Sealing around metal roof-penetrating pipes to prevent ingress of water and moisture presents problems. The metal pipes expand and contract with varied temperatures that a roof encounters. Ordinary seals and tars under stress over time periods, crack, become loose, and admit water and moisture to penetrate roofs around the through-roof pipes. Over time metal pipe surfaces exposed to the elements become corroded or oxidized and become extremely difficult or totally impossible to seal. Replacement of these damaged or impossible to seal preexisting metal pipes is costly and time-consuming. Hence sealing to these preexisting old corroded metal pipes presents a problem to be solved.
Roof-penetrating metal pipes have different diameters and thicknesses. As an example, cast iron pipes may have larger outer diameters and greater wall thickness as compared to smaller outer diameters and thinner walls of copper roof-penetrating pipes. This pipe size difference creates other problems to be solved.
Needs exist for improved roof-penetrating pipe seals and sealing.
The present invention provides a solution to the problem by covering the roof-penetrating metal, or other, pipe with a cover sleeve apparatus comprising a section of PVC (polyvinyl chloride) pipe and a connecting cap. The cover sleeve apparatus extends over and along the metal or other pipe into and through the roof flashing device seal portion and sometimes into the opening around the pipe in the roof substrate.
A roof flashing device comprising a flexible silicone boot, a base plate and a rigid compression ring seal is disclosed in U.S. patent application Ser. No. 12/803,176 filed Jun. 21, 2010, now U.S. Pat. No. 8,484,914, which is incorporated herein by reference as if fully disclosed herein. The rigid compression ring is trapped between enlarged beads near the top of the sealing boot. The body of the sealing boot is flexible and has one or more expanded bulges to provide flexibility and to allow the seal to be mounted on roofs of varied slopes. The base of the silicone sealing boot has an outer sealing edge and an inner dependent bead.
The mounting plate attaches to the inner depending bead of the sealing boot. The mounting plate has a flat peripheral portion to overlie and underlie successive ranks applied roofing material.
An integral oval raised middle portion of the mounting plate is formed upwards from the flat surface. The middle portion tapers from a larger height above the flat peripheral portion at the down-roof side to a smaller height at the up-roof side. An upper ledge of the middle portion is formed inward to lie beneath the lower sealing edge of the silicone sealing boot. An inner part of the upper ledge is reentrantly curved downward and then upward in an S-shaped cross-section to lock in the inner dependent bead of silicone sealing boot. The inner edge of the S-shaped cross section is directed downward, away from the boot.
The upper beads of the sealing boot trap the rigid compression ring. The upper beads tightly fit around and are slightly stretched over the PVC pipe. The sealing sleeve is pressed down along the PVC pipe during installation. A silicone lubricant is distributed around the top of the PVC pipe and/or inside the upper beaded portion of the silicone sealing boot before the sealing boot assembly is pressed downward along the PVC pipe and cap.
The rigid compression ring is placed between the upper and lower silicone retaining beads before the sealing assembly is shipped from the factory. The rigid compression ring remains in place between the two retaining beads as the silicone sealing boot is pressed downward along the PVC pipe and cap. The rigid compression ring has similar characteristics of expansion as the cover sleeve apparatus and retains the desired compression of the silicone sealing boot around the cover sleeve apparatus under all conditions. The cover sleeve apparatus surrounding and encasing the metal pipe solves any problems of further deterioration or damage to the metal pipe.
During fabrication and manufacturing of the cover sleeve apparatus, the connecting cap is permanently sealed to the one end of the PVC pipe section. Outer edges of the connecting cap are flush with the outer surface of the PVC pipe section. To solve the problems of varied metal pipe size and outer dimensions and wall thicknesses, the connecting cap has inner features. The connecting cap has a central opening that provides the intended venting of the preexisting roof-penetrating pipes. The connecting cap has a long downward inner cylindrical extension that fits within upper ends of preexisting roof-penetrating pipes. The cylindrical downward inner extensions are slightly outwardly tapered to thinner inwards ends spaced inward from the inner walls of the preexisting pipes. The tapering and spacing helps to ensure that rain water or moisture drops straight down into and through the preexisting vent-pipes and also helps to center and locate the cover sleeve apparatus on the preexisting vent pipes.
The thick sloping inner shelf of the connecting cap rests on top of the preexisting pipe, and an inner edge of the shelf is rounded inward from the top of the preexisting vent pipe. The thick shelf has a wide inner part bounded on an outer-side by a long downward tapered cylindrical extension that divides the lower surface of the shelf into a wider inner annular surface and a smaller outer annular surface. The wider inner surface is especially suited for a smaller outer dimension and a thicker wall of a cast iron pipe. The smaller outer annular surface is suited for supporting on top of a copper pipe.
The shelf has an outer wall that fits tightly against an inner wall of the cylindrical PVC pipe section. A radially extending rim of the connecting cap fits over the upper end of the PVC pipe section. The outer diameter of the rim is coextensive with the outer diameter of the PVC pipe section. Raised reinforcements extend between the upper surface of the shelf and the inner surface of the outer wall of the connecting cap to ensure dimensional stability of the connecting cap and the upper end of the PVC pipe section. The connecting cap is inseparably assembled on the top of the PVC pipe section at the factory by one or more of bonding, welding, fusing, or pressure fitting.
A roof-penetrating pipe seal includes the cover sleeve apparatus, also called herein a sealing pipe, for placing over a roof-penetrating pipe. The connection cap portion of the cover sleeve apparatus connects the sealing pipe, also called herein a cover sleeve apparatus, with the roof-penetrating pipe. The connection cap has an inner part fitting into the roof-penetrating pipe and a part extending from the roof-penetrating pipe. A roof flashing sealing boot fits over the cover sleeve apparatus. The roof flashing sealing boot has an upper portion tightly engaging and sealing the cover sleeve apparatus and having a lower flexible portion. The upper portion is adapted for sliding downward along the cover sleeve apparatus. A base has a lower portion for connecting to a roof. An upper portion of the base is connected and sealed.
The connection between the roof-penetrating pipe and the cover sleeve is the annular connection cap which is fitted over the top of the roof-penetrating pipe that supports the inner part that fits into the roof-penetrating pipe. The connecting cap has an upward extension and an outward extension for a permanent connection with the cover sleeve apparatus.
The upward extension has an outward extending and downward facing rim for joining the connecting cap to an upper end of the pipe section of the cover sleeve apparatus.
The connecting cap extends outward and upward, forming an annular cup with a central opening directing precipitation into the roof-penetrating pipe.
The connecting cap has an outer annular part extending downward along an outer wall of the roof-penetrating pipe. The inner part and the outer part of the connecting cap are tapered for aligning the cover sleeve apparatus on the roof-penetrating pipe.
A compression ring compresses the upper portion of the sealing boot on the cover sleeve apparatus. The upper position of the boot has spaced upper and lower outward projections trapping and holding the compression ring between the projections. The boot and the upper portion of the boot slide downward along the cover sleeve apparatus. The compression ring and the cover sleeve apparatus are made of the same material and have the same thermal coefficient of expansion. The upper portion of the boot has an inner dimension which is less than an outer dimension of the cover sleeve apparatus. The compression ring compresses a part of the upper portion of the boot between the compression ring and the cover sleeve apparatus.
Sealing a roof penetrating pipe includes placing a cover sleeve apparatus over the roof-penetrating pipe, connecting the cover sleeve apparatus to the roof-penetrating pipe and extending a part of the cover sleeve apparatus into the roof-penetrating pipe. A sealing boot is fitted over the cover sleeve apparatus, tightly engaging an upper portion of the sealing boot on an outside of the cover sleeve apparatus. A lower portion of the sealing boot is sealed to a base. The base is secured to the roof around the roof-penetrating pipe and the cover sleeve apparatus.
The method includes providing a connecting cap on the cover sleeve apparatus, providing an annular horizontal part of the connecting cap, providing an inner downward extension on the horizontal part, and fitting the inner downward extension into the roof-penetrating pipe.
An outer downward extension on the horizontal part is fitted on an outside of the roof-penetrating pipe.
An upward extension on an outer edge of the horizontal part provides an outward extending and downward facing rim. The rim is permanently sealed to an upper edge of the cylindrical pipe portion of the cover sleeve apparatus.
A cover sleeve apparatus is placed over a roof-penetrating pipe. An annular connecting cap is permanently joined on a top of the cylindrical pipe portion. The annular connecting cap has an annular inward extending part and an inner downward extension on an inner edge of the annular inward extending part fitting inside of a roof-penetrating pipe.
A sealing boot having an upper portion and a base portion tightly engages and seals the cover sleeve apparatus.
The upper portion is adapted for sliding downward along the outside diameter of the cover sleeve apparatus.
The base portion has an outwardly extending flange for connecting to a roof. A lower portion of the boot and an upper portion of the base are interconnected and sealed. Reinforcements connect to the annular inward extending part and the upward extending part.
These and further and other objects and features of the invention are apparent in the disclosure, which includes the above and ongoing written specification, with the claims and the drawings.
In overall operation, the roof-penetration pipe sealing system comprising the cover sleeve apparatus of the present invention serves as a cover for the roof-penetrating element as well as providing a long-term, durable and reliable seal between the roof-penetrating element, the roof substrate and roof covering material. As shown in
In effect, as the flexible transition element 50 is installed over the PVC pipe section 200, the inner surface of the sealing portion 51 of the elastomeric material stretches to fit the PVC pipe section 200 outside circumference. The sealing portion 51 and the enlarged beads 52 and 56 are slightly stretched over the PVC pipe section 200 and the effective outside diameter in the stretched area of flexible transition element seal portion 51 grows to a larger outer diameter. This outer diameter growth is not linear due to the reduction in cross-section caused by the stretching of the material. This new larger effective outer diameter of the seal portion of the flexible transition element 50 is restrained by rigid compression element 90, whose internal diameter is slightly smaller than the larger effective outer diameter in the uniform wall portion, thereby creating a compressive force or squeeze, on the flexible transition element 50 in the uniform wall portion at 51 between the rigid compression ring 90 and the PVC pipe section 200 of the cover sleeve apparatus 224.
The rigid compression element 90 is formed of a material with similar mechanical properties to the PVC pipe section 200. The material used in the rigid compression element 90 exhibits a similar coefficient of thermal expansion as the PVC pipe section 200. As the PVC pipe section 200 is changing dimension due to thermal changes, the rigid compression element 90 experiences the same thermal changes and changes dimension in a similar magnitude and at a similar rate as the pipe. By matching the thermal coefficient of expansion for both parts, the PVC pipe section 200 and the rigid compression element 90, uniform squeezing or compressive forces are applied to the sealing portion 51 of the flexible transition element 50. The magnitude of the compressive stress within the resilient material remains as uniform as possible throughout thermal gradients which occur on a daily cycle.
In addition, rigid compression element 90 serves to fully shield the uniform wall portion between stretch beads 52 and 56 from all sunlight UV exposure and from the elements. Lower stretch bead 56 is also partially protected from sunlight UV exposure and atmospheric elements by rigid compression element 90. The outside diameter and geometry of rigid compression element 90 is determined such that it provides adequate resistance to the compressive resultant forces from the flexible transition element 50 but is not so large diameter that it could become a damaging element under a snow or ice load. The best embodiment for rigid compression element 90 is as shown a single piece formed ring like structure; ideally manufactured from an injection molding grade of thermoplastic, more specifically rigid PVC.
The roof flashing sealing apparatus 100, also called a boot or flashing, as it is manufactured and shipped to the roof contractor or distributor has the sealing boot 50 inseparably attached to the mounting plate 10. The body of the sealing boot 50 is flexible with one or more bulges 60 to help to provide that flexibility such that the seal can fit on roofs 112 of varied slopes. At the base of the silicone sealing boot 50 is an outer sealing edge 62 and an inner dependent bead 70. Base plate 10 is die-stamped or roller formed of a rigid material capable of both being permanently affixed to the flexible transition element 50 and capable of being integrated under and within a roof covering material with ease. A galvanized and coated steel sheet of suitable alloys and plastic materials function well for this part. The base plate 10 is formed to accommodate the assembly to the flexible transition boot element 50, and boot 50 is formed to facilitate and at least partially accommodate variations in roof structure pitch that are encountered at installation.
The raised middle portion 14 of the base plate is tapered and from a larger height at the down-roof side to a smaller height at the up-roof side. The raised oval portion 14 of the mounting base 10 connects to the silicone sealing boot 50 by the inner dependent bead 70. An inner portion of the uppermost ledge part of the metal mounting plate 10 is reentrantly curved downward and then upward in an S shaped cross-section lock portion 22 to lock into the inner dependent bead 70 of the silicone boot 50. Base plate 10 has the portion 22 formed to receive match and mate with the bead 70 on the underside of the flexible transition element 50. Crimping the lock portion around bead 70 irreversibly locks the boot 50 to the plate 10. The inner edge of the lock portion 22 is turned downward so as not to touch the boot 50. Some installations, such as those with particularly harsh environmental extremes, may require an added level of protection, and as such an adhesive, bond, sealant, caulk compound or the like can be applied between top surface 14 receiver portion 22 and bead 70. The oval surface 14 is larger than the corresponding portion of the boot 50, leaving a small peripheral portion of top surface ledge exposed. The inner edge of the lock portion 22 is turned downward so as not to touch the boot 50. This slight set-back of the elastomer portion from the rigid base plate sloping surface 14 helps to prevent separation of the flexible transition element 50 from the base plate 10 due to ice intrusion.
The bead of elastomeric material 70 is trapped and squeezed by the plate's ledge surface receiver 22. The receiver 22 is crimped or rolled and deformed into bead-capturing position. For a base plate 10 made from a steel or other metal alloy this forming operation is commonly called a crimp or sizing operation moving the metal feature past its elastic limit to form a permanent new feature. Should the base plate be made from a plastic or other non-ferrous material, a heat operation can be utilized to form the material and then re-freeze the material to a new permanent shape.
In another embodiment, the flexible transition element 50 could be formed to the base plate 10 as part of the molding process, commonly known as over-molding, two shot or insert-molding. In this embodiment, no crimp or form operation would be required. The moldable resilient material used for the flexible transition element would be molded directly to the base plate part 10, requiring no further assembly processes to create the inseparable assembly.
Referring to
To facilitate installation on a pipe and to help insure longevity of the flexible transition element 50 a lubricant may be added to the inner surface the upper portion 51 of the boot 50 of the sealing portion prior to installation onto the cover sleeve apparatus 224. This lubricant may be added to the system in the factory as part of the manufacturing process or it may be added in the field just prior to installation
The geometric oval structure, bulbous portion 60 and elastomeric properties of flexible seal boot element 50 allows the sealing system roof flashing 100 to be applied to roof structures of varying pitch from a flat roof to a steeply sloped roof.
The factory-installed rigid compression ring 90 remains in place between the two retaining beads 52 and 56 as the silicone sealing boot 50 is pressed downward along the cover sleeve 224. The rigid compression ring 90 has similar characteristics of expansion to the PVC pipe section 200 and retains the desired compression of the silicone around the PVC pipe section 200 under all conditions. The cover sleeve apparatus 224 surrounds and encases the preexisting pipe and solve any problems of deterioration or damage to or leakage around the preexisting pipe.
While the invention has been described with reference to specific embodiments, modifications and variations of the invention may be constructed without departing from the scope of the invention, which is defined in the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/704,746 filed Sep. 24, 2012, which is hereby incorporated by reference in its entirety as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
1923220 | Lightbown | Aug 1933 | A |
2510926 | Goldstein | Jun 1950 | A |
3436880 | Kifer | Apr 1969 | A |
3731952 | Elwart | May 1973 | A |
3797181 | Nievelt | Mar 1974 | A |
3977137 | Patry | Aug 1976 | A |
4115961 | Bishop | Sep 1978 | A |
4372585 | Evora | Feb 1983 | A |
4512119 | Willoughby | Apr 1985 | A |
5245804 | Schiedegger | Sep 1993 | A |
5347776 | Skoff | Sep 1994 | A |
5390451 | Kopp et al. | Feb 1995 | A |
5703154 | Davis et al. | Dec 1997 | A |
5778611 | Michel | Jul 1998 | A |
6244006 | Shue | Jun 2001 | B1 |
D486891 | Cronce | Feb 2004 | S |
D550346 | Ness | Sep 2007 | S |
D554749 | Ness | Nov 2007 | S |
8272186 | Manning | Sep 2012 | B2 |
8413687 | Woodring | Apr 2013 | B1 |
8484914 | Cline | Jul 2013 | B2 |
20110005156 | Laufer | Jan 2011 | A1 |
20110302876 | Giffin | Dec 2011 | A1 |
20130020796 | Humber | Jan 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
61704746 | Sep 2012 | US |