The present invention relates to roofing systems for structures and, more particularly, roofing systems having integrated photovoltaic systems.
Photovoltaic systems having solar panel modules are commonly installed on roofing of structures. What is needed is a roof integrated photovoltaic system that provides for improved installation and serviceability while maintaining a top water shedding layer.
In an embodiment, a method, comprising installing at least one starter bar to a roof deck, wherein the at least one starter bar includes a foot base; installing one of a first plurality of water shedding layers over the foot base of the at least one starter bar; overlapping at least one of another of the first plurality of water shedding layers over the one of the first plurality of water shedding layers; and installing at least one first photovoltaic module, each of the at least one first photovoltaic module having a top surface, a bottom surface, an upper portion, a lower portion, a pair of side portions, each of which extends from the upper portion to the lower portion, and at least one first foot module attached to the upper portion, wherein the lower portion of each of the least one first photovoltaic module is aligned with the foot base of the at least one starter bar, and the at least one first foot module is affixed on a last overlapping layer of the at least one of another of the first plurality of water shedding layers to the roof deck.
In an embodiment, the last overlapping layer of the at least one of another of the first plurality of water shedding layers includes a second water shedding layer. In an embodiment, the at least one of another of the first plurality of water shedding layers includes a second water shedding layer overlapping the one of the first plurality of water shedding layers, and a third water shedding layer overlapping the second water shedding layer, the third water shedding layer being the last overlapping layer of the at least one of another of the first plurality of water shedding layers. In an embodiment, the at least one of another of the first plurality of water shedding layers includes a second water shedding layer overlapping the one of the first plurality of water shedding layers, a third water shedding layer overlapping the second water shedding layer, and a fourth water shedding layer overlapping the third water shedding layer, the fourth water shedding layer being the last overlapping layer of the at least one of another of the first plurality of water shedding layers. In an embodiment, the method further comprises the step of affixing the one of the first plurality of water shedding layers and the second water shedding layer to the roof deck. In an embodiment, the one of a first plurality of water shedding layers and the second water shedding layer are affixed to the roof deck by a plurality of nails. In an embodiment, the one of a first plurality of water shedding layers and the second water shedding layer are affixed to the roof deck by an adhesive.
In an embodiment, the method further comprises the step of affixing the one of the first plurality of water shedding layers and the second and third water shedding layers to the roof deck. In an embodiment, the one of the first plurality of water shedding layers and the second and third water shedding layers are affixed to the roof deck by a plurality of nails. In an embodiment, the method further comprises the step of affixing the one of the first plurality of water shedding layers and the second, third and fourth water shedding layers to the roof deck. In an embodiment, the one of the first plurality of water shedding layers and the second, third and fourth water shedding layers are affixed to the roof deck by a plurality of nails. In an embodiment, the one of the first plurality of water shedding layers and the second, third and fourth water shedding layers are affixed to the roof deck by an adhesive.
In an embodiment, the second water shedding layer includes a first edge that is positioned offset from the foot base of the starter bar. In an embodiment, the second water shedding layer includes a first edge that is positioned offset from the foot base of the starter bar, and the third water shedding layer includes a first edge that is positioned offset from the first edge of the second water shedding layer. In an embodiment, the second water shedding layer includes a first edge that is positioned offset from the foot base of the starter bar, the third water shedding layer includes a first edge that is positioned offset from the first edge of the second water shedding layer, and the fourth water shedding layer includes a first edge that is positioned offset from the first edge of the third water shedding layer. In an embodiment, the at least one first foot module includes a plurality of first foot modules. In an embodiment, the at least one starter bar includes a plurality of starter bars.
In an embodiment, the at least one first photovoltaic module includes a plurality of first photovoltaic modules, and wherein each of the lower portions of each of the plurality of first photovoltaic modules is aligned with a corresponding one of the foot base of the plurality of starter bars. In an embodiment, the plurality of first photovoltaic modules is installed in a formation of a first row. In an embodiment, the method further comprises the steps of installing one of a second plurality of water shedding layers over the at least one first module foot, and overlapping at least one of another of the second plurality of water shedding layers over the one of the second plurality of water shedding layers. In an embodiment, the method further comprises the step of installing at least one second photovoltaic module, the at least one second photovoltaic module having a top surface, a bottom surface, an upper portion, a lower portion, a pair of side portions, each of which extends from the upper portion of the at least one second photovoltaic module to the lower portion of the at least one second photovoltaic module, and at least one second foot module attached to the upper portion of the at least one second photovoltaic module, wherein the lower portion of the at least one second photovoltaic module is aligned with the at least one first foot module of the at least one first photovoltaic module, and the at least one second foot module is affixed on a last overlapping layer of the at least one of another of the second plurality of water shedding layers to the roof deck.
In an embodiment, the last overlapping layer of the at least one of another of the second plurality of water shedding layers includes a fifth water shedding layer. In an embodiment, the at least one of another of the second plurality of water shedding layers includes a fifth water shedding layer overlapping the one of the second plurality of water shedding layers, and a sixth water shedding layer overlapping the fifth water shedding layer, the sixth water shedding layer being the last overlapping layer of the at least one of another of the second plurality of water shedding layers. In an embodiment, the at least one of another of the second plurality of water shedding layers includes a fifth water shedding layer overlapping the one of the second plurality of water shedding layers, a sixth water shedding layer overlapping the fifth water shedding layer, and a seventh water shedding layer overlapping the sixth water shedding layer, the seventh water shedding layer being the last overlapping layer of the at least one of another of the second plurality of water shedding layers. In an embodiment, the method further comprises the step of affixing the one of the second plurality of water shedding layers and the fifth water shedding layer to the roof deck. In an embodiment, the one of the second plurality of water shedding layers and the fifth water shedding layer are affixed to the roof deck by a plurality of nails. In an embodiment, the one of the second plurality of water shedding layers and the fifth water shedding layer are affixed to the roof deck by an adhesive. In an embodiment, the method further comprises the step of affixing the one of the second plurality of water shedding layers and the fifth and sixth water shedding layers to the roof deck. In an embodiment, the one of the second plurality of water shedding layers and fifth and sixth water shedding layers are affixed to the roof deck by a plurality of nails. In an embodiment, the one of the second plurality of water shedding layers and fifth and sixth water shedding layers are affixed to the roof deck by an adhesive.
In an embodiment, the method further comprises the step of affixing the one of the second plurality of water shedding layers and the fifth, sixth and seventh water shedding layers to the roof deck. In an embodiment, the one of the second plurality of water shedding layers and the fifth, sixth and seventh water shedding layers are affixed to the roof deck by a plurality of nails. In an embodiment, the one of the second plurality of water shedding layers and the fifth, sixth and seventh water shedding layers are affixed to the roof deck by an adhesive. In an embodiment, the fifth water shedding layer includes a first edge that is positioned offset from the at least one first module foot of the at least one first photovoltaic module. In an embodiment, the fifth water shedding layer includes a first edge that is positioned offset from the at least one first module foot of the at least one first photovoltaic module, and the sixth water shedding layer includes a first edge that is positioned offset from the first edge of the fifth water shedding layer. In an embodiment, the fifth water shedding layer includes a first edge that is positioned offset from at least one first module foot of the at least one first photovoltaic module, the sixth water shedding layer includes a first edge that is positioned offset from the first edge of the fifth water shedding layer, and the seventh water shedding layer includes a first edge that is positioned offset from the first edge of the sixth water shedding layer.
In an embodiment, the at least one second foot module includes a plurality of second foot modules. In an embodiment, the at least one first photovoltaic module includes a plurality of first photovoltaic modules, and the at least one second photovoltaic module includes a plurality of second photovoltaic modules, wherein each of the lower portions of each of the plurality of second photovoltaic modules is aligned with a corresponding one of the at least one first module feet of each of the plurality of first photovoltaic modules. In an embodiment, the plurality of second photovoltaic modules is installed in a formation of a second row. In an embodiment, each of the plurality of second photovoltaic modules is aligned with a corresponding one of the plurality of first photovoltaic modules. In an embodiment, the method further comprises the step of installing at least one row of a plurality of shingles on the roof deck prior to the step of installing the at least one starter bar, wherein the at least one starter bar is affixed to at least one of the plurality of shingles. In an embodiment, each of the first and second pluralities of water shedding layers is flexible. In an embodiment, each of the first and second pluralities of water shedding layers is non-flexible.
In an embodiment, the step of overlapping the at least one of another of the first plurality of water shedding layers includes overlapping the at least one of another of the first plurality of water shedding layers over a first portion of the one of the first plurality of water shedding layers to create a second, revealed portion, and wherein the second, revealed portion of the one of the first plurality of water shedding layers includes a width that is approximately equal to a length of the at least one photovoltaic module. In an embodiment, the length of the at least one photovoltaic module extends from the upper portion of the at least one photovoltaic module to the lower portion of the at least one photovoltaic module. In an embodiment, the one of the first plurality of water shedding layers includes a width, and wherein the width of the second, revealed portion of the one of the first plurality of water shedding layers is approximately equal to half of the width of the one of the first plurality of water shedding layers.
In an embodiment, a method, comprising installing at least one starter bar to a roof deck, wherein the at least one starter bar includes a foot base; installing one of a plurality of water shedding layers over the foot base of the at least one starter bar; overlapping at least one of another of the plurality of water shedding layers over the one of the plurality of water shedding layers; affixing at least one first module foot on the at least one of another of the plurality of water shedding layers to the roof deck; and installing at least one first photovoltaic module, each of the at least one first photovoltaic module having a top surface, a bottom surface, an upper portion, a lower portion, a pair of side portions, each of which extends from the upper portion to the lower portion, wherein the lower portion of each of the least one first photovoltaic module is aligned with the foot base of the at least one starter bar, and the upper portion of the at least one first photovoltaic module is aligned with and attached to the at least one first module foot.
In an embodiment, a system, comprising a foot base having a first member and a second member extending angularly from the first member, wherein the foot base is configured to be installed on a roof deck such that the first member is positioned on the roof deck and the second member extends outwardly from the roof deck; and a flashing member having a first portion, and a second portion overlapping the first member of the foot base, wherein the first portion of the flashing member is configured to be affixed to the roof deck. In an embodiment, the first portion of the flashing member is affixed to the roof deck by a plurality of nails. In an embodiment, the first member of the foot base is affixed to the roof deck. In an embodiment, the first member of the foot base is affixed to the roof deck by at least one nail. In an embodiment, the first and second members of the foot base are integral. In an embodiment, the second member is substantially perpendicular to the first member. In an embodiment, the flashing member includes a third portion extending angularly from the second portion and attached to the second member of the foot base. In an embodiment, the third portion of the flashing member is attached to the second member of the foot base by at least one rivet. In an embodiment, the third portion of the flashing member is attached to the second member of the foot base by at least one screw. In an embodiment, the third portion of the flashing member is attached to the second member of the foot base by a spot weld. In an embodiment, the third portion of the flashing member is attached to the second member of the foot base by an adhesive.
In an embodiment, a system, comprising at least one starter bar configured to be installed to a roof deck, wherein the at least one starter bar includes a foot base; a first plurality of water shedding layers, one of which is configured to be installed over the foot base of the at least one starter bar, and at least one of another of which is configured to overlap and be installed over the one of the first plurality of water shedding layers; at least one first photovoltaic module having a top surface, a bottom surface, an upper portion, a lower portion, and a pair of side portions, each of which extends from the upper portion to the lower portion; and at least one first foot module configured to be attached to the upper portion of the at least one first photovoltaic module, wherein the lower portion of each of the least one first photovoltaic module is configured to align with the foot base of the at least one starter bar, and the at least one first foot module is configured to be affixed on a last overlapping layer of the at least one of another of the first plurality of water shedding layers to the roof deck.
In an embodiment, the last overlapping layer of the at least one of another of the first plurality of water shedding layers includes a second water shedding layer. In an embodiment, the at least one of another of the first plurality of water shedding layers includes a second water shedding layer configured to overlap the one of the first plurality of water shedding layers, and a third water shedding layer configured to overlap the second water shedding layer, the third water shedding layer being the last overlapping layer of the at least one of another of the first plurality of water shedding layers. In an embodiment, the at least one of another of the first plurality of water shedding layers includes a second water shedding layer configured to overlap the one of the first plurality of water shedding layers, a third water shedding layer configured to overlap the second water shedding layer, and a fourth water shedding layer configured to overlap the third water shedding layer, the fourth water shedding layer being the last overlapping layer of the at least one of another of the first plurality of water shedding layers. In an embodiment, the one of the first plurality of water shedding layers and the second water shedding layer are configured to be affixed to the roof deck. In an embodiment, the one of a first plurality of water shedding layers and the second water shedding layer are configured to be affixed to the roof deck by a plurality of nails. In an embodiment, the one of a first plurality of water shedding layers and the second water shedding layer are configured to be affixed to the roof deck by an adhesive. In an embodiment, the one of the first plurality of water shedding layers and the second and third water shedding layers are configured to be affixed to the roof deck. In an embodiment, the one of the first plurality of water shedding layers and the second and third water shedding layers are configured to be affixed to the roof deck by a plurality of nails. In an embodiment, the one of the first plurality of water shedding layers and the second and third water shedding layers are configured to be affixed to the roof deck by an adhesive. In an embodiment, the one of the first plurality of water shedding layers and the second, third and fourth water shedding layers are configured to be affixed to the roof deck. In an embodiment, the one of the first plurality of water shedding layers and the second, third and fourth water shedding layers are configured to be affixed to the roof deck by a plurality of nails. In an embodiment, the one of the first plurality of water shedding layers and the second, third and fourth water shedding layers are configured to be affixed to the roof deck by an adhesive.
In an embodiment, the at least one first foot module includes a plurality of first foot modules. In an embodiment, the at least one starter bar includes a plurality of starter bars. In an embodiment, the at least one first photovoltaic module includes a plurality of first photovoltaic modules, and wherein each of the lower portions of each of the plurality of first photovoltaic modules is configured to align with a corresponding one of the foot base of the plurality of starter bars.
In an embodiment, the system further comprises a second plurality of water shedding layers, one of which is configured to be installed over the at least one first module foot, and at least one of another of which is configured to overlap and be installed over the one of the second plurality of water shedding layers. In an embodiment, the system further comprises at least one second photovoltaic module, the at least one second photovoltaic module having a top surface, a bottom surface, an upper portion, a lower portion, and a pair of side portions, each of which extends from the upper portion of the at least one second photovoltaic module to the lower portion of the at least one second photovoltaic module; and at least one second foot module configured to be attached to the upper portion of the at least one second photovoltaic module, wherein the lower portion of the at least one second photovoltaic module is configured to align with the at least one first foot module of the at least one first photovoltaic module, and the at least one second foot module is configured to be affixed on a last overlapping layer of the at least one of another of the second plurality of water shedding layers to the roof deck.
In an embodiment, the last overlapping layer of the at least one of another of the second plurality of water shedding layers includes a fifth water shedding layer. In an embodiment, the at least one of another of the second plurality of water shedding layers includes a fifth water shedding layer configured to overlap the one of the second plurality of water shedding layers, and a sixth water shedding layer configured to overlap the fifth water shedding layer, the sixth water shedding layer being configured to be the last overlapping layer of the at least one of another of the second plurality of water shedding layers. In an embodiment, the at least one of another of the second plurality of water shedding layers includes a fifth water shedding layer configured to overlap the one of the second plurality of water shedding layers, a sixth water shedding layer configured to overlap the fifth water shedding layer, and a seventh water shedding layer configured to overlap the sixth water shedding layer, the seventh water shedding layer being configured to be the last overlapping layer of the at least one of another of the second plurality of water shedding layers. In an embodiment, the one of the second plurality of water shedding layers and the fifth water shedding layer are configured to be affixed to the roof deck. In an embodiment, the one of the second plurality of water shedding layers and the fifth water shedding layer are configured to be affixed to the roof deck by a plurality of nails. In an embodiment, the one of the second plurality of water shedding layers and the fifth water shedding layer are configured to be affixed to the roof deck by an adhesive. In an embodiment, the one of the second plurality of water shedding layers and the fifth and sixth water shedding layers are configured to be affixed to the roof deck. In an embodiment, the one of the second plurality of water shedding layers and fifth and sixth water shedding layers are configured to be affixed to the roof deck by a plurality of nails. In an embodiment, the one of the second plurality of water shedding layers and fifth and sixth water shedding layers are configured to be affixed to the roof deck by an adhesive. In an embodiment, the one of the second plurality of water shedding layers and the fifth, sixth and seventh water shedding layers are configured to be affixed to the roof deck. In an embodiment, the one of the second plurality of water shedding layers and the fifth, sixth and seventh water shedding layers are configured to be affixed to the roof deck by a plurality of nails. In an embodiment, the one of the second plurality of water shedding layers and the fifth, sixth and seventh water shedding layers are configured to be affixed to the roof deck by an adhesive.
In an embodiment, the at least one second foot module includes a plurality of second foot modules. In an embodiment, the at least one first photovoltaic module includes a plurality of first photovoltaic modules, and the at least one second photovoltaic module includes a plurality of second photovoltaic modules, wherein each of the lower portions of each of the plurality of second photovoltaic modules is configured to align with a corresponding one of the at least one first module feet of each of the plurality of first photovoltaic modules.
In an embodiment, the system further comprises a plurality of shingles configured to be installed on the roof deck. In an embodiment, the at least one starter bar is configured to be affixed to at least one of the plurality of shingles. In an embodiment, the system further comprises flashing configured to be installed on the roof deck and positioned intermediate the plurality of shingles and at least one of the first and second plurality of water shedding layers. In an embodiment, the flashing includes step flashing having a plurality of flashing members configured to be positioned substantially perpendicular to the roof deck, and wherein a side edge of each the first and second plurality of water shedding layers is juxtaposed with one side of each of the plurality of flashing members. In an embodiment, the side edge of each of the first and second plurality of water shedding layers is attached to the one side of each of the plurality of flashing members by an adhesive. In an embodiment, the flashing includes double-edge flashing having a first planar member and a second planar member extending substantially perpendicular to the first planar member, wherein the plurality of shingles is configured to be installed over the first planar member on one side of the second planar member, and the first and second plurality of water shedding layers are configured to be installed over the first planar member on an opposite side of the second planar member.
In an embodiment, the system further comprises a bracket for an MLPE, wherein the bracket is configured to be attached to the at least one first photovoltaic module and position the MLPE under the bottom surface of the at least one first photovoltaic module. In an embodiment, the bracket includes a pocket that is sized and shaped to removably receive the MLPE. In an embodiment, the pocket includes a C-shape. In an embodiment, the bracket includes at least one hook member configured to be removably attached to at least one of the top portion, the lower portion and either of the side portions of the at least one first photovoltaic module.
In an embodiment, each of the first and second pluralities of water shedding layers is flexible. In an embodiment, each of the first and second pluralities of water shedding layers is non-flexible.
Referring to
In an embodiment, one layer 24 of the first plurality of water shedding layers 16 is configured to be installed over the at least one foot base 14 of the at least one starter bar 12, and at least one of another layer 26 of the plurality of water shedding layers 16 is configured to overlap and be installed over the one layer 24 of the first plurality of water shedding layers 16. In an embodiment, each of the first plurality of water shedding layers 16 includes water shedding properties and acts a moisture barrier for the roof deck 20. In an embodiment, each of the first plurality of water shedding layers 16 includes fire retardant properties.
Referring to
In an embodiment, the at least one of another layer 26 of the first plurality of water shedding layers 16 overlaps the at least one layer 24 of the first plurality of water shedding layers 16 over a first portion 40 of the one layer 24 of the first plurality of water shedding layers 16 to create a second, revealed portion 42. In an embodiment, the second, revealed portion 42 of the one layer 24 of the first plurality of water shedding layers 16 includes a width that is approximately equal to a length of the at least one photovoltaic module 28. In an embodiment, the length of the at least one photovoltaic module 28 extends from the upper portion 34 of the at least one photovoltaic module 28 to the lower portion 36 of the at least one photovoltaic module 28. In an embodiment, the one layer 24 of the first plurality of water shedding layers 16 includes a width, and wherein the width of the second, revealed portion 42 of the one layer 24 of the first plurality of water shedding layers 16 is approximately equal to half of the width of the one layer 24 of the first plurality of water shedding layers 16.
In another embodiment, the at least one of another layer 26 of the first plurality of water shedding layers 16 includes a second water shedding layer 26 configured to overlap the one layer 24 of the first plurality of water shedding layers 16, and a third water shedding layer 44 configured to overlap the second water shedding layer 26, the third water shedding layer 44 being the last overlapping layer of the at least one of another layer 26 of the first plurality of water shedding layers 16. In an embodiment, the one layer 24 of the first plurality of water shedding layers 16 and the second and third water shedding layers 26, 44 are configured to be affixed to the roof deck 20. In an embodiment, the one layer 24 of the first plurality of water shedding layers 16 and the second and third water shedding layers 26, 44 are configured to be affixed to the roof deck 20 by a plurality of nails. In an embodiment, the one layer 24 of the first plurality of water shedding layers 16 and the second and third water shedding layers 26, 44 are configured to be affixed to the roof deck 20 by an adhesive.
Referring to
In an embodiment, the at least one first foot module 18 includes a plurality of first foot modules 18. In an embodiment, the at least one starter bar 12 includes a plurality of starter bars 12. In an embodiment, the at least one first photovoltaic module 28 includes a plurality of first photovoltaic modules 28, and each of the lower portions 36 of each of the plurality of first photovoltaic modules 28 is configured to align with a corresponding one of the at least one foot base 14 of the plurality of starter bars 12.
Referring back to
In an embodiment, the last overlapping layer of the at least one of another layer 52 of the second plurality of water shedding layers 48 is a fifth water shedding layer 52. In an embodiment, the one layer 50 of the second plurality of water shedding layers 48 and the fifth water shedding layer 52 are configured to be affixed to the roof deck 20. In an embodiment, the one layer 50 of the second plurality of water shedding layers 48 and the fifth water shedding layer 52 are configured to be affixed to the roof deck 20 by a plurality of nails. In an embodiment, the one 50 of the second plurality of water shedding layers 48 and the fifth water shedding layer 52 are configured to be affixed to the roof deck 20 by an adhesive.
In an embodiment, the at least one of another layer 52 of the second plurality of water shedding layers 48 includes a fifth water shedding layer 52 configured to overlap the one 50 of the second plurality of water shedding layers 48, and a sixth water shedding layer 54 configured to overlap the fifth water shedding layer 52, the sixth water shedding layer 54 being configured to be the last overlapping layer of the at least one of another layer 52 of the second plurality of water shedding layers 48. In an embodiment, the one 50 of the second plurality of water shedding layers 48 and the fifth and sixth water shedding layers 52, 54 are configured to be affixed to the roof deck 20. In an embodiment, the one 50 of the second plurality of water shedding layers 48 and fifth and sixth water shedding layers 52, 54 are configured to be affixed to the roof deck 20 by a plurality of nails. In an embodiment, the one 50 of the second plurality of water shedding layers 48 and fifth and sixth water shedding layers 52, 54 are configured to be affixed to the roof deck 20 by an adhesive.
Referring back to
In an embodiment, the second plurality of water shedding layers 48 and the fifth, sixth and seventh water shedding layers 52, 54, 56 are configured to be affixed to the roof deck 20. In an embodiment, the one 50 of the second plurality of water shedding layers 48 and the fifth, sixth and seventh water shedding layers 52, 54, 56 are configured to be affixed to the roof deck 20 by a plurality of nails. In an embodiment, the one 50 of the second plurality of water shedding layers 48 and the fifth, sixth and seventh water shedding layers 52, 54, 56 are configured to be affixed to the roof deck 20 by an adhesive.
In an embodiment, the at least one second foot module 18 includes a plurality of second foot modules 18. In an embodiment, the at least one first photovoltaic module 28 includes a plurality of first photovoltaic modules 28, and the at least one second photovoltaic module 28 includes a plurality of second photovoltaic modules 28, wherein each of the lower portions 36 of each of the plurality of second photovoltaic modules 28 is configured to align with a corresponding one of the at least one first foot module 18 of each of the plurality of first photovoltaic modules 28.
Referring to
Referring to
Referring to
In an embodiment, the flashing member 108 is made from metal. In an embodiment, the flashing member 108 is made from aluminum. In another embodiment, the flashing member 108 is made from stainless steel. In another embodiment, the flashing member 108 is made from galvalume. In another embodiment, the flashing member 108 is made from a polymer. In an embodiment, the flashing member 108 is made from a composite material. In another embodiment, the flashing member 108 is made from fiberglass.
Referring to
Referring to
In an embodiment, the system 10 creates a solar plane that is different than the shingle plane comprised of the roofing system surrounding the photovoltaic modules 28. The transition between shingle plane and the solar plane is compatible with the system 10 and the application of flashing between the planes assures water shedding at the surface covered with the shingles 22. In an alternate embodiment, sealant materials are used for sealing the boundary area between the solar plane and the shingle plane.
Referring to
Referring to
Referring to
Referring to
In another embodiment, a method for installing a roof integrated photovoltaic system includes the following steps:
While a number of embodiments of the present invention have been described, it is understood that these embodiments are illustrative only, and not restrictive, and that many modifications may become apparent to those of ordinary skill in the art. Further still, the various steps may be carried out in any desired order (and any desired steps may be added and/or any desired steps may be eliminated). All such variations and modifications are intended to be included within the scope of the invention as defined in the appended claims.
This application is a Section 111(a) application relating to and claiming the benefit of commonly-owned, U.S. Provisional Patent Application Ser. No. 62/951,300, filed Dec. 20, 2019, entitled “ROOF INTEGRATED PHOTOVOLTAIC SYSTEM,” the contents of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1981467 | Radtke | Nov 1934 | A |
3156497 | Lessard | Nov 1964 | A |
3581779 | Gilbert, Jr. | Jun 1971 | A |
4258948 | Hoffmann | Mar 1981 | A |
4349220 | Carroll et al. | Sep 1982 | A |
4499702 | Turner | Feb 1985 | A |
4636577 | Peterpaul | Jan 1987 | A |
5167579 | Rotter | Dec 1992 | A |
5437735 | Younan et al. | Aug 1995 | A |
5590495 | Bressler et al. | Jan 1997 | A |
5642596 | Waddington | Jul 1997 | A |
6008450 | Ohtsuka et al. | Dec 1999 | A |
6033270 | Stuart | Mar 2000 | A |
6046399 | Kapner | Apr 2000 | A |
6201180 | Meyer et al. | Mar 2001 | B1 |
6220329 | King et al. | Apr 2001 | B1 |
6308482 | Strait | Oct 2001 | B1 |
6320114 | Kuechler | Nov 2001 | B1 |
6320115 | Kataoka et al. | Nov 2001 | B1 |
6336304 | Mimura et al. | Jan 2002 | B1 |
6341454 | Koleoglou | Jan 2002 | B1 |
6407329 | Iino et al. | Jun 2002 | B1 |
6576830 | Nagao et al. | Jun 2003 | B2 |
6928781 | Desbois et al. | Aug 2005 | B2 |
6972367 | Federspiel et al. | Dec 2005 | B2 |
7138578 | Komamine | Nov 2006 | B2 |
7155870 | Almy | Jan 2007 | B2 |
7178295 | Dinwoodie | Feb 2007 | B2 |
7487771 | Eiffert et al. | Feb 2009 | B1 |
7587864 | McCaskill et al. | Sep 2009 | B2 |
7666491 | Yang et al. | Feb 2010 | B2 |
7678990 | McCaskill et al. | Mar 2010 | B2 |
7678991 | McCaskill et al. | Mar 2010 | B2 |
7748191 | Podirsky | Jul 2010 | B2 |
7819114 | Augenbraun et al. | Oct 2010 | B2 |
7824191 | Podirsky | Nov 2010 | B1 |
7832176 | McCaskill et al. | Nov 2010 | B2 |
8118109 | Hacker | Feb 2012 | B1 |
8168880 | Jacobs et al. | May 2012 | B2 |
8173889 | Kalkanoglu et al. | May 2012 | B2 |
8210570 | Railkar et al. | Jul 2012 | B1 |
8276329 | Lenox | Oct 2012 | B2 |
8312693 | Cappelli | Nov 2012 | B2 |
8319093 | Kalkanoglu et al. | Nov 2012 | B2 |
8333040 | Shiao et al. | Dec 2012 | B2 |
8371076 | Jones et al. | Feb 2013 | B2 |
8375653 | Shiao et al. | Feb 2013 | B2 |
8404967 | Kalkanoglu et al. | Mar 2013 | B2 |
8410349 | Kalkanoglu et al. | Apr 2013 | B2 |
8418415 | Shiao et al. | Apr 2013 | B2 |
8438796 | Shiao et al. | May 2013 | B2 |
8468754 | Railkar et al. | Jun 2013 | B2 |
8468757 | Krause et al. | Jun 2013 | B2 |
8505249 | Geary | Aug 2013 | B2 |
8512866 | Taylor | Aug 2013 | B2 |
8513517 | Kalkanoglu et al. | Aug 2013 | B2 |
8586856 | Kalkanoglu et al. | Nov 2013 | B2 |
8601754 | Jenkins et al. | Dec 2013 | B2 |
8629578 | Kurs et al. | Jan 2014 | B2 |
8646228 | Jenkins | Feb 2014 | B2 |
8656657 | Livsey et al. | Feb 2014 | B2 |
8671630 | Lena et al. | Mar 2014 | B2 |
8677702 | Jenkins | Mar 2014 | B2 |
8695289 | Koch et al. | Apr 2014 | B2 |
8713858 | Xie | May 2014 | B1 |
8713860 | Railkar et al. | May 2014 | B2 |
8733038 | Kalkanoglu et al. | May 2014 | B2 |
8776455 | Azoulay | Jul 2014 | B2 |
8789321 | Ishida | Jul 2014 | B2 |
8793940 | Kalkanoglu et al. | Aug 2014 | B2 |
8793941 | Bosler et al. | Aug 2014 | B2 |
8826607 | Shiao et al. | Sep 2014 | B2 |
8835751 | Kalkanoglu et al. | Sep 2014 | B2 |
8863451 | Jenkins et al. | Oct 2014 | B2 |
8898970 | Jenkins et al. | Dec 2014 | B2 |
8925262 | Railkar et al. | Jan 2015 | B2 |
8943766 | Gombarick et al. | Feb 2015 | B2 |
8946544 | Jabos et al. | Feb 2015 | B2 |
8950128 | Kalkanoglu et al. | Feb 2015 | B2 |
8959848 | Jenkins et al. | Feb 2015 | B2 |
8966838 | Jenkins | Mar 2015 | B2 |
8966850 | Jenkins et al. | Mar 2015 | B2 |
8994224 | Mehta et al. | Mar 2015 | B2 |
9032672 | Livsey et al. | May 2015 | B2 |
9153950 | Yamanaka et al. | Oct 2015 | B2 |
9166087 | Chihlas et al. | Oct 2015 | B2 |
9169646 | Rodrigues et al. | Oct 2015 | B2 |
9170034 | Bosler et al. | Oct 2015 | B2 |
9178465 | Shiao et al. | Nov 2015 | B2 |
9202955 | Livsey et al. | Dec 2015 | B2 |
9212832 | Jenkins | Dec 2015 | B2 |
9217584 | Kalkanoglu et al. | Dec 2015 | B2 |
9270221 | Zhao | Feb 2016 | B2 |
9273885 | Rordigues et al. | Mar 2016 | B2 |
9276141 | Kalkanoglu et al. | Mar 2016 | B2 |
9331224 | Koch et al. | May 2016 | B2 |
9356174 | Duarte et al. | May 2016 | B2 |
9359014 | Yang et al. | Jun 2016 | B1 |
9412890 | Meyers | Aug 2016 | B1 |
9528270 | Jenkins et al. | Dec 2016 | B2 |
9605432 | Robbins | Mar 2017 | B1 |
9711672 | Wang | Jul 2017 | B2 |
9755573 | Livsey et al. | Sep 2017 | B2 |
9786802 | Shiao et al. | Oct 2017 | B2 |
9831818 | West | Nov 2017 | B2 |
9912284 | Svec | Mar 2018 | B2 |
9923515 | Rodrigues et al. | Mar 2018 | B2 |
9938729 | Coon | Apr 2018 | B2 |
9991412 | Gonzalez et al. | Jun 2018 | B2 |
9998067 | Kalkanoglu et al. | Jun 2018 | B2 |
10027273 | West et al. | Jul 2018 | B2 |
10115850 | Rodrigues et al. | Oct 2018 | B2 |
10128660 | Apte et al. | Nov 2018 | B1 |
10156075 | McDonough | Dec 2018 | B1 |
10187005 | Rodrigues et al. | Jan 2019 | B2 |
10256765 | Rodrigues et al. | Apr 2019 | B2 |
10284136 | Mayfield et al. | May 2019 | B1 |
10454408 | Livsey et al. | Oct 2019 | B2 |
10530292 | Cropper et al. | Jan 2020 | B1 |
10560048 | Fisher et al. | Feb 2020 | B2 |
10563406 | Kalkanoglu et al. | Feb 2020 | B2 |
D879031 | Lance et al. | Mar 2020 | S |
10579028 | Jacob | Mar 2020 | B1 |
10784813 | Kalkanoglu et al. | Sep 2020 | B2 |
D904289 | Lance et al. | Dec 2020 | S |
11012026 | Kalkanoglu et al. | May 2021 | B2 |
11177639 | Nguyen et al. | Nov 2021 | B1 |
11217715 | Sharenko | Jan 2022 | B2 |
11251744 | Bunea et al. | Feb 2022 | B1 |
11258399 | Kalkanoglu et al. | Feb 2022 | B2 |
11283394 | Perkins et al. | Mar 2022 | B2 |
11309828 | Sirski et al. | Apr 2022 | B2 |
11394344 | Perkins et al. | Jul 2022 | B2 |
11424379 | Sharenko et al. | Aug 2022 | B2 |
11431280 | Liu et al. | Aug 2022 | B2 |
11431281 | Perkins et al. | Aug 2022 | B2 |
11444569 | Clemente et al. | Sep 2022 | B2 |
11454027 | Kuiper et al. | Sep 2022 | B2 |
11459757 | Nguyen et al. | Oct 2022 | B2 |
11486144 | Bunea et al. | Nov 2022 | B2 |
11489482 | Peterson et al. | Nov 2022 | B2 |
11496088 | Sirski et al. | Nov 2022 | B2 |
11508861 | Perkins et al. | Nov 2022 | B1 |
11512480 | Achor et al. | Nov 2022 | B1 |
11527665 | Boitnott | Dec 2022 | B2 |
11545927 | Abra et al. | Jan 2023 | B2 |
11545928 | Perkins et al. | Jan 2023 | B2 |
11658470 | Nguyen et al. | May 2023 | B2 |
11661745 | Bunea et al. | May 2023 | B2 |
11689149 | Clemente et al. | Jun 2023 | B2 |
11705531 | Sharenko et al. | Jul 2023 | B2 |
11728759 | Nguyen et al. | Aug 2023 | B2 |
11732490 | Achor et al. | Aug 2023 | B2 |
11811361 | Farhangi et al. | Nov 2023 | B1 |
11824486 | Nguyen et al. | Nov 2023 | B2 |
11824487 | Nguyen et al. | Nov 2023 | B2 |
11843067 | Nguyen et al. | Dec 2023 | B2 |
20020053360 | Kinoshita et al. | May 2002 | A1 |
20020129849 | Heckeroth | Sep 2002 | A1 |
20030101662 | Ullman | Jun 2003 | A1 |
20030132265 | Villela et al. | Jul 2003 | A1 |
20030217768 | Guha | Nov 2003 | A1 |
20040000334 | Ressler | Jan 2004 | A1 |
20050030187 | Peress et al. | Feb 2005 | A1 |
20050115603 | Yoshida et al. | Jun 2005 | A1 |
20050144870 | Dinwoodie | Jul 2005 | A1 |
20050178428 | Laaly et al. | Aug 2005 | A1 |
20050193673 | Rodrigues et al. | Sep 2005 | A1 |
20060042683 | Gangemi | Mar 2006 | A1 |
20060046084 | Yang et al. | Mar 2006 | A1 |
20070074757 | Mellott et al. | Apr 2007 | A1 |
20070181174 | Ressler | Aug 2007 | A1 |
20070193618 | Bressler et al. | Aug 2007 | A1 |
20070249194 | Liao | Oct 2007 | A1 |
20070295385 | Sheats et al. | Dec 2007 | A1 |
20080006323 | Kalkanoglu et al. | Jan 2008 | A1 |
20080035140 | Placer | Feb 2008 | A1 |
20080315061 | Placerl. et al. | Feb 2008 | A1 |
20080078440 | Lim et al. | Apr 2008 | A1 |
20080185748 | Kalkanoglu | Aug 2008 | A1 |
20080271774 | Kalkanoglu et al. | Nov 2008 | A1 |
20080302030 | Stancel et al. | Dec 2008 | A1 |
20090000222 | Kalkanoglu et al. | Jan 2009 | A1 |
20090014057 | Croft et al. | Jan 2009 | A1 |
20090014058 | Croft et al. | Jan 2009 | A1 |
20090019795 | Szacsvay et al. | Jan 2009 | A1 |
20090044850 | Kimberley | Feb 2009 | A1 |
20090114261 | Stancel et al. | May 2009 | A1 |
20090133340 | Shiao et al. | May 2009 | A1 |
20090159118 | Kalkanoglu et al. | Jun 2009 | A1 |
20090178350 | Kalkanoglu et al. | Jul 2009 | A1 |
20090229652 | Mapel et al. | Sep 2009 | A1 |
20090275247 | Richter et al. | Nov 2009 | A1 |
20100019580 | Croft et al. | Jan 2010 | A1 |
20100095618 | Edison et al. | Apr 2010 | A1 |
20100101634 | Frank et al. | Apr 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100131108 | Meyer | May 2010 | A1 |
20100139184 | Williams et al. | Jun 2010 | A1 |
20100146878 | Koch et al. | Jun 2010 | A1 |
20100159221 | Kourtakis et al. | Jun 2010 | A1 |
20100170169 | Railkar et al. | Jul 2010 | A1 |
20100186798 | Tormen et al. | Jul 2010 | A1 |
20100242381 | Jenkins | Sep 2010 | A1 |
20100313499 | Gangemi | Dec 2010 | A1 |
20100325976 | DeGenfelder et al. | Dec 2010 | A1 |
20100326488 | Aue et al. | Dec 2010 | A1 |
20100326501 | Zhao et al. | Dec 2010 | A1 |
20110030761 | Kalkanoglu et al. | Feb 2011 | A1 |
20110036386 | Browder | Feb 2011 | A1 |
20110036389 | Hardikar et al. | Feb 2011 | A1 |
20110048507 | Livsey et al. | Mar 2011 | A1 |
20110058337 | Han et al. | Mar 2011 | A1 |
20110061326 | Jenkins | Mar 2011 | A1 |
20110100436 | Cleereman et al. | May 2011 | A1 |
20110104488 | Muessig et al. | May 2011 | A1 |
20110132427 | Kalkanoglu et al. | Jun 2011 | A1 |
20110168238 | Metin et al. | Jul 2011 | A1 |
20110239555 | Cook | Oct 2011 | A1 |
20110302859 | Crasnianski | Dec 2011 | A1 |
20110314753 | Farmer et al. | Dec 2011 | A1 |
20120034799 | Hunt | Feb 2012 | A1 |
20120060434 | Jacobs | Mar 2012 | A1 |
20120060902 | Drake | Mar 2012 | A1 |
20120085392 | Albert et al. | Apr 2012 | A1 |
20120137600 | Jenkins | Jun 2012 | A1 |
20120176077 | Oh et al. | Jul 2012 | A1 |
20120212065 | Cheng et al. | Aug 2012 | A1 |
20120233940 | Perkins et al. | Sep 2012 | A1 |
20120240490 | Gangemi | Sep 2012 | A1 |
20120255250 | Wetmore | Oct 2012 | A1 |
20120260977 | Stancel | Oct 2012 | A1 |
20120266942 | Komatsu et al. | Oct 2012 | A1 |
20120279150 | Pisklak | Nov 2012 | A1 |
20120282437 | Clark et al. | Nov 2012 | A1 |
20120291848 | Sherman et al. | Nov 2012 | A1 |
20130008499 | Verger et al. | Jan 2013 | A1 |
20130014455 | Grieco | Jan 2013 | A1 |
20130118558 | Sherman | May 2013 | A1 |
20130193769 | Mehta et al. | Aug 2013 | A1 |
20130247988 | Reese et al. | Sep 2013 | A1 |
20130284267 | Plug et al. | Oct 2013 | A1 |
20130306137 | Ko | Nov 2013 | A1 |
20140090697 | Rodrigues et al. | Apr 2014 | A1 |
20140150843 | Pearce et al. | Jun 2014 | A1 |
20140173997 | Jenkins | Jun 2014 | A1 |
20140179220 | Railkar et al. | Jun 2014 | A1 |
20140182222 | Kalkanoglu et al. | Jul 2014 | A1 |
20140208675 | Beerer et al. | Jul 2014 | A1 |
20140254776 | O'Connor et al. | Sep 2014 | A1 |
20140266289 | Della Sera et al. | Sep 2014 | A1 |
20140311556 | Feng et al. | Oct 2014 | A1 |
20140352760 | Haynes et al. | Dec 2014 | A1 |
20140366464 | Rodrigues et al. | Dec 2014 | A1 |
20150089895 | Leitch | Apr 2015 | A1 |
20150162459 | Lu et al. | Jun 2015 | A1 |
20150340516 | Kim et al. | Nov 2015 | A1 |
20150349173 | Morad et al. | Dec 2015 | A1 |
20160105144 | Haynes et al. | Apr 2016 | A1 |
20160142008 | Lopez et al. | May 2016 | A1 |
20160254776 | Rodrigues et al. | Sep 2016 | A1 |
20160276508 | Huang et al. | Sep 2016 | A1 |
20160359451 | Mao et al. | Dec 2016 | A1 |
20170159292 | Chihlas et al. | Jun 2017 | A1 |
20170179319 | Yamashita et al. | Jun 2017 | A1 |
20170179726 | Garrity et al. | Jun 2017 | A1 |
20170237390 | Hudson et al. | Aug 2017 | A1 |
20170331415 | Koppi et al. | Nov 2017 | A1 |
20180094438 | Wu et al. | Apr 2018 | A1 |
20180097472 | Anderson et al. | Apr 2018 | A1 |
20180115275 | Flanigan et al. | Apr 2018 | A1 |
20180254738 | Yang | Sep 2018 | A1 |
20180294765 | Friedrich et al. | Oct 2018 | A1 |
20180351502 | Almy et al. | Dec 2018 | A1 |
20180367089 | Stutterheim et al. | Dec 2018 | A1 |
20190030867 | Sun et al. | Jan 2019 | A1 |
20190081436 | Onodi et al. | Mar 2019 | A1 |
20190123679 | Rodrigues et al. | Apr 2019 | A1 |
20190253022 | Hardar et al. | Aug 2019 | A1 |
20190305717 | Allen et al. | Oct 2019 | A1 |
20200109320 | Jiang | Apr 2020 | A1 |
20200144958 | Rodrigues et al. | May 2020 | A1 |
20200220819 | Vu et al. | Jul 2020 | A1 |
20200224419 | Boss et al. | Jul 2020 | A1 |
20200343397 | Hem-Jensen | Oct 2020 | A1 |
20210083619 | Hegedus | Mar 2021 | A1 |
20210115223 | Bonekamp et al. | Apr 2021 | A1 |
20210159353 | Li et al. | May 2021 | A1 |
20210301536 | Baggs et al. | Sep 2021 | A1 |
20210343886 | Sharenko et al. | Nov 2021 | A1 |
20220149213 | Mensink et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2829440 | May 2019 | CA |
700095 | Jun 2010 | CH |
202797032 | Mar 2013 | CN |
217150978 | Aug 2022 | CN |
1958248 | Nov 1971 | DE |
1039361 | Sep 2000 | EP |
1837162 | Sep 2007 | EP |
1774372 | Jul 2011 | EP |
2446481 | May 2012 | EP |
2784241 | Oct 2014 | EP |
3772175 | Feb 2021 | EP |
10046767 | Feb 1998 | JP |
2002-106151 | Apr 2002 | JP |
2001-098703 | Oct 2002 | JP |
2017-027735 | Feb 2017 | JP |
2018053707 | Apr 2018 | JP |
20090084060 | Aug 2009 | KR |
10-1348283 | Jan 2014 | KR |
10-2019-0000367 | Jan 2019 | KR |
10-2253483 | May 2021 | KR |
2026856 | Jun 2022 | NL |
2010151777 | Dec 2010 | WO |
2011049944 | Apr 2011 | WO |
2015133632 | Sep 2015 | WO |
2018000589 | Jan 2018 | WO |
2019201416 | Oct 2019 | WO |
2020-159358 | Aug 2020 | WO |
2021-247098 | Dec 2021 | WO |
Entry |
---|
Sunflare, Procducts: “Sunflare Develops Prototype For New Residential Solar Shingles”; 2019 <<sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021. |
RGS Energy, 3.5kW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021. |
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021. |
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021. |
Number | Date | Country | |
---|---|---|---|
20230018614 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
62951300 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17123831 | Dec 2020 | US |
Child | 17870645 | US |