This application is the U.S. national stage of International Application No. PCT/EP2014/072778, filed Dec. 30, 2014 and claims the benefit thereof which is incorporated by reference herein in its entirety.
Described below is a method for rolling a rolling material in a rolling mill,
An example a method known to the person skilled in the art, is described in U.S. Pat. No. 6,167,736 B1.
Also described below is a computer program with program code which is executable by a control device for a rolling mill wherein executing the program code by the control device effects the implementation of the method described below.
A control device for a rolling mill is also described below, wherein the control device is programmed with such a computer program so that the control device controls the rolling mill according to such the method.
In addition, a rolling mill for rolling a rolling material is described below,
During rolling of rolling material—especially during rolling of rod-shaped or bar-shaped rolling material—it may occur that during rolling of the tail end of the rolling material and of sections of the rolling material next to the tail end that the rolling material exits the front group of roll stands with a too large cross-section. This change of cross-section causes a change of tension in the rolling material between the front group and the rear group of roll stands. In many cases the change of tension in combination with the change of cross-section effects that after exiting the rear group of roll stands, the cross-section of the corresponding sections of the rolling material is outside of permitted tolerances. In such a case the corresponding sections of the rolling material have to be scrapped.
In the related art, the tension is adapted by a user by manually changing a rolling speed of the roll stands of the rear group of roll stands. By this method, however, often only unsatisfying results are achieved. Furthermore, the result is dependent on the experience of the user.
Described below are solutions by which in a reliable manner not only the main part but also the tail end and the sections of the rolling material next to the tail end are rolled properly, i.e. having a cross-section within permitted tolerances.
A method of the above-mentioned type is augmented in
In principle, the rolling material may have any shape. For example, the rolling material may be a flat material (strip or plate), a pipe shaped rolling material (starting from a bloom) or a profile (starting from a billet). Often, the rolling material is a rod-shaped or bar-shaped material (also starting from a billet).
The front group of roll stands is usually a so-called no twist-mill and the rear group of roll stands is usually a so-called reducing sizing mill or a sizing mill. The terms “no twist-mill” and “reducing sizing mill” have a specific technical meaning for the person skilled in the art, see for example for “no twist-mill” U.S. Pat. No. 4,537,055.
In many cases the rolling material is rolled prior to rolling in the roll stands of the front group of roll stands in roll stands of an additional group of roll stands of the rolling mill, the additional group of roll stands being located upstream of the front group of roll stands. In this case, the predetermined location may be arranged immediately upstream of the additional group of roll stands. This embodiment assures that there is sufficient time to increase the rolling speed of the roll stands of the rear group of roll stands before the tail end enters the front group of roll stands. In case the additional group of roll stands includes a plurality of roll stands and each of these roll stands may be driven by a drive of its own.
As described below, beginning at the time point at which the tail end of the rolling material reaches the predetermined location upstream of the front group of roll stands, a feed forward control signal stored in a memory may be added to the output signal of the controller and the feed forward control signal stored in the memory may be modified in dependency on the output signal of the controller. Alternatively, these signal adjustments can begin at the time point at which the predetermined value is increased. By this embodiment, a superior control of rolling speed, tension and cross-section of the rolling material can be achieved.
A rolling material speed of the rolling material immediately upstream of the front group of roll stands may be detected and the predetermined function may be adapted in dependency on the deviation of the detected rolling material speed from a reference speed. By this embodiment, speed deviations can easily be compensated for. The controller may, in principle, be any controller, such as a PID-controller.
The features, properties and advantages discussed above will be understood more easily by the following description of exemplary embodiments which are explained with reference to the accompanying drawings of which:
As shown in
As shown in
The rear group 4 of roll stands 5 in the embodiment of
A distance a3 between the roll stands 3 of the front group 2 of roll stands 3 and the roll stands 5 of the rear group 4 of roll stands 5 often is in the range of several metres, for example in the range between 10.0 m and 20.0 m. Between the roll stands 3 of the front group 2 of roll stands 3 and the roll stands 5 of the rear group 4 of roll stands 5, however, there is no additional roll stand. Further, in this area, there is no looper.
The rolling mill further has a control device 8. The control device 8 is programmed by a computer program 9. The computer program 9 may be provided to the control device 8 for example via a data carrier 10 on which the computer program 9 is stored in (exclusively) machine-readable form—for example in electronic form. The computer program 9 is formed of machine code 11 executable by the control device 8. By executing the machine code 11, the control device 8 operates the ref-rolling mill according to a method which will be explained in detail below.
Control of the rolling mill by the control device 8 effects that the rolling material 1 is rolled in the rolling mill. The rolling material 1 is rolled firstly in the roll stands 3 of the front group 2 of roll stands 3 of the rolling mill. Then the rolling material 1 is rolled in the roll stands 5 of the rear group 4 of roll stands 5 of the rolling mill.
As shown in
As shown in
The measured velocities v1, v2 are provided to the control device 8. The control device 8 determines a rolling speed v by which the rear group 4 of roll stands 5 is driven. Especially, the control device 8 implements a controller 16. The controller 16 in the control device 8 sets the rolling speed v such that a relationship V of the run-in speed v2 to the run-out speed v1 takes a predefined value a. This will be explained later in more detail with reference to
The measured velocities v1, v2 may be used also to trigger and to terminate the execution of the method. Reason is that the execution of the method is meaningful only if and as long as the rolling material 1 is rolled both in the front group 2 of roll stands 3 and in the rear group 4 of roll stands 5. In the case the front group 2 of roll stands 3 includes several roll stands 3, it is sufficient that the rolling material 1 is rolled in the roll stand 3 proximate to the rear group 4 of roll stands 5. Similarly, in the case the rear group 4 of roll stands 5 includes several roll stands 5, it is sufficient that the rolling material 1 is rolled in the roll stand 5 proximate to the front group 2 of roll stands 3. Especially, the execution of the method therefore is triggered by detecting a run-in speed v2 different from 0 by the rear velocimeter 15. Further, the execution of the method is terminated by detecting a run-out speed of 0 by the front velocimeter 14.
A material detecting device 17—for example a detector for detecting the presence of hot metal—detects when a tail end 18 (see
The further group 19 of roll stands 20 usually includes a plurality of roll stands 20. According to
In many cases additional roll stands are arranged upstream of the additional group 19 of roll stands 20. These roll stands, however, are not shown in
As shown in
As shown in
In case the rolling material 1 is a rod-shaped or bar-shaped rolling material, the front group 2 of roll stands 3 usually is a no twist-mill, as described in U.S. Pat. No. 4,537,055 A. Furthermore, in that case usually the rear group 4 of roll stands 5 is a reducing sizing mill or a sizing mill. Further, in the case of a rod-shaped material, as shown in
In
The output signal of the material detecting device 17 is further provided to the function generator 23. If the function generator 23 determines, based on this signal, that the tail end 18 has reached the predetermined location (according to
As in the embodiment illustrated in
When executing this method for the first time, usually in the memory 26 there is not yet a feed forward signal being stored. In that case, the difference between the method of
When rolling a subsequent rolling material 1, it is possible to read out the signals stored in the memory 26 from the memory 26 exactly at the corresponding times. Alternatively, it is possible to read out the respective feed forward signal at an earlier point of time. In this way, it is possible to compensate for the reaction time of the drive 7 of the rear group 4 of roll stands 5. The correct time difference may be determined by experiments.
It is possible to execute the method of
According to the method, rolling material 1 is rolled firstly in roll stands 3 of a front group 2 of roll stands 3 of a rolling mill and then in roll stands 5 of a rear group 4 of roll stands 5 of the rolling mill. The front group of roll stands includes a plurality of roll stands which are driven by a drive common to the roll stands of the front group of roll stands. The rear group of roll stands includes a plurality of roll stands which are driven by a drive common to the roll stands of the rear group of roll stands. During rolling of front sections 12 of the rolling material 1 in the roll stands 5 of the rear group 4 of roll stands 5, rear sections 13 of the rolling material 1 are rolled in the roll stands 3 of the front group 2 of roll stands 3. A run-out speed v1 with which the rolling material 1 is exiting the front group 2 of roll stands 3 is detected. A run-in speed v2 with which the rolling material 1 is entering the rear group 4 of roll stands 5 is detected. A rolling speed v with which the rear group 4 of roll stands 5 is driven is controlled by a controller 16 such that a relation V of the run-in speed v2 to the run-out speed v1 takes a predetermined value a. The predetermined value a is kept constant until a time point t0 at which a tail end 18 of the rolling material 1 reaches a predetermined location upstream of the front group 2 of roll stands 3, and is increased according to a predetermined function after the time point t0.
The present invention has many advantages. Most importantly, the rolling material 1 can be utilized over its full length. It is not necessary to scrap the tail end 18 of the rolling material 1. The so-called overfill of the related art can be avoided. The tension in the rolling material 1 between the front group 2 of roll stands 3 and the rear group 4 of roll stands 5 can be set in a defined way.
The present invention was explained above by a plurality of embodiments. The present invention is, however, not restricted to these embodiments. Variations can be found easily by the person skilled in the art without deviating from the scope of the present invention which shall be defined solely by the attached claims.
A description has been provided with particular reference to preferred embodiments thereof and examples, but it will be understood that variations and modifications can be effected within the spirit and scope of the claims which may include the phrase “at least one of A, B and C” as an alternative expression that means one or more of A, B and C may be used, contrary to the holding in Superguide v. DIRECTV, 358 F3d 870, 69 USPQ2d 1865 (Fed. Cir. 2004).
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/072778 | 12/30/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/108852 | 7/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4286447 | Peterson | Sep 1981 | A |
4537055 | Woodrow | Aug 1985 | A |
4656856 | Voye, Jr. | Apr 1987 | A |
5325697 | Shore | Jul 1994 | A |
6148653 | Sako | Nov 2000 | A |
6167736 | Shore | Jan 2001 | B1 |
20020177972 | Riches | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
1280040 | Jan 2001 | CN |
102869460 | Jan 2013 | CN |
103260780 | Aug 2013 | CN |
0 967 025 | Dec 1999 | EP |
62-24810 | Feb 1987 | JP |
Entry |
---|
Astrom, Karl and Hagglund, Tore. “Advanced PID Control”, ISA—Instrumentation, Systems, and Automation Society, 2006, pp. 1-3. (Year: 2006). |
PCT/US2014/072778, Dec. 20, 2014, Justen et al., Primetals Technologies Germany GMBH |
International Search Report for PCT/US2014/072778 dated Sep. 21, 2015. |
Chinese Office Action dated May 18, 2018 in corresponding Chinese Patent Application No. 201480084481.7, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20180001362 A1 | Jan 2018 | US |