mechanical fasteners (e.g., screws, bolts, snap rings, pins, etc.), or any combination thereof. In other embodiments, however, the first rolling element assembly 900a may be secured in the cutter pocket 1002 using the locking element 604, as generally described above and illustrated in
The second rolling element assembly 900b may be secured within a pocket 1004 defined at a predetermined location in the blade 104. Similar to the pocket 602 of
As illustrated, the rolling element 1100 may further include a diamond table 1106 positioned at one or both ends 104a,b of the body 1102. The diamond table(s) 1106 may be made of similar materials as the diamond tables 214a,b described above. In at least one embodiment, however, the diamond table(s) 1106 may comprise a TSP disc or may otherwise be made of TSP. In some embodiments, as depicted, the diamond table 1106 may comprise a single cylindrical element that extends through the body 1102 between the first and second ends 1104a,b. The diamond table 1106 may be exposed at each end 1104a,b and thereby function as a bearing element for the rolling element 1100. It should be noted that, while the diamond table(s) 1106 are illustrated as having a generally circular cross-section, embodiments are not limited thereto and the diamond table(s) 1106 may alternatively exhibit any suitable cross-sectional shape, such as, oval, polygonal, etc.
As will be appreciated any portion of the rolling element 1100 may be considered as a cylindrical bearing portion that may bear against and otherwise engage another structure or component during drilling operations. In some embodiments, for example, one or both of the diamond tables 1106 may be considered cylindrical bearing portions for the rolling element 1100. In other embodiments, one or both of the diamond tables 1106 may be omitted from the rolling element 1100 and the substrate 1102 may alternatively be considered as a cylindrical bearing portion. In yet other embodiments, the entire cylindrical rolling element 1100 may be considered as a cylindrical bearing portion and may be made of any of the hard or ultra-hard materials mentioned herein, without departing from the scope of the disclosure.
Referring now to
The rolling element 1206 may further include one or more inserts 1208 positioned on the body 1202 and extending radially outward from the outer surface thereof. More particularly, the inserts 1208 may be angularly offset from each other about the outer circumferential surface of the body 1202 and may be located in a generally central portion of the body 1202 between the first and second ends 1204a,b. In some embodiments, the inserts 1208 may be embedded in insert pockets 1210 defined in the body 1202. For the sake of illustration,
As will be appreciated, the rolling element assembly 1200 may prove advantageous in increasing the friction of the rolling element 1200 at the formation interface during operation. The increased friction may result in a relatively greater amount of formation being removed in a given number of revolutions of the drill bit (e.g., drill bit 100) employing the rolling element assembly 1200. Moreover, the inserts 1208 may crush or grind the underlying formation during drilling operations, and may prove advantageous in crushing one or more kerfs formed between adjacent fixed cutters 116 (
During operation, the rolling element 1206 may be configured to engage inner arcuate surfaces 1212 (
Similar to the rolling element assembly 500 of
Referring now to
As illustrated in
As illustrated, a diameter of the middle or third diamond table 1314c is greater than the diameter of the first and second diamond tables 1314a,b. Accordingly, in at least one embodiment, the outer surfaces of the first and second substrates 1312a,b may provide a relief portion 1306 where the first and second substrates 1312a,b transition from the smaller diameter of the first and second diamond tables 1314a,b to the larger diameter of the third diamond table 1314c. In such embodiments, the relief portions 1306 may comprise a radius, a chamfered edge, a tapered surface, or the like. The relief portions 1306 may prove advantageous in providing an area for packing and cooling of the rolling element 1302 during operation. For instance, the relief portions 1306 may permit fluid to enter the housing 1304, circulate around the rolling element 1302, and subsequently exit the housing 1302 via the relief portions 1306.
It should be noted that, although the diameter of the third diamond table 1314c is described as being greater than the diameter of the first and second diamond tables 1314a,b, embodiment are not limited thereto. Any one or any two of the first, second, and third diamond tables 1314a,b,c may have a diameter greater than the diameter of the remaining diamond tables 1314a,b,c, without departing from the scope of the disclosure. Moreover, in some embodiments, more or less than three diamond tables 1314a-c may be employed. In at least one embodiment, for instance, the diamond tables 1314a-c may each be omitted and the rolling element 1302 may alternatively comprise a monolithic hard or ultra-hard material.
The rolling element 1302 may be received and retained in the housing 1304 of the rolling element assembly 1300. Similar to the housing 502 of
Like the rolling element assembly 700 of
Similar to the rolling element assembly 700 of
Referring now to
In
In
In
In
As will be appreciated, the rolling elements 1400a-d may each prove advantageous in increasing the friction at the formation interface during operation. The increased friction may result in a relatively greater amount of formation being removed in a given number of revolutions of the drill bit (e.g., the drill bit 100 of
Referring now to
The pocket 1502 may be sized and otherwise configured to allow the entire length L of the rolling element 206 to protrude out of the housing pocket 1502 a short distance. Accordingly, as the rolling element 206 rotates about its rotational axis A during operation, an arcuate portion of the rolling element 206 is exposed, thereby allowing the entire outer circumferential surface of the rolling element 206 across the length L to be used for cutting or engaging the underlying formation.
As best seen in
At least one depression 1512 (
Similar to the embodiment of
Accordingly, the pocket 1502 may define or provide one or more internal bearing surfaces, such as the inner surface 1506, the inner arcuate surface 1508, and the inner side surfaces 1514. Moreover, any of the bearing surfaces of the rolling element assembly 1500 may be polished so as to reduce friction between opposing moving surfaces. For instance, surfaces of the rolling element assembly 1500 that may be polished to reduce friction include, but are not limited to, the rolling element 206, the inner surface 1506, the inner arcuate surface 1508, and the inner side surfaces 1514, any bearing element (if used) secured to the inner side surfaces 1514, and the outer surface of the locking pin 1504. In at least one embodiment, such surfaces may be polished to a surface finish of about 40 micro-inches or better
Referring now to
The rolling element assembly 1500 may prove advantageous over the rolling element assemblies 500, 700, 800, 900, 1200, and 1300 described above in that the rolling element assembly 1500 does not include a housing that receives the rolling element 206. Rather, the rolling element 206 is secured within the pocket 1502 at least partially with the locking pin 1504. As a result, the rolling element assembly 1500 may occupy less space on the blade 104, and an increased number of rolling element assemblies 1500 may be positioned in a given blade 104. Occupying less space on the blade 104 may also allow the use of smaller sized drill bits.
Embodiments disclosed herein include a drill bit that includes a bit body having one or more blades extending therefrom, a plurality of cutters secured to the one or more blades, and one or more rolling elements positioned on the bit body, each rolling element having a cylindrical bearing portion defining a rotational axis, wherein each rolling element is rotatably coupled to the bit body about its rotational axis within a housing that defines one or more internal bearing surfaces in engagement with the cylindrical bearing portion, the housing partially encircling the cylindrical bearing portion while leaving a full length of the rolling element exposed.
The above-described embodiment may have one or more of the following additional elements in any combination: Element 1: wherein the housing encircles more than 180° but less than 360° of a circumference of the cylindrical bearing portion while leaving the full length of the rolling element exposed. Element 2: wherein the rolling element is cylindrical and at least a portion of the rolling element comprises the cylindrical bearing portion. Element 3: wherein the cylindrical bearing portion is a continuous cylindrical bearing portion that extends the full length of the rolling element. Element 4: wherein the bit body comprises one or more pockets, and wherein the housing of each rolling element is secured to the bit body within a respective one of the one or more pockets. Element 5: wherein at least one of the one or more pockets comprises a cutter pocket and the housing is securable within the cutter pocket. Element 6: wherein the bit body defines at least a portion of the internal bearing surface. Element 7: wherein at least one of the one or more rolling elements is oriented to exhibit a side rake angle ranging between 0° and 45°. Element 8: wherein one or more rolling elements is oriented to exhibit a side rake angle ranging between 45° and 90° and thereby operates as a depth of cut controller. Element 9: wherein the housing for at least one of the rolling elements is oriented to exhibit a back rake angle ranging between 0° and 45°, thereby allowing the at least one of the one or more rolling elements to operate as a cutter. Element 10: wherein the rotational axis of at least one of the one or more rolling elements lies on a plane that passes through a longitudinal axis of the bit body. Element 11: wherein at least one of the rolling elements comprises a polycrystalline diamond compact (PDC) including at least one diamond table secured to a substrate. Element 12: wherein at least one of the rolling elements further comprises a first diamond table secured at a first end of the substrate and a second diamond table secured at a second end of the substrate. Element 13: wherein at least one of the rolling elements comprises three or more diamond tables and two or more substrates. Element 14: wherein a diameter of at least one of the diamond tables is greater than a diameter of all of the other diamond tables on that rolling element. Element 15: wherein the housing further comprises a first side member and a second side member, and the first and second side members cooperatively define a slot through which the bearing element protrudes to expose the full length of the rolling element. Element 16: wherein at least one of the one or more internal bearing surfaces comprises a material selected from the group consisting of a matrix material comprising an ultra-hard material, polycrystalline diamond, thermally stable polycrystalline diamond, cubic boron nitride, impregnated diamond, nanocrystalline diamond, ultra-nanocrystalline diamond, and zirconia. Element 17: wherein the at least one of the one or more rolling elements includes a body and one or more inserts that extend radially outward from the body. Element 18: wherein the housing is positioned within a pocket defined in the bit body, the drill bit further comprising at least one cavity cooperatively defined by a pocket groove formed within the pocket and a housing groove formed on an exterior of the housing, and a locking element that extends into the cavity to secure the housing within the pocket. Element 19: further comprising a bearing cavity defined in a bottom of the housing, and a bearing element positioned in the bearing cavity and including a bearing surface engageable with the rolling element during operation.
By way of non-limiting example, exemplary combinations applicable to the above-described embodiment include: Element 4 with Element 5; Element 11 with Element 12; Element 11 with Element 13; and Element 13 with Element 14.
Therefore, the disclosed systems and methods are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered, combined, or modified and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the elements that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A. B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
The present application claims priority to U.S. Provisional Patent App. Ser. No. 62/013,928, filed on Jun. 18, 2014.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/030974 | 5/15/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62013928 | Jun 2014 | US |