This invention relates to a system for the securement of structural building members; particularly a removable anchoring system for use in masonry, frame and other types of construction; more particularly an infinitely adjustable anchorage system capable of attaching structural members of various dimensions and pitches to the outer surface of a support member.
In certain areas of the world prone to extreme weather conditions, such as hurricanes, typhoons, earthquakes, tornadoes, etc., contractors are often required to adhere to strict regional building codes established to ensure buildings are constructed to withstand these intense conditions.
The roof of a building is the uppermost structural assembly and particularly vulnerable to these adverse conditions, (e.g., high wind shear generated during a hurricane or tornado). The roof is supported by exterior and/or interior support walls and can have many shapes and geometries; the most common roof structures consist of trusses or rafters, or I-beams made of wood, steel, etc. During high wind shear, the roof can act like a low efficiency wind foil creating vertical uplift or lateral thrust forces on the windward and leeward side of the roof. These forces can create stress that may lift off the top of the building. If the roof fails, these winds can enter the building causing greater destruction.
The manner in which the structural members (e.g., trusses, rafters, beams, joists) are connected to the support members (e.g., walls) of a building has received much regulation as these areas are the most likely to fail during the application of loads other than gravitational, such as uplift or lateral thrust forces. When properly secured together the loads experienced by the structural members distribute the upward lift and lateral thrust along the support member to the foundation. Thus, these loads are countervailed by the overall weight of the building.
In masonry construction, a key structural element of the support wall is the tie-beam or bond-beam, often fortified internally with reinforcement bars. The tie-beam, bond-beam, or other support structure is located at the top of the wall and used to attach the structural members. The beam can either be poured concrete (i.e., U-shaped concrete or forms filled with concrete) or pre-constructed masonry bond beams.
In wood-frame construction, the support walls are usually framed with 2″×4″, 2″×6″, or 2″×8″ or other structural-grade lumber or materials. The support walls consist of a sole plate located at the bottom, studs (typically spaced at 16″ on center), and a double top plate on which the structural members are mounted.
Numerous anchoring devices have been designed for securing structural members to the various support members, some of which include: angles, straps, holdowns, pre-deflected holdowns, tension ties coiled strapping, rafter ties, truss anchors, truss straps, strap truss tie down, masonry uplift connectors, girder tie down, uplift girder ties, wind/seismic anchors. The appropriate anchoring system depends upon the type of construction (wood, masonry, metal, etc.), type of roof (truss, rafter, girder or other).
Each of these aforementioned anchoring systems have their own fastening features, that is, different sizes of nails, screws, bolts, slant nailing via dimple nail holes, diamond holes, speed prongs, slot holes, and other special hardware. The licensed professional engineer must perform load and stress analysis at each point where the structural member and support member meet (i.e., bearing point), this requires the specification of beams sizes, reinforcement and anchor system used, type and number of fasteners used, etc. This process is time consuming and creates increased costs and delays in building construction.
In masonry construction, when the tie-beams are cast, a portion of the anchoring device is placed within the wet concrete. Next, the structural members are mounted onto the tie-beams. One problem that frequently occurs is that the structural members (e.g., truss/rafter) end up positioned away from where the anchoring devices are permanently attached to the concrete. In such instances, different anchors designed for retrofit applications must be installed in juxtaposed relation to each structural member. This retrofit process requires drilling into the tie-beam after the concrete has adequately hardened for placement of wedge bolts or threaded rods that will need to be epoxied in place and subsequently undergo a curing period before fastening the anchors to the structural members, thereby, possibly delaying construction and increasing cost.
Wood structural members present an additional problem as these anchors are often fastened to structural members using nails that can cause the wood to split since most of these members are made of southern pine lumber, which has a high strength but tends to split easily. This can undermine the integrity and strength of the structural member.
What has been heretofore lacking in the art is a universal, removable anchoring system of (1) adequate strength for utilization in all types of construction (masonry, metal, wood, etc.) using standard hardware (bolts, nuts, etc.), (2) having infinite adjustability whereby location of the structural members prior to installation is not needed, and (3) designed for maximum strength under load in a surface-mounted orientation.
The prior art provides various anchoring assemblies for securing structural members to masonry support members. Although some of these systems provide some limited adjustment of the anchor with respect to the structural member, these anchoring systems require additional components for installation making them expensive and difficult to use.
For example, U.S. Patent Application Publication No. 2003/0217521 to Richardson et al., discloses an anchor system for attaching a series of structural members to a wall comprising an elongate horizontal track and a plurality of anchor plates. The horizontal track has a pair of inwardly spaced apart sidewalls defining therebetween an upwardly facing channel with a restricted opening. Each anchor plate includes an enlarged head portion, nailing plate and a relatively narrow strap extending between the head portion and the nailing plate. The strap is sized to pass between the sidewalls to position the nailing plate normal to the track for attaching a structural member thereto. The head portion is sized to fit within the channel and engage the inwardly angled sidewalls to retain the anchor plates at selected longitudinal positions.
Unlike the instant invention, when used in masonry applications, the track of the aforementioned anchor system must be completely embedded within the concrete to resist the tendency of the track to experience outward deflection of the inwardly angled sidewalls which are primarily relied upon for engaging the head portion during the application of uplift loads.
In the instantly disclosed invention, the rectangular configuration of the channel is such that the anchor plate acts primarily against the flanges upon application of uplift forces on the structural members and not the sidewalls, thus permitting the track to be installed to the outer surface of the support member, rather than necessitating its being embedded within the concrete. This configuration is particularly advantageous should the track need to be replaced.
In the aforementioned reference, the mason must push the track into the freshly poured concrete; this can result in a track which is not level with the outer surface of the support member or introduce concrete into the track that must be removed prior to use. Otherwise, the track is placed within the lintel blocks and concrete poured around it. This latter process requires that the track first be capped by an additional covering means to prevent concrete from entering the track which could interfere with positioning the anchor plate along the track. Attempting to fill the concrete around the track could also result in a discontinuous concentrations of concrete around the embedded track with pockets of air undermining the strength of the cured concrete. The structure of Richardson prevents use above a support beam since Richardson fails to provide a bearing surface for structural members such as wood trusses. Further, the structure of Richardson requires a moisture, or vapor, barrier between the concrete and any wood structural member. In addition, Richardson's use of an embedded track severely reduces the strength of the assembly by reducing the amount of concrete that can be inserted, concealing the concerned area of concrete placement, all of which causes the moment capacity to be weaker. Further, there is no room for stirrups.
Moreover, as is contemplated by Richardson et al., floating or uplifting of the track within the wet concrete may occur and should be prevented by placing a series of bricks periodically along the length of the track. Again, this can result in a situation where the track is not level within the concrete or present a potentially dangerous work site as these loose bricks must remain positioned along the support wall during the curing process.
The simple design of the anchor system of the instant invention does not require additional devices to prevent cement from seeping into the track or weights to prevent the track from floating. The anchoring system of the present invention can be removed and replaced as needed. Moreover, unlike the invention to Richardson et al., the rectangular channel of the track of the present invention provides maximum surface area contact between the rectangular anchor plate and the track, thus, does not require inwardly disposed sidewalls or sidewalls with additional downwardly extending lips or recesses designed to engage the anchor plate. The anchor plate of the present invention is capable of complete angular disposition inside the channel such that it is capable of securing to the structural member independent of the angle relative to track.
U.S. Pat. No. 5,699,639 to Fernandez and U.S. Pat. Nos. 5,357,721 and 5,335,470, both to Alvarez disclose an adjustable anchorage device for keeping a truss in place with respect to a poured concrete body having an elongated housing fully embedded within the concrete. The housing includes a longitudinal slot configured to receive a connecting plate slide therein for trusses to be adjusted. However, the range of adjustment is limited to the length of the longitudinal slot which can be of little help in instances when the trusses do not meet up with the longitudinal slot. Furthermore, the longitudinal slot must be capped during the concrete pour to prevent cement from entering the slot. The references to Alvarez disclose detachable arms mounted to the housing level within the concrete. These prior art references fail to disclose adjustable arms capable of centering the housing along walls of various widths.
The instant invention provides a simple anchoring system that overcomes many of the aforementioned disadvantages encountered in the prior art.
The present invention is directed toward an infinitely adjustable anchoring assembly for attaching at least one structural member to the outer surface of a support member (i.e., wall) to distribute uplift loads and horizontal thrust forces from the structural members along the continuous track to the attached support member.
The assembly includes an elongated retaining track having a substantially rectangular channel with an opening formed therein and at least one anchoring member, each anchoring member constructed and arranged to removably attach the track to the support member.
The assembly further includes at least one adjustable connector plate having an upper portion and lower portion with a neck portion extending therebetween. The upper portion including at least one aperture formed therethrough capable of receiving at least one corresponding attachment means. The neck portion having dimensions approximate to and less than the channel opening of the track. The lower portion of the connector plate having dimensions approximate to and less than the channel such that the connector plate is capable of infinite lateral movement and angular disposition inside the channel, thereby being capable of securing to a structural member independent of the angle or location of the structural member relative to the track.
While the prior art does disclose adjustable anchoring systems, the sidewall design of these tracks and the bottom shape of the anchor plates require the track be completely embedded within the concrete to provide the necessary resistance to the outward deflection of the sidewalls created by uplift loads to the head portion of the anchor plate acting against them. If these prior art tracks were secured to the outside of the support member the bottom portion of the anchor plate would act like a wedge forcing outward deflection of the track sidewalls upon the application of uplift forces. Without additional reinforcement for the track sidewalls, this continuous application of outward force will eventually cause these sidewalls to fail, increasing the potential for disastrous consequences. The devices disclosed in previously issued patents fail to address the need for a bearing load area when a support is placed over a beam. Further, the devices disclosed in the previously issued patents require vapor barrier between the concrete beam and structural member to prevent wood rot.
In the instant invention, the rectangular configuration of the channel and the correspondingly shaped bottom of the connector plate is such that the connector plate acts against the flanges upon application of uplift forces on the structural members and not the sidewalls, thereby permitting installation of the track to the outer surface of the support member and not embedded within the concrete. This configuration is particularly advantageous should the track need to be replaced. Moreover, because the track is capable of being installed to the outer surface of a freshly poured masonry support member there is no need for additional devices to prevent cement from entering the track or weights to prevent the track from floating during installation. The track of the instant invention preferably includes pre-attachment of anchoring members to the track, such as j-bolts, allowing the track to be placed on freshly poured concrete with the anchoring members attached. In the case of masonry construction, the sections of track may be set in place after the concrete is poured and before the concrete begins to set. This eliminates any space problems in pouring the concrete and also prevents the possibility of pouring concrete in the track accidentally.
Accordingly, it is an objective of the instant invention to provide a surface mounted adjustable anchoring assembly which is resistant to outward deflection caused by uplift forces comprising a removable elongated track for use in both masonry and frame applications in which there is no need to locate the structural members prior to installation of the track in combination with at least one connector plate and at least one anchoring member.
Another objective of the present invention is to provide an elongated track for use in masonry applications in which concrete does not have an opportunity to enter the track and interfere with the positioning of the connector plate along the track.
Still another objective of the present invention is to provide an elongated track that provides a proper bearing area for trusses, rafters and other structural members.
Still another objective of the present invention is to provide a continuous track which allows for ease of truss settings.
It is yet another objective of the instant invention to provide an assembly that is economical to manufacture in that it has few components or complicated moving parts.
It is a further objective of the instant invention to provide an assembly that can be used to fasten all the various types of structural members (e.g., roofs, floor joists, or the like) to all masonry and frame (e.g., wood, steel, etc.) support members, thereby providing a universal anchoring system in which no special hardware is needed and reducing load and stress analysis needed.
It is a still further objective of the invention to provide an elongated track system in which connector plates may be positioned along each side of the structural member for improved resistance to uplift and lateral forces.
Yet another objective of the instant invention is to provide a system which uses standard fastening means found in the construction industry.
Still another objective of the present invention is to provide a longitudinal and/or lateral clamping means to further reinforce the anchoring assembly from uplift and lateral forces, respectively.
A further objective of the present invention is to provide a connector plate capable of angular disposition and infinite lateral translation with respect to the channel such that the upper portion is capable of securing to the structural member independent of its angle relative to the lateral axis of the track; this is especially advantageous for anchoring a hip truss/rafters.
An additional objective of the present invention is to teach a connector plate constructed and arranged for attaching to at least one structural member, such as, trusses, rafters, roof joists, floor joists, beams or the like.
Another objective of the present invention is to provide a reusable centering bracket assembly and method for quickly and easily installing an elongated retaining track along the center of a support member (i.e., wall).
Still another objective of the instant invention is to provide a reusable centering bracket capable of centering the elongated track along support members of various widths.
Another objective of the instant invention is to provide a sufficient bearing area for structural members such as trusses, rafters and the like to prevent damage thereto.
Another objective of the instant invention is to size a retaining track that operates as a moisture (vapor) barrier between wood structural members such as trusses, rafters, joists and the like, and a masonry wall such as a beam, lintel or the like.
Yet still another objective of the instant invention is to provide a system for use in masonry construction that by use of a retaining track does not interfere with the placement of reinforcing steel re-bars, stirrups and the like by placement of the retaining track on the surface of the wall, beam, or lintel.
Yet still another objective of the instant invention is to maintain the strength of the beam, tie, bond, lintel or other support by placement of a retaining track on the surface of the support.
Another objective of the instant invention is to provide a system that can be used of any type of construction, including prefabricated walls which emphasizes the difference of the instant invention to the prior art with is restricted to use with masonry construction.
Still another objective of the instant invention is to provide a track system for masonry construction that can be set in place after the concrete is poured and before the concrete begins to set. Placement of the track and anchors after the concrete has been poured eliminates the possibility of pouring concrete in the track and assures proper orientation.
Yet another objective of the instant invention is to teach a reusable centering bracket for use in masonry application that can be used to embed at least a portion of the track within the freshly poured support member.
A further objective of the instant invention is to teach a reusable centering bracket for use in masonry applications, without reduction of the cross section, designed to preclude the track from penetrating the outer surface of the support member.
Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with any accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. Any drawings contained herein constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
a illustrates a front view of one embodiment of a lateral clamping means that can be used in combination with the instant assembly to counteract any lateral motion of the structural member;
b illustrates a side view of the lateral clamping means shown in
a illustrates a side view of a reusable centering bracket assembly for reliably positioning an elongated retaining track along the center of a support member;
b illustrates an elevated view of the reusable centering bracket assembly of
Detailed embodiments of the instant invention are disclosed herein, however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific functional and structural details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to various employ the present invention in virtually any appropriately detailed structure.
Referring now to
The anchoring assembly comprises an elongated retaining track system 10 removably attached to a support wall 38. The support wall is shown here as a tie beam filled with cementitious material 44 fortified internally with reinforcement bars 42. The track system is constructed and arranged to receive a plurality of adjustable connector plates 26 (only one shown) for use in the anchoring assembly of the present invention.
The track system 10 is illustrated herein as having a base member 12. The base member is integrally connected to a pair of oppositely spaced sidewall members 20, shown extending substantially perpendicular from the base member along the longitudinal axis 14. The base member includes (or may be modified to include) a plurality of apertures 45 formed therein (only one shown in
Each sidewall member 20 of the track assembly 10 has an inwardly extending flange member 24 located substantially parallel to the base member 12, thereby defining a generally rectangular channel 96 with an opening 22 formed between the flange members. The flange members are of sufficient dimension to permit infinite angular disposition of the lower portion of the anchor plate within the channel while providing maximum surface area contact between the rectangular lower portion of the anchor plate and the inner surface of the flange members 24 without the need for additional material (
The track system may be constructed from any durable material known in the art including, albeit not limited to, galvanized steel, stainless steel, or the like.
The adjustable connector plate 26 has an upper portion 28 and lower portion 30 with a neck portion 32 extending therebetween. During use, each connector member is placed within the track by orientating the plate parallel to the lateral axis 16 of the track and inserting the lower portion through the opening 22 and into channel 96. Next, the plate is rotated about the longitudinal axis 14 within the channel such that the upper portion is normal relative to the track. The plates can then be positioned at any location along the track.
As shown herein, the upper portion of the plate includes at least one aperture 36 formed therethrough and capable of receiving at least one corresponding attachment means (e.g. bolts, screws, nails, or other fasteners) to secure to a structural member (
For example, as shown in
In a preferred, albeit not limiting embodiment, the anchoring member is a “j-bolt” configured to extend through aperture 44 in the base member and having a plurality of threads 46 located at the first end, wherein the user can attach at least one corresponding sized fastener 48 (e.g. nut and washer 50) to affix the j-bolt to the track.
In masonry applications, the second end 38 of the j-bolt is simply set into wet cementitious material 44 with the base 12 remaining above the cementitious material. The material 44 is allowed to cure such that the second end of the j-bolt remains permanently secured to the support member (see
Referring now to
Otherwise, the anchoring member could be a screw-type with helical threads (not shown) designed to secure directly to the support wall.
Referring now to
a-b illustrate front and side views, respectively, for one embodiment of a lateral clamping means 58 that can be used in combination with the instant assembly. The lateral clamping means 58 can be made from any durable, yet flexible material (e.g., spring-steel). The clamping means has a first end 60 which is integrally connected to the upper portion 34 of a connector plate 26, preferably through the same fastening means used to connect the connector plate to the structural member to reduce the number of fastening means and maintain the integrity of the structural member 52 (
Referring now to
The bracket assembly further comprises a fastening means 78 having a first end with integrally connected head portion 80 sized greater than the channel opening 22 in the track and constructed and arranged to engage the flange members of the track. The second end of the fastening means constructed and arranged to extend through the central aperture and removably attach to the support bracket by any means known in the art (shown here as wing nut 100) such that the track is in juxtaposed relation to the second planar surface.
The assembly includes at least two removable centering pins 98 adapted for placement within corresponding centering pin holes 76 and having sufficient dimensions to extend beyond the second planar surface when placed inside holes 76. The portion extending beyond the second planar surface centering pin is in juxtaposed relation to the sides of the wall when the centering bracket assembly is placed over the support wall. This positions the track at a substantially central location with respect to the width (axis 18) of the support member 38.
Preferably, the distance between the pair of corresponding centering pins should correspond to standard width dimensions of support members (e.g., 5¾″, 8″, 10″), thus, the assembly is capable of centering the elongated track along support members of various widths.
In addition, the second planar surface of the bracket assembly can include a centralized cutout portion 82 having dimensions substantially corresponding to the elongated retaining track 10 to receive at least a portion of the track therein (see
As discussed above, during use of the reusable centering bracket assembly, the track is secured to the central portion of the bracket by inserting the removable fastening means 78 through central aperture 74 such that the fastening means with integrally connected head portion 80 engages both flange members 24, or opposed sidewalls of the channel. The fastening means is attached to the bracket assembly when the track is in juxtaposed relation to the second planar surface.
A plurality of centering pins 98 are then inserted into the appropriate centering pin holes 76 that correspond to the width of the support member. The elongated track is then positioned along the center of the support member and can be attached thereto by any means appropriate (i.e., anchoring means). The centering bracket is then removed from the elongated track by removing the fastening means and can be reused.
All patents and publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification and any drawings/figures included herein.
One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1115243 | Reid | Oct 1914 | A |
1155243 | Jordahl | Sep 1915 | A |
1588628 | Sellers | Jun 1926 | A |
1657441 | Huovinen | Jan 1928 | A |
1708091 | Healy | Apr 1929 | A |
1929835 | Awbrey | Oct 1933 | A |
1988124 | Johnson | Jan 1935 | A |
2396826 | Callan | Mar 1946 | A |
2396828 | Carpenter | Mar 1946 | A |
2947119 | Puckett, Jr. | Aug 1960 | A |
3000145 | Fine | Sep 1961 | A |
3005292 | Reiland | Oct 1961 | A |
3565385 | Zurawski | Feb 1971 | A |
3601347 | Attwood et al. | Aug 1971 | A |
3727355 | Vachon | Apr 1973 | A |
3994111 | Papayoti | Nov 1976 | A |
4014151 | Erhart | Mar 1977 | A |
4052833 | Beine | Oct 1977 | A |
4085556 | Sonneville | Apr 1978 | A |
4130977 | Taylor, Jr. et al. | Dec 1978 | A |
4365744 | Moehren | Dec 1982 | A |
4569167 | Staples | Feb 1986 | A |
4603527 | Vercelletto | Aug 1986 | A |
4606163 | Catani | Aug 1986 | A |
4733986 | Kenning et al. | Mar 1988 | A |
4819390 | Capper | Apr 1989 | A |
4826078 | Arvin et al. | May 1989 | A |
4946099 | Bratchell | Aug 1990 | A |
4961553 | Todd | Oct 1990 | A |
5002436 | Sigourney | Mar 1991 | A |
5083706 | Bratchell | Jan 1992 | A |
5165628 | Todd et al. | Nov 1992 | A |
5335470 | Alvarez | Aug 1994 | A |
5357721 | Alvarez | Oct 1994 | A |
5370577 | Jonett et al. | Dec 1994 | A |
5442887 | Welsh | Aug 1995 | A |
5467569 | Chiodo | Nov 1995 | A |
5548939 | Carmical | Aug 1996 | A |
5640822 | Haswell | Jun 1997 | A |
5699639 | Fernandez | Dec 1997 | A |
5732524 | Kalker, Jr. et al. | Mar 1998 | A |
5743062 | Fricker | Apr 1998 | A |
5799907 | Andronica | Sep 1998 | A |
5823727 | Lee | Oct 1998 | A |
6073404 | Norfleet | Jun 2000 | A |
6334285 | Kirschner | Jan 2002 | B1 |
6341466 | Kehoe et al. | Jan 2002 | B1 |
6598363 | Fergusen et al. | Jul 2003 | B1 |
6609344 | Saldana | Aug 2003 | B2 |
6662517 | Thompson | Dec 2003 | B1 |
7469511 | Wobber | Dec 2008 | B2 |
20030217521 | Richardson et al. | Nov 2003 | A1 |
20070039281 | Zambelli et al. | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070180780 A1 | Aug 2007 | US |