The present invention relates to a roof ridge vent that enables circulation of air between a roof of a building and an underlying ceiling structure, and more particularly, the present invention relates to a vent, a roof ridge vent assembly, and a method of installing a vent on a roof ridge.
It is useful, and in many locales a building code requirement, that the attic area of a building be provided with a means to permit air exchange. The ventilation prevents undue heat buildup that can render the living quarters of the building uncomfortable and that can impose unreasonable energy requirements for cooling. Proper ventilation of the attic area also preserves the structural integrity of the roof and roof coverings.
One method of venting a roof structure consists of applying a venting media over an elongate open slot formed along a roof ridge. These types of vents are known as ridge vents and enable hot and/or moist air to rise and escape from the attic area uniformly along the length of the roof ridge. Examples of ridge vents are provided by U.S. Pat. No. 5,960,595 issued to McCorsley et al., U.S. Pat. No. 6,298,613 B1, U.S. Pat. No. 6,308,472 B1, U.S. Pat. No. 5,902,432 and U.S. Pat. No. 5,673,521 issued to Coulton et al., U.S. Pat. No. 6,277,024 B1 issued to Coulton, and U.S. Pat. No. 4,942,699 issued to Spinelli and U.S. Patent Applications Publications Nos. 2005/0136831 A1 and 2005/0090197 A1 of Coulton. Each of the above referenced patents and published applications are owned, or co-owned, by Benjamin Obdyke, Inc., the assignee of the present application. U.S. Pat. No. 4,876,950 issued to Rudeen and U.S. Pat. No. 6,662,510 B2 issued to Rotter provide examples of other roof ridge ventilation systems.
While the roof ridge vents disclosed in the above referenced patents may function in an acceptable and/or superior manner, there continues to be a need for alternatives with respect to the design, manufacture and installation of roof ridge vent products. A desired vent should permit a sufficient amount of ventilating air flow without compromising weather infiltration resistance and should be capable of being properly installed in a manner requiring labor skills possessed by the average roof installer. In addition, the vent should be capable of efficient manufacture from inexpensive materials.
The present invention provides a roof ridge vent having a pair of spaced-apart elongate strips of ventilation material each extending in an opposite longitudinally-extending side of the vent and providing ventilation passageways transversely therethrough. The elongate ventilation strips are interconnected by a plurality of supports extending transverse relative to the elongate ventilation strips. Each adjacent pair of supports defines an opening therebetween such that an underlying roof surface is visible to an installer through the openings.
According to another aspect of the present invention, a roof ridge vent assembly is provided. The assembly includes a roof having a ridge with an elongate open slot, a ridge vent secured to the roof overlying the ridge and open slot, and an exterior cap material overlying the ridge vent. The vent has a pair of opposed, spaced-apart, elongate strips of ventilation material extending on the roof substantially parallel to the elongate open slot on opposite sides of the elongate open slot. Each strip has ventilation passageways extending transversely therethrough. The strips are interconnected by a plurality of supports which each extends transversely relative to the strips from one of the strips to the other of the strips above and across the elongate open slot of the roof ridge. The supports support the exterior roofing cap material, such as cap shingles, above the open slot, and each adjacent pair of supports are spaced-apart and define an opening therebetween. The openings enable ready installation of the vent on the roof ridge since the open slot is visible through the openings between the supports.
According to a further aspect of the present invention, a method of installing a roof ridge vent is provided. A pair of elongate strips of ventilation material is placed along opposite sides of an open elongate slot formed along a roof ridge. Each strip has ventilation passageways extending transversely therethrough. The pair of strips is interconnected by a plurality of supports extending transversely relative to the strips from one of the strips to the other of the strips above and across the elongate open slot of the roof ridge. Each adjacent pair of supports is spaced-apart and defines an opening therebetween. During installation, the open elongate slot of the roof ridge is viewed through the openings between the supports to ensure proper alignment of the openwork material on the roof ridge. Thereafter, the vent is secured to the roof ridge with nails or like fasteners and is capable of supporting cap shingles or the like thereon.
The foregoing and other objects, features and advantages of the present invention should become apparent from the following description when taken in conjunction with the accompanying drawings, in which:
Referring now to the drawings,
Air exchange from an attic area 24 underlying the roof 10 to ambient atmosphere is provided via an open elongate slot 26 provided continuously or continually along the length of the roof ridge 18. As best illustrated by arrows 28 in
The roof ridge vent 12 according to the present invention includes a pair of elongate strips 30 and 32 of ventilation material. The strips are spaced-apart such as by a distance “A” shown in
The pair of elongate strips 30 and 32 of ventilation material are interconnected by a plurality of supports 34. As illustrated, the supports 34 are provided as separate straps of material extending transversely, such as perpendicularly, to the strips 30 and 32. Although not illustrated, the supports 34 can extend at angles other than at right angles relative to the ventilation strips 30 and 32; alternatively, the supports 34 can be V-shaped, S-shaped, and C-shaped or have other arcuate or non-straight line shapes in plan. Preferably, the supports 34 are spaced-apart such as by a distance “B” (see
By way of example, the supports 34 can be made of plastic, thermoplastic, rubber, an elastomeric material, fabric, cardboard, metal, a mesh material, or any other material that can be used to support cap shingles 22 or the like thereon. In some contemplated embodiments of the present invention, each support 34 extends from an upper surface 30a of strip 30 to an upper surface 32a of strip 32 and is secured to the strips 30 and 32 of ventilation material during manufacture of the vent 12. For example, the supports can be adhesively secured or thermally bonded to the strips of ventilation material. Alternatively, the supports 34 can have depending baffles, prongs, fasteners, or the like that extend through or around the ventilation material to mechanically fasten the ventilation material to the supports via a press fit, friction fit, or like connection.
The illustrated embodiments of the vents according to the present invention resemble a ladder or rail road track configuration. The openings 36 are sufficiently large to enable the underlying slot 26 to be readily visible to an installer of the vent 12 to simplify proper alignment and installation of the vent 12 on the roof ridge 18. This configuration also enables material cost savings in producing the vent and enables the vent to be lightweight for efficient and cost effective shipping and handling.
Each support 34, as illustrated, has a crosswise component 42 for extending across the gap “A” between the spaced-apart strips 30 and 32 of ventilation material and a pair of legs 44 depending from the crosswise component 42. The legs 44 can be provided to prevent undesired compression of the strips 30 and 32 of ventilation material due to pressures exerted on the vent when the vent 12 is secured to the ridge 18 and when cap shingles 22 are secured on the vent 12 to the roof 10. In the illustrated embodiment, the legs 44 extend along peripheral outer side edges 30b and 32b of the strips 30 and 32 of ventilation material. Alternatively, the legs 44 can extend along the inner side edges 30c and 32c of the strips 30 and 32, or directly through the strips 30 and 32.
An alternate embodiment of a vent according to the present invention is illustrated in
In some contemplated embodiments of the present invention, such as that illustrated in
Preferably, the crosswise components of the supports 34 and 48 are sufficiently flexible to conform to a substantially inverted-V shape of a roof ridge (see
The crosswise component 42 can also be provided with means (not shown) to permit lengthwise expansion or contraction of the supports 34 so that the spacing “A” between opposed strips 30 and 32 can be adjusted. For example, the crosswise component 42 can be formed of two separate slider components which can be slid together to reduce the length “L” of the support 34 or be slid apart to expand the length “L” of the support 34. Alternatively, the crosswise component 42 can have an expandable/contractible accordion structure, notched structure, elastic element, honeycomb element or the like enabling adjustment of the length “L” of the crosswise component 42. The adjustability of the length “L” of the supports 34 enables the vent 12 to be used with various sizes of slots 26 and cap shingles 22 that are within a wide range of widths.
A weather barrier material (not shown) can be provided on the peripheral side edges of the vent 12 to prevent blowing snow and the like to pass through the strips 30 and 32 of the ventilation material. For example, an air permeable filter material made of fabric, non-woven fabric, non-wicking hydrophobic fabric, a mat of filaments, an air permeable foam plastic, a screen, or any other material having a multiplicity of closely spaced openings permitting the flow of air therethrough can be used for this purpose.
A method of installing the ridge vent 12 according to the present invention includes placing the vent 12 over the open slot 26 along the roof ridge 18. The vent 12 is positioned such that the strips 30 and 32 of the ventilation material are located parallel to and on opposite sides of the slot 26 and the supports 34 extend above and transversely across the slot 26. The installer of the vent visually inspects alignment of the vent 12 with the slot 26 and roof ridge 18 via the openings 36 located between the supports 34. Thus, the inspection via the openings 36 enables ready and proper alignment and precise centering of the vent 12 on the roof ridge 18 before nails or like fasteners are used to secure the vent 12 to the roof deck 16.
As illustrated in
After the vent 12 is secured to the roof ridge 18, cap shingles 22 or like exterior roofing materials are applied thereon. Alternatively, the vent can be pre-assembled with a water resistant covering or exterior roofing material. In this case, the vent and cap material can be applied on the roof ridge in a single step. Examples of water resistant outer coverings include a thermoset single-ply roofing membrane, a thermoplastic single-ply roofing membrane, a modified bitumen roofing membrane, and a plurality of cap shingles.
The above-described roof ridge vents and assembly according to the present invention provide a uniquely constructed vent that is easy to install, is inexpensive to manufacture, provides a desired amount of air flow therethrough, and prevents weather infiltration.
While preferred roof ridge vents, roof ridge vent assemblies, and methods of their installation have been described in detail, various modifications, alterations, and changes may be made without departing from the spirit and scope of the present invention as defined in the appended claims.
This application claims the benefit under 35 USC §119(e) of U.S. Provisional Patent Application No. 60/714,558, filed Sep. 7, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3573144 | Anderson | Mar 1971 | A |
4876950 | Rudeen | Oct 1989 | A |
4942699 | Spinelli | Jul 1990 | A |
5002816 | Hofmann et al. | Mar 1991 | A |
5054254 | Sells | Oct 1991 | A |
5673521 | Coulton et al. | Oct 1997 | A |
5738581 | Rickert et al. | Apr 1998 | A |
5772502 | Smith | Jun 1998 | A |
5902432 | Coulton et al. | May 1999 | A |
5960595 | McCorsley, III et al. | Oct 1999 | A |
6203424 | Gallant | Mar 2001 | B1 |
6277024 | Coulton | Aug 2001 | B1 |
6298613 | Coulton et al. | Oct 2001 | B1 |
6308472 | Coulton et al. | Oct 2001 | B1 |
6361434 | Brandon | Mar 2002 | B1 |
6623354 | Morris et al. | Sep 2003 | B2 |
6662510 | Rotter | Dec 2003 | B2 |
6981916 | Coulton | Jan 2006 | B2 |
7219473 | Mantyla et al. | May 2007 | B2 |
20040031204 | Thompson | Feb 2004 | A1 |
20050090197 | Coulton | Apr 2005 | A1 |
20050136831 | Coulton | Jun 2005 | A1 |
20060040608 | Coulton | Feb 2006 | A1 |
20060079173 | Coulton et al. | Apr 2006 | A1 |
20060154597 | Coulton et al. | Jul 2006 | A1 |
20070000192 | Mantyla et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
2186898 | Aug 1987 | GB |
Number | Date | Country | |
---|---|---|---|
20070054612 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60714558 | Sep 2005 | US |