The present application claims priority of European Patent Application No. 20154128.1 filed Jan. 28, 2020, the contents of which are incorporated by reference herein.
The present invention starts from a rolling mill having a first rolling stand for rolling a flat rolled product composed of metal. A sensor device is arranged upstream and/or downstream of the first upstream rolling stand.
The sensor device is connected to a control device for the rolling mill in order to transfer the detected measured variable. The control device is configured and operable in such that it takes into account the transferred measured variable in a context of determining a control value for the first rolling stand.
The sensor device is configured and operable in such that at least one measured variable characteristic of a material property of the flat rolled product can be detected.
The control of the first rolling stand with the control value influences the material property of the flat rolled product.
The first rolling stand has an upper working roll and a lower working roll.
In the context of the present invention, the term “first rolling stand” is not intended to mean that the rolling mill necessarily has a plurality of rolling stands and that the first rolling stand is the forwardmost upstream rolling stand, through which the flat rolled product first runs. On the contrary, it is first intended to include the case where the rolling mill has only the first rolling stand. In this case, only the first rolling stand is present. Moreover, in the case where the rolling mill has a plurality of rolling stands, the term “first rolling stand” also serves merely to distinguish it from the other rolling stands of the rolling mill. On the other hand, no implied sequence is intended. Thus, even in this case, the first rolling stand can be arranged at any location in the succession of rolling stands of the rolling mill. Thus, for example, if the flat rolled product runs first through a rolling stand A, then through a rolling stand B, then through a rolling stand C and finally through a rolling stand D, the first rolling stand can be any of rolling stands A to D, while the other rolling stands are second rolling stands.
In the production of a flat rolled product, the objective is to set the geometrical properties of the flat rolled product, especially its width and thickness, with the maximum possible precision. The same objective also applies to the profile or contour. Flatness is also to be maintained. In addition to these and possibly also other geometrical properties, material properties of the flat rolled product are furthermore also to be set. Material properties are properties which the flat rolled product should have in subsequent use, e.g. a certain yield strength, a certain material hardness or a certain magnetizability. Material properties are therefore properties which the material has irrespective of its specific current state (e.g. temperature) and also irrespective of its geometrical properties. The reason for certain material properties, apart from the material as such, is the grain structure of the metal.
The material properties can be set, at least partially, during the rolling of the flat rolled product. Often, however, there is a difference between the actual value of a material property and a desired target value. In this case, it is necessary to heat treat the flat rolled product after hot rolling. This applies very particularly if a “Goss texture” is to be established in the rolled product. However, similar problems are encountered also with certain steels, especially with AHSS (=advanced high strength steel) and with martensitic and bainitic grades. For heat treatment, the rolled product can be cooled in a suitable manner in a cooling section after the hot rolling or it can be treated in an annealing step in the context of cold rolling, for example, in order to set material properties. As an alternative, this treatment can take place after cold rolling or between two cold rolling steps.
From the technical article “Umformtechnik für die Elektromobilitat” [Forming technology for electro-mobility] by Gerhard Hirt et al., accessed on 21.01.2020 at https://publications.rwth-aachen.de/record/762556/files/762556.pdf, it is known that “asymmetric” rolling may be advantageous for establishing a texture of the rolled product which is favorable for magnetization. In asymmetric rolling, the peripheral speeds of an upper and a lower working roll of a rolling stand differ from one another. During rolling, shear forces therefore act on the flat rolled product in the transport direction. Owing to the shear forces, reordering of the crystal orientation is brought about.
A rolling mill of the type stated at the outset is known from WO 2017/157 692 A1, for example. In this rolling mill, the pass reduction or the rolling force, for example, are adjusted by means of the control value.
It is the object of the present invention to provide ways of enabling selective adjustment of an electric, magnetic or mechanical material property of the flat rolled product in a simple and reliable manner as required.
According to the invention, in a rolling mill of the type stated at the outset, the control device is configured and operable such that the control value determined taking into account the measured variable is a ratio of an upper peripheral speed at which the upper working roll rotates to a lower peripheral speed at which the lower working roll rotates.
Thus, a measured variable is detected, by means of which the corresponding material property of the flat rolled product can be directly determined at the point in time of measurement. There is thus a direct functional relationship between the measured variable, on the one hand, and the material property, on the other hand. In contrast, it is not necessary to perform complicated model calculations by means of which a development with respect to time can be modeled, for example.
Here, the phrase “at the point in time of measurement” is not intended to imply that, owing to the change in the state of the flat rolled product, e.g. its temperature, the material property likewise inevitably changes continuously in the course of time. However, the material property can be set to a different value by a corresponding treatment of the rolled product, e.g. by rolling in the first rolling stand or rolling in some other rolling stand or by means of a thermal treatment at a later time.
It is possible for the rolling mill to have only the first rolling stand mentioned and consequently to have only a single rolling stand. In this case, the sensor device is arranged entirely on its own immediately upstream or immediately downstream of the rolling stand. However, it is likewise possible for the rolling mill also to have at least one second rolling stand in addition to the first rolling stand. A number of different embodiments are possible in this case.
Thus, for example, it is possible for the second rolling stands not to be arranged between the sensor device and the first rolling stand. This embodiment is implemented, for example, when the sensor device is arranged upstream of the forwardmost upstream rolling stand of a multi-stand rolling train. The control value is determined by the control device taking into account the measured variable which acts on the forwardmost rolling stand or, conversely, the sensor assembly is arranged downstream of the last rolling stand of a multi-stand rolling train and the control value determined by the control device takes into account the measured variable which acts on the last rolling stand. This embodiment is likewise implemented, for example, when the sensor assembly is arranged between two rolling stands of a multi-stand rolling train and the control value determined by the control device takes into account the measured variable acts on one of these two rolling stands, or the control device determines two such control values, each one of which acts on a respective one of these two rolling stands.
As an alternative, it is possible for at least one of the second rolling stands to be arranged between the sensor device and the first rolling stand. This embodiment is implemented, for example, when the sensor device is arranged upstream of the forwardmost rolling stand of a multi-stand rolling train and the control value is determined by the control device taking into account the measured variable which acts on a rolling stand other than the forwardmost rolling stand or, conversely, the sensor assembly is arranged downstream of the last rolling stand of a multi-stand rolling train, and the control value determined by the control device takes into account the measured variable acting on a rolling stand other than the last rolling stand.
Of course, combinations of these approaches are also possible. Thus, for example, the sensor device can be arranged upstream of the forwardmost rolling stand of the multi-stand rolling train and, furthermore, a plurality of control values, one of which acts on the forwardmost rolling stand and another of which acts on a different rolling stand, can be determined by the control device taking into account the measured variable. Conversely, it is likewise possible for the sensor assembly to be arranged downstream of the last rolling stand of the multi-stand rolling train and, furthermore, for a plurality of control values, one of which acts on the last rolling stand and another acts on a different rolling stand, to be determined by the control device taking into account the measured variable.
The control device is preferably designed such that it determines the ratio of the upper roll peripheral speed to the lower peripheral speed in such a way that it is between 0.5 and 2.0, in particular between 0.9 and 1.1. It is thereby possible to cover all cases that are relevant in practice.
To be able to implement peripheral speeds that are different from one another, it is possible for the upper working roll to be driven by an upper drive and for the lower working roll to be driven by a lower drive, which is different from the upper drive. In this case, the different peripheral speeds can be implemented simply by corresponding setting of the two drives to different speeds.
As an alternative, it is possible for the upper working roll and the lower working roll to be driven by a common drive. In this case, a transmission provides a ratio of a speed of an upper output shaft of the transmission, with a shaft connected for conjoint rotation to the upper working roll, and provides a speed of a lower output shaft of the transmission, which lower shaft is connected for conjoint rotation to the lower working roll. The ratio can be continuously adjusted. The transmission is arranged between the common drive on one side and the upper working roll and the lower working roll on the other side.
In addition to setting a ratio of the peripheral speeds to one another, the control device may be designed such that the control value determined takes into account the measured variable which is a temperature modification of the upper working roll and/or of the lower working roll of the first rolling stand and/or of the flat rolled product before rolling in the first rolling stand. For example, cooling can be brought about by spraying on water, or heating can be brought about by induction heating.
If the sensor device is arranged upstream of the first rolling stand, the control device is preferably designed such that it outputs the control value to the first rolling stand, wherein the control value determined takes into account the measured variable, takes into account tracking of the flat rolled product from the sensor device to the first rolling stand. In controlling the first rolling stand, the control device thus takes into account the transport time which lapses between the detection of the measured variable for a certain segment of the flat rolled product and the rolling of the same segment of the flat rolled product in the first rolling stand.
The control device preferably comprises a model, by means of which the control device determines the control value for the first rolling stand, taking into account the measured variable, taking into account the control value determined taking into account the measured variable, and furthermore determines an expected value for the material property of the flat rolled product after rolling in the first rolling stand. A further sensor device, which can detect at least one further measured variable characteristic of the material property of the flat rolled product after rolling in the first rolling stand. It is furthermore preferably arranged downstream of the first rolling stand. The further sensor device is connected to the control device to transfer the detected further measured variable. Finally, the control device is preferably designed in such that it uses the further measured variable for a point in time which the control device determines, taking into account tracking of the flat rolled product from the first rolling stand to the further sensor device, and also adapts the model on the basis of a comparison of the further measured variable and the expected value of the material property. This procedure enables the model to be gradually adapted, better and better, to the actual behavior of the flat rolled product.
The control device is preferably configured such that determining the control value takes into account the temperature of the flat rolled product before the rolling of the flat rolled product in the first rolling stand and/or the rolling force during the rolling of the flat rolled product in the first rolling stand and/or the pass reduction during the rolling of the flat rolled product in the first rolling stand, in addition to the transferred measured variable. It is thereby possible to set the desired material property with a higher accuracy. The required dependency relationships can be stored in the control device in the form of characteristic maps, for example.
In a preferred embodiment, the sensor device comprises an excitation element and a first sensor element. A base signal is excited in the flat rolled product by means of the excitation element. Based on the excited base signal, a first sensor signal is detected by means of the first sensor element. It is possible for the sensor device to determine the transferred measured variable taking into account the first sensor signal. As an alternative, it is possible for the transferred measured variable to comprise the first sensor signal.
In individual cases, it may be possible to detect exclusively the first sensor signal. In general, however, the sensor device additionally comprises a number of second sensor elements. In this case, when viewed in the transport direction from the first sensor element, the respective second sensor element is arranged upstream or downstream of the first sensor element and/or laterally offset. A respective second sensor signal based on the excited base signal and of the same kind as the first sensor signal is detected by the respective second sensor element. It is possible for the sensor device to determine the transferred measured variable while also taking into account the respective second sensor signal. For example, the difference or the quotient of the corresponding sensor signals can be formed. As an alternative, it is possible for the transferred measured variable also to comprise the respective second sensor signal. In this case, similar evaluations can be carried out by the control device.
The base signal can be an eddy current, for example. Alternatively, the base signal can be a sound signal, in particular an ultrasound signal.
A connecting line from the excitation element to the first sensor element preferably runs parallel to the transport direction. This results in particularly reliable evaluation.
As already mentioned, the material property can be an electromagnetic property or a mechanical property of the rolled product.
In individual cases, hot rolling can be performed. In general, however, cold rolling is performed. Thus, the rolling mill is generally a cold rolling mill.
The above-described properties, features and advantages of this invention and the manner in which these are achieved will become more clearly and distinctly comprehensible in conjunction with the following description of the illustrative embodiments, which are explained in greater detail in combination with the drawings. Here, in schematic illustrations:
According to
Rolling can be hot rolling. In this case, the rolling mill is a hot rolling mill. Generally, however, cold rolling is involved. In this case, the rolling mill is a cold rolling mill.
Of the first rolling stand 1,
According to the illustration in
A sensor device 6 is arranged downstream of the first rolling stand 1. By means of the sensor device 6, it is possible to detect a measured variable M. The detected measured variable M is characteristic of a material property of the flat rolled product 2. Examples of such properties are electric conductivity, relative permeability and magnetic saturation or, more generally, an electromagnetic property of the rolled product 2. Further examples of material properties are the proof stress, the yield strength, the elongation at break or, more generally, a mechanical property of the rolled product 2. The variables mentioned may be either nondirectional (i.e. isotropic) or directional (i.e. anisotropic). They are all based on the grain structure and, where applicable, the alignment of the grains of the metal of which the rolled product 2 is composed.
One possible embodiment of the sensor device 6 is explained below in conjunction with
According to
The sensor device 6 furthermore comprises a first sensor element 8a. A first sensor signal Ia is detected by means of the first sensor element 8a. The detection of the first sensor signal Ia takes place after the excitation of the base signal, i.e. at a different, later point in time. At this later point in time, no base signal is generally being excited. However, a previously excited base signal has not yet fully died away. The first sensor signal Ia is based on the excited base signal. According to the illustration in
In
According to
Often, the sensor device 6 comprises a number of second sensor elements 8b to 8d in addition to the first sensor element 8a. The second sensor elements 8b to 8d are different elements from the first sensor element 8a (and in general also from the excitation element 7). As viewed from the excitation element 7, the second sensor elements 8b to 8d are generally arranged downstream of the excitation element 7, even if it is possible to depart from this in individual cases. By means of the second sensor elements 8b to 8d, it is possible to detect second sensor signals Ib to Id. The second sensor signals Ib to Id are likewise based on the excited base signal IW and are of the same kind as the first sensor signal Ia. The second sensor signals Ib to Id are generally detected simultaneously with the first sensor signal Ia.
If the second sensor elements 8b to 8d are additionally also present, the sensor device 6 can transfer all the sensor signals Ia to Id together as a measured variable M, for example, i.e. can transfer both the first sensor signal Ia and the second sensor signals Ib to Id. In this case, a corresponding evaluation of the sensor signals Ia to Id is performed by the control device 9. As an alternative, an evaluation of the sensor signals Ia to Id can already be performed (fully or partially) by the sensor device 6, and the result of this evaluation can be transferred as the measured variable M.
In respect of the arrangement of the second sensor elements 8b to 8d relative to the first sensor element 8a, various arrangements and embodiments are possible.
For example, the sensor device 6 can have a second sensor element 8b, 8c which is arranged laterally offset from the first sensor element 8a when viewed in the transport direction x. In this case, the sensor device 6 can set the first sensor signal Ic in relation to the second sensor signal Ib and thereby determine the measured variable M. In this case, it is possible, in particular, for the measured variable M to be determined from the difference or the quotient of the sensor signals Ia, Ib, Ic. If, as illustrated in
As an alternative or in addition, it is possible for the sensor device 6 to have a second sensor element 8d which is arranged upstream or downstream of the first sensor element 8a when viewed in the transport direction x from the first sensor element 8a. In this case, an arrangement downstream of the first sensor element 8a is the usual case. Even when the second sensor element 8d is arranged upstream or downstream of the first sensor element 8a, the sensor device 6 can set the first sensor signal Ia in relation to the second sensor signal 8d and thereby determine the measured variable M. In this case too, it is possible, in particular, for the measured variable M to be determined from the difference or the quotient of the sensor signals Ia, Id.
According to
The control device 9 carries out steps S1 to S3 repeatedly in an iterative manner. A time constant with which the repetition takes place is generally in the range between 0.1 s and 1.0 s, in particular between 0.2 s and 0.5 s.
The control device 9 is designed in such a way that it carries out the procedure in
In embodiments in which the base signal is an eddy current IW and thus an electric variable have been explained above in conjunction with
However, these embodiments can also allow inferences about mechanical material properties.
Another embodiment is explained below in conjunction with
The further sensor device 13 is likewise connected to the control device 9 for the rolling mill. By virtue of the connection of the further sensor device 13 to the control device 9, it is possible, in particular, for the detected further measured variable M′ to be transferred to the control device 9.
The mode of operation of the rolling mill in
According to
In a step S13, taking into account this control value A, i.e. the control value A determined in step S12, the control device 9 determines an expected value E for the material property of the flat rolled product 2 after rolling in the first rolling stand 1. This determination too is carried out by means of the model 12.
In a step S14, the control device 9 waits for a first waiting time t1. The first waiting time t1 corresponds to the time which a certain segment of the flat rolled product 2 requires to reach the first rolling stand 1, starting from the sensor device 6. Thus, essentially, the control device 9 implements tracking of the flat rolled product 2 from the sensor device 6 to the first rolling stand 1. In the simplest case, the first waiting time t1, see
In a step S15 and hence after the expiry of the first waiting time t1, the control device 9 controls the first rolling stand 1 in accordance with the control value A determined. Step S15 corresponds substantially to step S3 in
In a step S16, the control device 9 then waits for a second waiting time t2. The second waiting time t2 corresponds to the time which a certain segment of the flat rolled product 2 requires to reach the further sensor device 13, starting from the first rolling stand 1. Thus, essentially, the control device 9 implements tracking of the flat rolled product 2 from the first rolling stand 1 to the further sensor device 13. In the simplest case t1, see once again
In a step S17 and hence after the expiry of the second waiting time t2, the control device 9 receives from the further sensor device 13 the further measured variable M′ that is detected by the further sensor device 13 at this point in time. In a step S18, the control device 9 corrects the model parameter k from a comparison of the further measured variable M′ and the expected value E of the material property E and thereby adapts the model 12. As a result, as part of the adaptation of the model 12, the control device 9 uses the further measured variable M′ for a point in time which the control device 9 has determined taking into account the tracking of the flat rolled product 2 from the first rolling stand 1 to the further sensor device 13.
The control device 9 carries out steps S11 to S18 repeatedly in an iterative manner, in a manner similar to that for steps S1 to S3. The above statements relating to steps S1 to S3 can be applied in analogous fashion.
In practice, steps S11 to S18 and the sequence thereof are furthermore implemented in a slightly different way. For example, steps S11 to S18 can be carried out in several instances. It is also possible for the sequence of steps S11 to S18 to be divided into two parts that are carried out in parallel. In this case, the first part comprises steps S11 to S15, and the second part comprises steps S16 to S18.
It is also possible to omit steps S14 and S16 as such. In this case, direct, unsynchronized performance of the remaining steps S11 to S13, S15, S17 and S18 can take place. In this case, the respective control value A determined in step S12 and the respective expected value E determined in step S13 can be temporarily buffered in a buffer memory (not illustrated), for example. The respective further measured variable M′ detected in step S17 can also optionally be temporarily buffered in the buffer memory. In this case, a point in time of execution is allocated to the respective control value A upon storage. In analogous fashion, a point in time of utilization is allocated to the respective expected value E in this case. Furthermore, a point in time of detection can optionally also be allocated to the respective further measured variable M′. In this case, the stored control value A whose point in time of execution has just been reached is output for the respective execution of step S15. In analogous fashion, the stored expected value E whose point in time of utilization coincides with the current time is used for the respective execution of step S18. To the extent necessary, it is possible in this context for interpolation of stored control values A and of stored expected values E to be carried out. If the further measured variables M′ and the points in time of detection thereof are also stored, this applies analogously also to the further measured variables M′.
Irrespective of the specific implementation, however, it is important that the adaptation of the model 12 in step S18 acts on all the later executions of steps S12 and S13.
The nature of the control value A is determined so that the control of the first rolling stand 1 with the control value A influences the material property of the flat rolled product 2. In particular, in accordance with the illustration in
In general, the ratio of the upper peripheral speed vO to the lower peripheral speed vU is between 0.5 and 2.0, in particular between 0.9 and 1.1. It is furthermore irrelevant in general which of the two working rolls 3, 4 rotates more rapidly than the other working roll 4, 3.
In contrast, the upper working roll 3 and the lower working roll 4 in the embodiment in
The transmission 17 is designed in such that a ratio of a speed of the upper output shaft 19 to a speed of the lower output shaft 20 can be continuously adjusted by means of the transmission 17. For example, the transmission 17 can have, on the one hand, a splitter block 21, in which the drive train is split between the upper and the lower working roll 3, 4. Between the splitter block 21 and the upper working roll 3 it is then possible to arrange an intermediate transmission 22, by means of which continuous variation of the output speed relative to the input speed of the intermediate transmission 22 is possible. Intermediate transmissions 22 of this kind are a matter of common knowledge to those skilled in the art. Examples are a planetary transmission and a differential transmission. As an alternative or in addition to arrangement between the splitter block 21 and the upper working roll 3, it is also possible for an intermediate transmission (not illustrated) to be arranged between the splitter block 21 and the lower working roll 4.
The basic principle and various possible embodiments of the present invention have been explained above in conjunction with
Thus, in accordance with the illustration in
Moreover, the control device 9 generally acts on all the rolling stands 1, 24 of the rolling mill, even if only the control of the first rolling stand 1 by means of the control value A is illustrated in
The embodiments in
To be specific, the sensor device 6 in the embodiments in
In the embodiments in
In the embodiments in
The embodiments in
Irrespective of which embodiment is adopted in any specific case, the mode of operation of the respective rolling mill in
The present invention has many advantages. In particular, simple integration of the procedure according to the invention into the continuous running of the rolling mill is possible. In the case of electrical steel sheets and also in the case of other steel grades, annealing after cold rolling or between two cold rolling steps is often no longer required or only still required to a limited extent. In the case of AHSS and of martensitic and bainitic grades, the banding of material properties, which is due to the cooling in the cooling section of the hot rolling train, can be reduced or eliminated. Insofar as the action on the flat rolled product 2 by means of the control value A can be performed with local resolution in the transverse direction of the flat rolled product 2, wherein this is the case especially with thermal modification, it may also be possible under certain circumstances for a plurality of sensor devices 6 to be arranged side-by-side.
Although the invention has been illustrated and described more specifically in detail by means of the preferred illustrative embodiment, the invention is not restricted by the examples disclosed, and other variants can be derived therefrom by a person skilled in the art without exceeding the scope of protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
20154128 | Jan 2020 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3394587 | Freeman | Jul 1968 | A |
3756050 | Kubo | Sep 1973 | A |
3850031 | Schwenzfeier | Nov 1974 | A |
4145902 | Imai | Mar 1979 | A |
4566299 | Koyama | Jan 1986 | A |
6286348 | Sekiguchi | Sep 2001 | B1 |
6546310 | Doll | Apr 2003 | B1 |
7812558 | Mori | Oct 2010 | B2 |
8424354 | Pavlicevic | Apr 2013 | B2 |
9421592 | Jeong et al. | Aug 2016 | B2 |
20130031944 | Muralidharan et al. | Feb 2013 | A1 |
20170259313 | Fairlie | Sep 2017 | A1 |
20190071750 | Biglari et al. | Mar 2019 | A1 |
20190255584 | Lengauer | Aug 2019 | A1 |
20190292624 | Biglari | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
108 906 887 | Nov 2018 | CN |
2 548 663 | Jan 2013 | EP |
961809 | Sep 1982 | SU |
969343 | Oct 1982 | SU |
WO 2017157692 | Sep 2017 | WO |
Entry |
---|
Search Beport dated Jul. 13, 2020 in corresponding European Patent Application No. 20154128.1. |
“Zerstörungsfreie On-line Werkstoffprüfung für kaltgewalzte und oberflächenveredelte Stahlbänder,” Stahl Und Eisen, vol. 120, No. 3, Mar. 15, 2000, p. 54, XP000945578, ISSN: 0340-4803 (see European Search Report for relevance). |
G. Hirt et al., “Umformtechnik für die Elektromobilität” (Forming technology for electro-mobility, URL address: https://publications.rwth-aachen.de/record/762556/files/762556.pdf, download date: Jan. 21, 2020 (with English language abstract). |
Russian Federation Notice of Allowance, dated Dec. 21, 2021, issued in corresponding Russian Patent Application No. 2020139282/05(072958). Total 13 pages. |
Number | Date | Country | |
---|---|---|---|
20210229149 A1 | Jul 2021 | US |