The embodiments disclosed herein relate in general to mounting assemblies and in particular to an apparatus and method for securing a roof-mounted structure to a roof.
A solar panel (also called a “photovoltaic panel”) is an electrically interconnected assembly of solar cells used to generate electric power from sunlight that are mounted within a protective case. Owing to the relatively low power output efficiencies of current commercially available solar cells, several solar panels are typically required to generate a meaningful supply of electricity for use in commercial and residential applications. The panels are relatively large, heavy watertight structures and must be firmly secured to the building structure so as not to damage the structure itself or disrupt the watertight integrity of the roof. This is typically accomplished through the use of a plurality of mounting brackets or other mounting assemblies that connect the panels directly to the roof structure. In addition to firmly supporting the weight and size of the panels, the mounts must also allow the panels to be efficiently positioned to receive sunlight and must further be strong enough to withstand the adverse climatic elements that the roof itself must endure all year round, including high-winds, snow, ice, leaves and branches, etc.
Solar panels for residential use have been commercially available for decades, but only recently have solar cells become sufficiently power efficient and cost effective to compete with more conventional energy sources. Although the power savings resulting from a solar panel installation may not be realized for many years, the interest in solar energy has only grown in recent years and this has resulted in a sharp increase in the number of solar panel installations to residential homes and commercial buildings. To keep up with the busy demand for such installations, there has been much thought regarding the speed and efficiency of the installation process, including the tools and hardware used to install such a solar panel array to a roof structure keeping in mind the necessary safety requirements and local building codes. An important area of interest in this regard is the mounting assembly itself that is used to mechanically secure the panels to the roof structure.
The mounting assembly is arguably the most important component of the installation because each mount must provide a strong, watertight connection to the roof, must be adaptable to accommodate the greatest number of roofing structures and surface materials, should be low-profile, low in cost, and perhaps most importantly should be quick and easy to install and provide consistent predictable results. The speed for installation of these mounts is important because usually many of them have to be installed. A typical residential solar panel installation will require several mounts to be secured to the roof structure, so the time required to install a single mount becomes an important indicator in determining the time required to complete the installation project. The quicker to install one mount, the less time required to install many mounts. As to be expected, there are several different types of roof-mount assemblies commercially available today, but many appear to be complicated, costly and apparently require a relatively long time to install.
To illustrate some of the benefits of the present invention, an example of a commonly used prior art roof mounting assembly 10 is shown in
As shown in the “Prior Art” Figures, the FastJack includes a machined-aluminum mounting block 12, a lag bolt 14, a coupler 16, a flashing element 18, a rubber sealing boot 20 and a connector bolt 22 used to attach a rail 24 to the coupler 16, as described below. Mounting block 12 is made from solid aluminum and includes a counter-bore 25 for receiving both the lag bolt 14, which is used to secure the mounting block 12 to the roof 36, and the coupler 16, which receives the connector bolt 22 to connect the rail 24 to the assembly 10. Coupler 16 includes external threads 26 at one end and a threaded bore 28 at an opposing end. The threaded bore 28 is sized and shaped to engage the threads of the connector bolt 22, whereas the external threads 26 selectively engage the threads 27 formed within the counter-bore 25. The flashing element 18 is somewhat conical in shape, with an integrally formed flat base 30 and an open upper end 32 defining a rim 34. When installed to a roof, flashing element 18 is positioned around the mounting block 12, coupler 16, connector bolt 22 and the lag bolt 14, with flat base 30 securely nestled under upper tiles or shingles 37, as shown in
The following steps describe the installation of a mounting assembly 10:
The prior art mounting assembly 10 described above is made up of several interconnecting components that have to be assembled in place on a roof surface, which is typically slanted. This is difficult for an installer because the installer must keep all the parts on hand on the roof and must carefully assemble the mounting assembly in place. Parts can easily slip and fall off the roof causing delay and possibly injury. The installer doesn't want to deal with this. The quicker the installer can secure the mounts to the roof, the less time the installer has to be on the roof and the safer the overall job will be. Also, so many interconnecting parts have to be manufactured to a relatively high degree of accuracy and this can only result in potential alignment issues during assembly (on the roof) and an increase in cost of manufacture.
Applicant has recognized a need for a simple, low-part roof mounting assembly that is very quick and easy to install on a roof, yet meets all the necessary supportive and sealing requirements. Such a mounting assembly would result in a safer installation since the installer would not be required to remain on the roof for long periods of time and would not have to perform relatively complicated assembly while perched in a precarious position on the roof.
An embodiment of a roof-mounting assembly and a method of use are disclosed herein. In a preferred use, the disclosed mounting assembly can be used for securing a solar panel to a roof of the type that includes roof tiles and an underlying support structure.
In one aspect, an apparatus for securing a roof-mounted structure to a roof comprises a shaft. The shaft extends along a longitudinal shaft axis and includes a first end opposing a second end. The first end includes a roof fastening portion, and the second end includes a drive part and an anchor portion for securing the roof-mounted structure to the shaft. The shaft further includes a radially projecting shoulder surface disposed between the first and second ends and oriented toward the first end. According to this aspect, the apparatus can optionally include a first rigid washer. The first rigid washer has a first surface opposing a second surface and defines a through aperture sized to receive the roof fastening portion of the shaft, and at least a portion of the first surface is configured to engage the shoulder surface.
In another aspect, a method of securing a roof mounted structure to a roof having at least one roof tile overlying a roof support structure using a shaft and a washer is described. The shaft includes a roof fastening portion disposed at a first end of the shaft, a drive part and an anchor portion disposed at a second end of the shaft opposing the first end, and an integrally formed radially projecting shoulder surface disposed between the first and second ends and oriented toward the first end. The washer has a first surface opposing a second surface and defines a through aperture sized to receive the roof fastening portion of the shaft. The method comprises positioning the second surface of the washer adjacent to the roof and axially aligning the roof fastening portion with the through aperture, engaging the drive part to drive the roof fastening portion through the roof tiles and into the roof support structure such that the shoulder surface engages the first surface of the washer to urge the washer towards the roof and provide a watertight seal between the second surface and the at least one roof tile, and securing a roof mounted structure to the anchor portion.
In yet another aspect, an apparatus for securing a roof-mounted structure to a roof having a plurality of roof tiles overlying a roof support structure comprises a shaft and a washer. The shaft has a shaft diameter and extends along a longitudinal shaft axis and includes a first end opposing a second end. The first end includes a roof fastening portion having external wood threads configured for threaded engagement with the roof support structure. The second end includes a screw drive and an anchor portion, the screw drive having a head with a head diameter equal to or less then the shaft diameter and configured for engagement with a drive socket and the anchor portion having exterior machine screw threads configured for threaded engagement with the roof-mounted structure. A flange is integrally formed with the shaft and disposed between the first and second ends, the flange projecting radially from the shaft to define a shoulder surface oriented toward the first end. The washer has a first surface opposing a second surface, and defines a through aperture sized to receive the roof fastening portion of the shaft. At least a portion of the first surface is configured to engage the shoulder surface and the second surface is configured to provide a watertight seal between the washer and at least one of the roof tiles.
The objects of the disclosed embodiment include providing a watertight mounting assembly for mounting equipment on top of a roof, and providing such a mounting assembly that uses few parts and is quick and easy to install on a roof.
These and other objects, features, advantages and other uses of the present apparatus and method will become more apparent by referring to the following detailed description and drawings in which:
A roof mounting assembly for securing a roof mounted structure, such as a solar panel, to a roof of the type that includes tiles and an underlying support structure is described below.
Referring to
The second end 116 further includes a drive part 122. The drive part is illustrated as in integrally formed drive head configured for engagement with a drive socket (not shown) that can be secured to an appropriate powered drive tool, such as a powered screwdriver or an impact hammer (not shown). In the illustrated embodiment of a hanger bolt 102 where the roof fastening portion 110 includes external threads, the drive head can be utilized to easily drive the bolt 102 into a roof structure at a desired angle and/or to remove the bolt 102 after it has been driven into a roof structure. The drive head is preferably shaped as a hex drive, but may be configured as any appropriately shaped drive, such as triangular drive, square drive, Torx® or other drives known by those skilled in the art. Where, as shown, the anchor portion 114 includes external anchoring threads, a diameter of the drive part 122 can be smaller than a diameter of the anchor portion 114 to allow engagement between the anchoring threads and an internally threaded component.
The shaft 108 includes a radially projecting shoulder surface 123 disposed between the first end 112 and the second end 116. The radially projecting shoulder surface 123 is oriented towards the first end 112 and configured to engage at least a portion of a first surface 103 of a rigid washer 104 positioned on the shaft 108 between the roof fastening portion 110 and the shoulder surface 123. The shoulder surface 123 is illustrated as being orthogonal to the shaft axis 109, but could alternatively be sloped or arcuate. In a preferred configuration, the first end 112 has a first shaft diameter adjacent the shoulder surface 123, and the shoulder surface 123 is defined by a flange 124. In the illustrated embodiment, the flange 124 is integrally formed with the shaft 108 and a diameter of the flange 124 is greater than the first shaft diameter. The flange 124 can be located at a predetermined location along the shaft 108 between the roof fastening portion 110 and the anchor portion 114, such that the anchor portions 114 of a plurality of mounting assemblies 100 would each extend a uniform distance from a roof structure when installed.
The hanger bolt 102 is preferably made from a strong appropriate metal, such as steel, but can be made from other materials, such as appropriate alloys, aluminum or stainless steel. Regardless of the material used, the hanger bolt 102 is preferably further corrosion treated, if necessary (depending on the material), such as by anodizing, galvanizing or plastic coating the bolt 102, by using a suitable paint, or by using other corrosion treatments. Obviously, most types of stainless steel are naturally resistant to corrosion and may require no protective coating or other corrosion treatment.
The hanger bolt 102 can be any appropriate size depending on the specific application and requirements. For most solar panel applications, Applicant prefers that hanger bolt 102 be about 153 mm long, with the shaft 108 having a diameter of about 7 mm. Where the anchor portion 114 and the roof fastening portion 110 are threaded, it is also preferred that both the anchor portion 114 and the roof fastening portion 110 be about 65 mm long and that the flange 124 be about 3 mm thick with an approximately 12 mm diameter.
The first rigid washer 104 is preferably made from a strong material, such as a metal, for example steel or stainless steel. As with the hanger bolt 102, the first washer 104 is preferably treated to resist corrosion. The first washer 104 defines a central opening 105, which is a through aperture sized to receive the roof fastening portion 110 of the shaft 108. That is, the central opening 105 is sized slightly greater than a diameter the roof fastening portion 110. The central opening 105 is also sized less than the diameter of the flange 124, such that the shoulder surface 123 engages the first surface 103 when axially aligned with the first washer 104. A thickness of the first washer 104 is about 8 mm, and the first washer 104 is preferably slightly concave with an outer diameter of about 76.2 mm and an inner diameter of about 8.6 mm.
The second sealing washer 107 can be disposed on the shaft 108 between a roof structure and the first washer 104. The second sealing washer 107 is constructed from a compliant material configured to provide a watertight seal when a second surface 113 of the second sealing washer 107 is urged towards a roof structure when a first surface 111 of the second sealing washer 107 is engaged by a second surface 106 of the first washer 104 as the shoulder surface 123 engages the first surface 103 of the first washer 104. The second sealing washer 107 is preferably made from an appropriate synthetic rubber, such as an EPDM (ethylene propylene diene Monomer—an M M-class rubber) having a durometer range between 60 and 80, and includes dimensions similar to those of the first washer 104—that is, an outer diameter of about 76.2 mm and an inner diameter of about 8.6 mm. However, the second sealing washer 107 preferably has a thickness of about 3.2 mm. Of course all these dimensions can and will vary depending on the particular application and specific requirements.
Although the first washer 104 and the second sealing washer 107 are illustrated as separate components, the second sealing washer 107 can be bonded to the first washer 104, or the first washer 104 can be formed integrally with a suitable compliant material. For example, the first washer 104 can be provided with a rubber layer that can be forced into sealing contact with a roof structure by engagement of the flange 124 with the first surface 103 when the shaft 108 is driven into the roof structure. Use of a conventional EPDM bonded stainless steel washer 126 is illustrated in
Referring now to
In use of the illustrated embodiment of the present invention:
Once all the mounting assemblies 100 are installed into the roof at the prescribed locations, the anchor portion 114 of each installed mounting assembly 100 remains accessible above the roof surface and can be used to secure a roof mounted structure including any appropriate racking member or frame structure 150 (shown in
As can be seen from the above, the described mounting assembly 100 can include as few as two parts (if a bonded washer is used, as is preferred); a hanger bolt 102 and a bonded washer 126. The use of an integral flange 124 obviates the need for any stop nuts that had been used in prior art mount systems. An integral flange 124 allows the present mount system to remain simple to manufacture and assemble, and also easy to install since there are fewer parts to assemble and keep track of. Once installed, racking members can be then secured to the accessible machine threads of the anchor portion 114.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application claims priority to U.S. Provisional Patent Application No. 61/516,173, filed Mar. 30, 2011, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
473512 | Laird | Apr 1892 | A |
756884 | Parry | Apr 1904 | A |
1646923 | Martens | Oct 1927 | A |
1925263 | Levow | Sep 1933 | A |
2079768 | Scott | May 1944 | A |
D139568 | Hinchman | Nov 1944 | S |
2890664 | Rachlin | Jun 1959 | A |
2925976 | Martin | Feb 1960 | A |
D188221 | Maro | Jun 1960 | S |
3141532 | Runyan | Jul 1964 | A |
3182762 | Syak et al. | May 1965 | A |
3408780 | Brister | Nov 1968 | A |
3478639 | Gruca | Nov 1969 | A |
3633862 | Breen | Jan 1972 | A |
3682507 | Waud | Aug 1972 | A |
3880405 | Brueske | Apr 1975 | A |
3897713 | Gugle | Aug 1975 | A |
3998019 | Reinwall, Jr. | Dec 1976 | A |
4157674 | Carlson et al. | Jun 1979 | A |
4226058 | Riley | Oct 1980 | A |
4269012 | Mattingly et al. | May 1981 | A |
4321745 | Ford | Mar 1982 | A |
4325178 | Pruehs | Apr 1982 | A |
4348846 | Bellem | Sep 1982 | A |
4367864 | Eldeen | Jan 1983 | A |
4404962 | Zinn et al. | Sep 1983 | A |
4554773 | Conley | Nov 1985 | A |
D293203 | Hertensteiner | Dec 1987 | S |
D294904 | Bleskachek | Mar 1988 | S |
4763456 | Giannuzzi | Aug 1988 | A |
4796403 | Fulton et al. | Jan 1989 | A |
4892429 | Giannuzzi | Jan 1990 | A |
4927305 | Peterson, Jr. | May 1990 | A |
5082412 | Thomas | Jan 1992 | A |
5127205 | Eidson | Jul 1992 | A |
5207043 | McGee et al. | May 1993 | A |
5217191 | Smith | Jun 1993 | A |
5228248 | Haddock | Jul 1993 | A |
5333978 | Rives | Aug 1994 | A |
5353473 | Sherick | Oct 1994 | A |
5431372 | Kostelecky | Jul 1995 | A |
5483772 | Haddock | Jan 1996 | A |
5491931 | Haddock | Feb 1996 | A |
D368648 | Losier | Apr 1996 | S |
5528872 | Rotter | Jun 1996 | A |
5547226 | Wentworth | Aug 1996 | A |
5557903 | Haddock | Sep 1996 | A |
5609326 | Stearns et al. | Mar 1997 | A |
5613328 | Alley | Mar 1997 | A |
5685508 | Smith | Nov 1997 | A |
5687936 | Wilson | Nov 1997 | A |
D388136 | Lecocq et al. | Dec 1997 | S |
5692352 | Simpson | Dec 1997 | A |
5694721 | Haddock | Dec 1997 | A |
5715640 | Haddock | Feb 1998 | A |
5746029 | Ullman | May 1998 | A |
5755545 | Banks | May 1998 | A |
5797232 | Larson | Aug 1998 | A |
5813649 | Peterson et al. | Sep 1998 | A |
5873201 | Fey | Feb 1999 | A |
5882043 | Murphy et al. | Mar 1999 | A |
D409078 | Bolt | May 1999 | S |
5983588 | Haddock | Nov 1999 | A |
D426453 | Stearns et al. | Jun 2000 | S |
D428799 | Stearns et al. | Aug 2000 | S |
D430005 | Stearns et al. | Aug 2000 | S |
6164033 | Haddock | Dec 2000 | A |
6193455 | Levey | Feb 2001 | B1 |
6360491 | Ullman | Mar 2002 | B1 |
6414237 | Boer | Jul 2002 | B1 |
6470629 | Haddock | Oct 2002 | B1 |
6514005 | Shiokawa et al. | Feb 2003 | B2 |
6526701 | Stearns et al. | Mar 2003 | B2 |
6536729 | Haddock | Mar 2003 | B1 |
6669274 | Barnard et al. | Dec 2003 | B2 |
6718718 | Haddock | Apr 2004 | B2 |
6868647 | Poldmaa | Mar 2005 | B2 |
7013612 | Haddock | Mar 2006 | B2 |
7069698 | Nee | Jul 2006 | B2 |
7100338 | Haddock | Sep 2006 | B2 |
7260918 | Liebendorfer | Aug 2007 | B2 |
7434362 | Liebendoffer | Oct 2008 | B2 |
7703256 | Haddock | Apr 2010 | B2 |
D617174 | Schaefer et al. | Jun 2010 | S |
7758011 | Haddock | Jul 2010 | B2 |
7762027 | Wentworth et al. | Jul 2010 | B1 |
7789365 | Durig et al. | Sep 2010 | B2 |
7900413 | Stanley | Mar 2011 | B2 |
7905064 | Wentworth et al. | Mar 2011 | B1 |
7935202 | Stanley | May 2011 | B2 |
8033703 | Bryce et al. | Oct 2011 | B2 |
8122648 | Liu | Feb 2012 | B1 |
8151522 | Stearns et al. | Apr 2012 | B2 |
20020088196 | Haddock | Jul 2002 | A1 |
20020131842 | Eriksson | Sep 2002 | A1 |
20020136595 | Schubring et al. | Sep 2002 | A1 |
20030101662 | Ullman | Jun 2003 | A1 |
20030177706 | Ullman | Sep 2003 | A1 |
20040173373 | Wentworth et al. | Sep 2004 | A1 |
20070245636 | Ayer et al. | Oct 2007 | A1 |
20070266672 | Bateman et al. | Nov 2007 | A1 |
20070289233 | Haddock | Dec 2007 | A1 |
20070295393 | Cinnamon | Dec 2007 | A1 |
20080000173 | Lenox et al. | Jan 2008 | A1 |
20080087275 | Sade et al. | Apr 2008 | A1 |
20080121273 | Plaisted et al. | May 2008 | A1 |
20080190047 | Allen | Aug 2008 | A1 |
20080245404 | DeLiddo | Oct 2008 | A1 |
20080302407 | Kobayashi | Dec 2008 | A1 |
20080313976 | Allen | Dec 2008 | A1 |
20090025314 | Komamine et al. | Jan 2009 | A1 |
20090309388 | Ellison | Dec 2009 | A1 |
20100192505 | Schaefer et al. | Aug 2010 | A1 |
20100307074 | Stearns et al. | Dec 2010 | A1 |
20110120047 | Stearns et al. | May 2011 | A1 |
20110247279 | Stearns et al. | Oct 2011 | A1 |
20110247295 | Stearns et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
204783 | May 1939 | CH |
671063 | Jul 1989 | CH |
3716491 | Dec 1988 | DE |
3723020 | Jan 1989 | DE |
666147 | Feb 1952 | GB |
5346055 | Dec 1993 | JP |
8193392 | Jul 1996 | JP |
Entry |
---|
“E-Ton Solar” Brochure, E-Ton Solar Tech. Co., Ltd. (Available at least as early as Oct. 20, 2011). |
“Fall Protection in Construction”, OSHA Laws 3146; 1995. |
“Genmounts Solar Racking Systems” Brochure (Available at least as early as Oct. 20, 2011). |
MacDonald, “Inspecting the Scaffold” and Protective Roofing Products LTD. advertisement, (undated), Roofing Contractor 6.00. |
“Mage Powertec Kits” Brochure, Mage Solar Projects, Inc. (Available at least as early as Oct. 20, 2011). |
Non-Final Office Action, U.S. Appl. No. 12/727,726, mailed Sep. 16, 2011. |
Non-Final Office Action, U.S. Appl. No. 13/166,542, mailed Sep. 16, 2011. |
Non-Final Office Action, U.S. Appl. No. 13/166,378, mailed Sep. 19, 2011. |
Non-Final Office Action, U.S. Appl. No. 12/914,209, mailed Sep. 20, 2011. |
Omco Solar Brochure (Available at least as early as Oct. 20, 2011). |
“Orion Solar Racking Jupiter Series Ground Mount System” Brochure, Orion Solar Racking (Available at least as early as Oct. 20, 2011). |
“Phono Solar Tigo Energy Smart Module” Brochure, Phono Solar Technology Co., Ltd. (Available at least as early as Oct. 20, 2011). |
“Polar Racking PolaRail Flush Mount Racking System” Brochure, Polar Racking Inc. Brochure, Schletter Inc. (Available at least as early as Oct. 20, 2011). |
“PowAR Grip Product Sheet”, A Raymond Tinnerman Industrial, Inc. (Available at least as early as Oct. 20, 2011). |
Product Advertisement, “Alpine Snowguards/Setting the Industry Standard/Snow Guards for Every Roof Type” Mar. 27, 2000. |
Product Advertisement, “Speedstand”, Contractors Guide, Jun. 2000. |
Product Advertisement—Sarna, Sarnafil Division (undated). |
Product Description—“An Innovative Approach to Zero Roof Penetrations”, Portable, Pipe Hangers, Inc., printed Jul. 2000. |
Product Description—“Flat Roof Safety System”, POHL Roof and Safety Systems,Securant, (undated). |
Product Description—“Gecko—An Introduction”, Gecko Safety Systems, Fall Arrest Protection, printed Jul. 2000. |
Product Description—“Instruction and Specification Manual, Super Anchor: Fall Arrest Anchor. ARS-2.times.8 and ARS-2.times.12”, 1993. |
Product Description—“Super Anchor: Instruction/Specification Manual: Stainless Steel Fall Arrest Anchors ARS 2. times.8, ARS 2.times.12, I-Joist, Moveable ARS, Vertical Wall Anchor, and Custom Anchor”, Mar. 2000. |
Product Description—Anchor Guardrails, printed Aug. 2000. |
Product Description—FLUX-Boy (undated). |
Product Description—Gecko-An Introduction, Gecko Safety Systems, Ltd., printed Mar. 2000. |
Product Description—Portable Pipe Hangers, Inc., Inter517face, Jun. 2000. |
Product Description—Portable Pipe Hangers, printed Aug. 2000. |
Prysmian Cables & Systems Photovoltaic (PV) System Products Product Sample and Brochure, Prysmian Power Cables and Systems USA, LLC (Available at least as early as Oct. 20, 2011). |
“Quick Mount PV” Brochure (Available at least as early as Oct. 20, 2011). |
Quickscrews International Corporation brochure (Available at least as early as Jun. 29, 2011). |
“Rapid2+ Clamp Product Sheet”, Schletter Inc. (Available at least as early as Oct. 20, 2011). |
S-5! CorruBracket Brochure, Metal Roof Innovations, Ltd. (Available at least as early as Oct. 20, 2011). |
S-5! Dirimak Brochure (Available at least as early as Jul. 18, 2011). |
S-5! Dirimak Product Photographs (Available at least as early as Jul. 18, 2011). |
“S-5! S-5-U and S-5-U Mini” Brochure, Metal Roof Innovations, Ltd. (Available at least as early as Oct. 20, 2011). |
“S-5! VersaBracket” Brochure, Metal Roof Innovations, Ltd. (Available at least as early as Oct. 20, 2011). |
“Schletter Professional Solar Mounting Systems Mounting and Project Planning” Brochure, Schletter Inc. (Available at least as early as Oct. 20, 2011). |
“Solar Power International 11 SPI Daily News—Thursday, Oct. 20, 2011” Solar Power International 2011 (Oct. 20, 2011). |
“Solar Security Fasteners” Brochure, Duncan Solar (Available at least as early as Oct. 20, 2011). |
“Sunmodo Ez Roof Mount Installation Guide” (Available at least as early as Oct. 20, 2011). |
“Sunmodo Ez Roof Mount L Foot for Shingle Roofs” Brochure (Available at least as early as Oct. 20, 2011). |
“Sunmodo Ez Roof Mount Standoff for Metal Roofs” Brochure (Available at least as early as Oct. 20, 2011). |
“Sunmodo Ez Roof Mount Standoff for Shingle Roofs” Brochure (Available at least as early as Oct. 20, 2011). |
“Sunmodo Solar Mounting System” Brochure (Available at least as early as Oct. 20, 2011). |
“Tecsun (UL) PV-Wire” Brochure, Prysmian Cables and Systems USA, LLC Brochure, Schletter Inc. (Available at least as early as Oct. 20, 2011). |
TileTrac Product Photograph (Available at least as early as Jun. 8, 2011). |
“TileTrac Tile Roof Structural Attachment” Brochure, Professional Solar Products, Inc., Copyright Mar. 2011. |
UFD (Universal Fastening Disc) Installation Instructions and Design Drawings (Available at least as early as Jul. 14, 2011). |
“Zilla Racking & Mounting Components” Zilla Corporation, Copyright 2011. |
“Zilla the King of Racking Racking Systems” Brochure, Zilla Corporation (Available at least as early as Oct. 20, 2011). |
“Zilla Zip Flashing Assembly Instructions” Zilla Corporation, Copyright 2011. |
“Zilla Zip Single-Bolt Flashing Assembly” Brochure, Zilla Corporation, Copyright 2011. |
“Zilla Zip Single-Bolt Flashing Assembly” Zilla Corporation, Copyright 2011. |
Affordable Solar, UniRac PRO-PAK Standard Rail 204, available at least as early as Jan. 9, 2009. |
Affordable Solar, Solar Panel Mounts & Solar Trackers for Solar Power Systems, available at least as early as Jan. 9, 2009. |
Professional Solar Products Inc., FastJack Leveling Kits, available at least as early as Jan. 9, 2009. |
Professional Solar Products Inc., FastJack Installation Manual, modified Sep. 10, 2007. |
Professional Solar Products Inc., FastJack Commercial Fast Jack, Commercial Leveling Kit, Comparison Chart for the Fast Jack, available at least as early as Jan. 9, 2009. |
Professional Solar Products Inc., Fast Jack, available at least as early as Jan. 9, 2009. |
Schletter Solar Mounting Systems, “Product Sheet and Application Hints for FixPlan”, http://int.mission-solar.eu/eu—store/index.php/eu—gb/aitdownloadablefiles/download/aitfile/aitfile—id/12960/, Date Unknown, 2 pp. |
Number | Date | Country | |
---|---|---|---|
61516173 | Mar 2011 | US |