The invention relates to a rolling stand for producing rolled strip, with work rolls which are supported if appropriate on backup rolls or backup rolls and intermediate rolls. The work rolls and/or backup rolls and/or intermediate rolls are arranged such that they are axially displaceable with respect to one another in the rolling stand. Each roll of at least one of these pairs of rolls has curved contour running over the entire effective barrel length. These two barrel contours exclusively complement one another at a specific axial position of the rolls of the pair of rolls with respect to each other and in the unloaded state.
To produce a planar rolled strip with a defined cross-sectional profile, it is necessary to set contour-influencing measures, such as for example the use of roll bending devices, with which the application of rolling force to the strip and the distribution of the exiting thickness over the width of the strip can be influenced in a specifically selective manner.
EP-B 0 049 798 already discloses a rolling stand of the generic type in which the form of the roll gap, and consequently the surface contour of the rolled strip, is influenced exclusively by the axial displacement of the rolls formed with curved contours. The two interacting rolls of a pair of rolls have an identical form, are installed in 180° opposition and complement one another in a specific axial displacement position. This particular camber of the rolls makes it possible to compensate for the parabolic roll barrel bending under load, which is dependent on the respective loading conditions, so that a roll change necessary when there is a significant change in the loading conditions, which is quite customary in the case of rolls with a parabolic roll barrel camber, is no longer needed. In EP-B 294 544 it is pointed out that the parabolic bending determined essentially by quadratic components can be compensated by axially displaceable rolls with the described roll contour, but excessive stretching in the edge areas or in the quarter areas of the rolled strip can lead to undulations in the edge or quarter area. Although these disadvantages could be overcome with additional roll bending devices, expediently in combination with zone cooling, major advantages of rolls contoured in such a way would be lost again as a result.
According to EP-B 294 544, to avoid this formation of undulations at the edge or quarter area on the rolled strip, it is proposed that the roll barrel contours of the rolls complementing one other in an axial displacement position are formed by a curve of the fifth order, the respective curves being placed on the rolls in such a way that, in a neutral roll position, they have a maximum and minimum of the inclination of the curves respectively in linear regions situated on either side of the center.
The object of the present invention is to provide a further advantageous solution for a rolling stand in which the form of the roll gap, i.e. the thickness profile of the roll gap over the active roll barrel length, can be varied by axial displacement of the rolls provided with a roll barrel contour in relation to one another in such a way that a strip which meets the highest quality requirements, is planar and free from undulations is obtained.
This object is achieved according to the invention by the profile of the barrel contour of the rolls of a pair of rolls being formed by a trigonometric function and the roll gap contour also being formed by a trigonometric function in dependence on the profile of the barrel contour and the position of the rolls within the axial displacement region.
Tests have shown that good results can be obtained if the trigonometric function of the barrel contour is formed by a sine function and the roll gap contour is formed by a cosine function derived from said sine function. The barrel contour in this case follows the general equation
where
The roll gap contour in this case follows the general equation
where
The contour coefficient A is in this case determined by the axial displacement region and the corresponding equivalent roll cambers in the extreme positions of the rolls. Equivalent camber is understood in this case as meaning that camber of conventional rolls provided with a cosine camber which together generate exactly the same idle roll gap profile.
By varying the contour angle φ, which relates to half the camber reference length, the current roll contour, and consequently the profile of the roll gap, can be influenced without changing the equivalent cambers of the rolls. The positive effect with regard to avoidance of the formation of undulations in the quarter area is obtained, because an increase in the contour angle leads to a decrease in the roll barrel diameter in the region between the edge of the roll and the center of the roll, whereby ultimately a smaller rolling deformation occurs in this region that is critical for the formation of undulations in the quarter area.
A particularly advantageous configuration of a rolling stand is obtained if the trigonometric function of the barrel contour is formed by a tilted sine function corresponding to the general equation
where
where
By inserting the linear element B*(x+c) into the equation for the barrel contour, tilting of the sine function is made possible and, by suitable choice of the coefficient (B), minimizing of the differences in diameter along the barrel contour is achieved. The minimizing of the differences in diameter along the effective length of the roll barrel achieved by the tilted sine function leads at the same time to a reduction in the axial forces dissipated into the roll supporting bearings during the rolling operation. In the case of rolling stands which are equipped with backup rolls in addition to the work rolls provided with a barrel contour, the optimization of the tilting coefficient leads to a reduction in the maximum local contact pressures on the backup rolls, or generally to a more uniform distribution of forces on the neighbouring rolls. The tilting coefficient (B) consequently brings about a smoothing of the contour profile on the roll barrel and of the distribution of forces. Consequently, although the introduction of a tilting coefficient into the contour equation of the roll barrels favorably influences the loading to which the rolls and bearings of the rolling stand are subjected, it does not exhibit any fundamental influence on the roll gap geometry, as shown by the comparison of the two roll gap equations based on a sine function and a tilted sine function for the roll barrel contour.
As can be seen from the above formula for G(x,s), the two barrel contours complement one another when the displacement of the upper work roll corresponds to the contour displacement c and at the same time there is an equal and opposite displacement of the lower work roll by s=−c. This position may in this case lie both inside and outside the working range of the axial displacement.
An advantageous configuration of the curved barrel contour is obtained if, with a given camber reference length (LREF) for the curved barrel contour of the roll, a contour angle (φ) corresponding to the condition 0°<φ≦180°, preferably 50°≦φ≦80°, is chosen. This ensures that, starting from the central maximum or minimum value, the roll gap constantly decreases or increases to the edges of the roll depending on the chosen direction of displacement. In the case of a contour angle φ>180°, there is a reversal in the constant decrease or increase of the roll gap in the edge region of the camber reference length, and consequently undesired influences on the quality of the roll strip. If the contour angle approaches the value φ=0, there is an asymptomatic trend toward the formation of a parabolic roll gap contour.
There is an approximation to minimizing the axial forces to be dissipated into the roll supporting bearings when the tilting coefficient (B) in the equation for the barrel contour of each roll is chosen such that the maximum difference in diameter of the barrel contours within the camber reference length or the barrel length is at a minimum.
Influencing the rolls in such a way as to improve the quality of the strip can be obtained if further actuators, influencing the barrel contour at least in certain portions, are additionally positioned in the rolling stand in operative connection with the work rolls and/or backup rolls and/or intermediate rolls, such as for example work roll cooling or zone cooling. Corresponding effects may also be realized by roll bending devices or by heating devices which can be zonally switched on.
In order to ensure continuous monitoring and influencing of the quality of the strip, inclusion of the rolling stand in a profile or flatness control circuit is envisaged. This is achieved by the work rolls and/or backup rolls and/or intermediate rolls being connected to a control device for profile or flatness control by the displacing devices assigned to them, and also if appropriate necessary measuring devices for sensing the state of the strip running in or running out and, if appropriate, additional actuators, by the control device being assigned a computing unit, which uses mathematical models, if appropriate uses a neural network, to generate control signals for the correction of the work rolls and/or backup rolls and/or intermediate rolls and, if appropriate, additional actuators, and actuating elements assigned to the work rolls and/or backup rolls and/or intermediate rolls and if appropriate additional actuators can be used to move them to positions corresponding to the control signals. The measuring devices are used to acquire strip-specific data, such as for example profile variation, stress conditions, temperature profiles and rolling forces.
Further advantages and features of the present invention emerge from the description which follows of nonrestrictive exemplary embodiments, reference being made to the accompanying figures, in which:
a schematically shows work rolls
b illustrates a roll gap contour
a shows part of a roll combined with a sine contour
Various types of rolling stands that are considered for application of the invention and which have known basic structure in the prior art, for example EP-B 0 049 798, to which the invention is here applied are schematically represented in
a schematically shows two work rolls in a working position and
In the various embodiments of
All of the rolls, work, intermediate and backup, are of steel and are deformable under pressure during the rolling process. The rolling force during that process is high enough to deform each cylindrical roll to be contoured as described herein. The extent of the roll deformation is in the range of a few tenths of a millimeter.
The profile of the barrel contour of the rolls of a pair of rolls is formed by a trigonometric function, preferably a sine function, particular advantages being obtained by a barrel contour produced by a tilted sine function, these advantages lying in possible minimizing of the differences in diameter along the barrel contour.
a shows a part of a roll combined with a sine contour. It is based on a coordinate system (R,x), wherein the roll axis complies with the x-axis of the coordinate system such that the various factors of the equation above are shown.
By contrast,
Advantages exist with regard to the clearly evident input variables and the consequently easier transferability to other stand configurations. Input variables are the camber reference length or the barrel length, the displacement region, the equivalent roll cambers in the extreme displacement positions and the contour angle.
In
The barrel contour can be influenced by variation of the contour angle. The choice of a larger contour angle leads to a smaller diameter of the roll barrel in a region between the center of the roll and the edge of the roll, consequently to a smaller local degree of reduction in the roll strip thickness and ultimately a minimization of the formation of undulations in the quarter area in this region. Influence of the contour angle on the idle roll gap contour is represented in
To allow the rolls provided with the barrel contour described to be used for dynamic flatness control, the roll gap contour must be determined by the displacement position of the rolls and be continuously variable over the displacement region. These conditions are represented in
Number | Date | Country | Kind |
---|---|---|---|
A 1433/2001 | Sep 2001 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/09764 | 9/2/2002 | WO | 00 | 10/1/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/022470 | 3/20/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3857268 | Kajiwaka | Dec 1974 | A |
4519233 | Feldmann et al. | May 1985 | A |
4781051 | Schultes et al. | Nov 1988 | A |
4955221 | Feldmann et al. | Sep 1990 | A |
5218852 | Watanabe et al. | Jun 1993 | A |
5622073 | Hiruta et al. | Apr 1997 | A |
Number | Date | Country |
---|---|---|
36 20 197 | Dec 1987 | DE |
0 049 798 | Apr 1982 | EP |
0 091 540 | Oct 1983 | EP |
0 294 544 | Dec 1988 | EP |
0 401 685 | Dec 1990 | EP |
Number | Date | Country | |
---|---|---|---|
20050034501 A1 | Feb 2005 | US |