1. Field of the Invention
This invention relates generally to oil film bearings that are used to rotatably support the necks of rolls in a rolling mill.
2. Description of the Prior Art
Rolling mill oil film bearings are typically held in place by lock assemblies that are rotated into and out of mechanical interengagement with the roll necks. In the larger size bearings, e.g., those with rolls measuring one and one half meters in diameter and larger, lock rotation requires relatively large clearances between the coacting roll neck and lock assembly surfaces, which in turn gives rise to a tendency of the lock assemblies to tilt, misalign, and bind during mounting and dismounting. This problem is further exacerbated by the weight of the larger lock assemblies, which can exceed 900 kilograms.
The objective of the present invention is to ease the task of rotating the lock assemblies into and out of mechanical interengagement with the roll necks by incorporating strategically placed bearings that encourage proper alignment while avoiding the tendency of the lock assemblies to tilt and bind.
In accordance with the present invention, an oil film bearing comprises a chock and associated end plates forming a housing that contains both sleeve bearing and thrust bearing components. A circular lock assembly coacts with the thrust bearing component to axially retain the oil film bearing on the roll neck. The lock assembly is rotatable into and out of mechanical interengagement with the roll neck. First bearing elements are carried by and project inwardly from the lock assembly to contact a surface of the roll neck at a first location. Second bearing elements project inwardly from a chock end plate of the housing to contact an outer surface of the lock assembly at a second location spaced axially from the first location. The first and second bearing elements encourage proper alignment of the lock assembly on the roll neck, thus avoiding or at least significantly minimizing the tendency of the lock assembly to tilt and bind during mounting and dismounting.
With reference initially to
A thrust ring 42 is interposed between the sleeve 36 and thrust bearing 34, and a lock assembly 44 coacts with the inner race 34a of the thrust bearing 34 to axially retain the oil film bearing on the roll neck.
As can best be seen by further reference to
The piston 46 is interengaged with the roll neck by means of a bayonet-type connection. More particularly, with reference to
Once the lock assembly is fixed axially on the roll neck, hydraulic fluid can be introduced into cylinder chamber 54a to urge the cylinder 48 to the left as viewed in
Removal of the oil film bearing is accomplished by first loosening the lock nut 58 and then hydraulically pressurizing chamber 54b, causing the cylinder 48 to move to the right as viewed in
As previously noted, during mounting and dismounting of the oil film bearing, the lock assembly 44 has a tendency to tilt and bind. To resist this tendency, first ball-type bearing elements 66 are carried by and project inwardly from the piston 46 to contact the reduced diameter section 16 of the roll neck at a first location. Second roller-type bearing elements 68 project inwardly from the outer end plate 30 to contact the outer surface of the cylinder component 48b at a second location spaced axially from the first location contacted by the first bearing elements. The first and second bearing elements 66, 68 coact to resist tilting of the lock assembly, thus avoiding binding as it rotates into and out of interlocked engagement with the roll neck.
As shown in
In still another embodiment, as shown in
Number | Date | Country | |
---|---|---|---|
60887419 | Jan 2007 | US |