The present invention relates to new and useful mine strata support structures, components and systems thereof, and, more particularly, presents a mine roof truss bracket that can be mechanically inserted into a mine strata together with a roof bolt by coupling a terminal member of the bracket to an insertion tool.
Different types of trussing structure, whether active or passive or both, have previously been devised and extensively used in underground mines. A variety of brackets and connectors of prior design have been employed for achieving the trussing and/or support function desired.
One such structure is disclosed in the inventor's prior U.S. Pat. No. 5,544,982 entitled “Mine Strata Support Structure.” This prior art reference discloses mine roof support brackets that require multiple components and can be cumbersome and/or dangerous to insert into mine strata. Indeed, when a miner extends his drift or tunnel into unsupported areas, time is of the essence in getting a support structure in place. The prior art device provides a less expeditious and safe way to securely insert a mine roof bracket into the mine strata.
Accordingly, the present invention includes mine brackets which couple to anchor or roof bolts and can be rapidly and safely inserted into the mine strata, using a single piece of insertion equipment which inserts the roof bolt and roof bracket in a single rotational motion. This is accomplished by providing a novel, bi-axial bracket, with a projection extending one axis which projection directly coupled to the mine roof bolt insertion equipment and which projection can sustain the high rotational forces needed to insert a roof bolt. This bracket coupled to tie-rods and joined to other brackets provides an improved truss system.
The present invention is an improved roof truss system comprising a bi-axial mine roof support bracket. The present invention teaches a device that improves the safety and efficiency of mine operation by proving a device and method for supporting a mine roof while reducing the risk to miners. To improve the safety and efficiency of a mine, the present invention provides a mine roof bracket having a roof bolt receiving sleeve along a first axis, a tie-rod receiving channel along a second axis and integrally fixed to the roof bolt sleeve; and an equipment or tool mount extending away from the bracket along the first axis. The equipment mount allows a miner to insert a roof bolt and bracket into the mine strata with a single motion. A tie-rod is placed in the bracket's tie-rod receiving channel to construct truss systems.
Referring to
Bracket 120 comprises a roof bolt coupling sleeve 125 along a first or primary axis 125′. Coupling sleeve 125 receives or bears roof bolt 115. Bracket 120 also comprises tie-rod channel 130 along a second axis 130′. The tie-rod channel 130 receives tie-rod 140. Bolt coupling sleeve 125 and tie-rod channel 130 are integrally connected so as to form a single bracket. Sleeve 125 and channel 130 may be fixed by any methods commonly known in the art such as welding, machining the bracket from a single piece, die casting the bracket as a single piece, or any combination thereof. Bracket 120 also comprises a projection 135.
Bolt sleeve 125 comprises a threaded end 127 for receiving the roof bolt 115 along axis 125′. Coupled or integral to roof bolts 115 is a mine roof support bracket 120. Roof bolt 115 can be joined or coupled to bracket 120 using bolt threads 119 and sleeve threads 128 or any other mechanism known in the art.
Projection 135 comprises a terminal end or tool or equipment mount 137 along primary axis 135′ configured to receive or be received by existing mining or drilling equipment which can be used to install and/or rotate bracket 120 and bolt 115 about axis 125′. Tool mount 137 may be either a male or female adaptor for coupling, and may be any number of shapes, including but not limited to, a square, a star pattern, or any other number of shapes compatible with installation equipment and capable of supporting the rotational force exerted when inserting the anchor bolts 115 and the mine roof support bracket 120 into the pre-drilled holes 110. Sleeve 125 and projection 135 are coaxial or substantially coaxial along axis 125. Thus bracket 120 with attached bolt 115 may be inserted into hole 110 of mine strata 105 and secured in place in one simultaneous, rotational installation about axis 125′.
Thus, by integrally fixing bolt sleeve 125 and equipment mount 137 along primary axis 125′ with the tie-rod channel 130 along secondary axis 130′, the present invention provides mine workers with an apparatus and system which can quickly and easily set up an improved roof support truss 100 by handling fewer parts and with less insertion steps and physical effort. By connecting bracket 120 and roof bolt 115 to each other and to a piece of existing drilling or mining tool via tool mount 137 for simultaneous insertion, roof truss mine safety and installation efficiency are improved.
Tie-rod channel 130 is defined to receive a tie-rod 140. As illustrated in
A bearing plate 150 is positioned non-coplanar to the primary axis. Plate 150 receives sleeve 125 through plate opening 151. Plate 150 bears and distributes the forces created by the mine strata 105 or any other force placed upon the mine roof support bracket 120.
Referring to
Again bearing plate 150 is positioned to bear and distribute forces from the mine strata 105 or by a force placed upon the mine roof support bracket 120.
Bracket 120 further comprises a tie-rod channel 130 along axis 130′, which may be substantially parallel to bearing plate 150, but is angled to the sleeve 125. Tie-rod channel 130 comprises a receiving member 138 defining an insertion cant 131 at the proximal end of channel 130. Receiving member 138 receives tie-rod cable 140. Tie-rod cable 140 is typically made of steel. Tie-rod channel 130 further comprises a wedge cant surface 139. To secure tie-rod 140, caming wedge 132 is placed around tie-rod 140 and then inserted into tie-rod channel 130 so as to rest against wedge cant surface 139. Tie-rod 140 is then placed in tension with the caming wedge 132 abutting wedge cant surface 139, thus securing tie-rod 140 in a secure position.
To increase the security of the relation of cable 140 in the tie-rod channel 130, the surface of caming wedge 132 abutting tie-rod 140 is serrated. Such serrated surfaces 132′ essentially bite into abutting tie-rods thus improving the security of the tie-rod's position in tie-rod channel 130; the greater the tension on the cable the stronger caming wedge 132 grips tie-rod 140. Caming wedge 132 is typically made of a metal harder than tie-rod 140. The amount of tension placed on the cable 140 may be adjusted between brackets using techniques and devices commonly known in the art.
To prevent caming wedge 132 from coming loose from the mine roof support bracket 120, a securing ring 133 may be placed on one end of caming wedge 132 securing caming wedge 1;32 in tie-rod channel 130. In the alternative, a tie-rod channel retaining cap 134 may be used to secure wedge 132 in channel 130.
Referring to
Referring to
Referring to
Having described these aspects of the invention, it is understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof.
Number | Name | Date | Kind |
---|---|---|---|
5222837 | Phillips | Jun 1993 | A |
5415498 | Seegmiller | May 1995 | A |
5466095 | Scott | Nov 1995 | A |
5755535 | Fox | May 1998 | A |