1. Field of the Invention
The present invention relates generally to fire prevention, and specifically to devices and methods for preventing the destruction of dwellings and other roof-containing structures from fires caused primarily from burning debris, especially embers from brush/bush fires, by co-segregation of atomized fluids and buoyant burning debris using perimeter fluid delivery and heat convection.
2. Background Information
Each year, the cycles of little rain followed by a long dry spell have lead to the accumulation of large amounts of dry brush and other vegetative combustibles. Under such conditions, dried trees and bushes become ideal fuel for wildfires. In regions with perennial dry seasons, these conditions produce fires that cause billions of dollars worth of damage.
With wildfires in the West seemingly becoming more frequent and destructive, there is a growing concern that climate change associated with global warming might be creating more fertile environments for these fires. In California, a major concern is centered on the effects of the Santa Ana winds. The Santa Ana winds are strong, extremely dry offshore winds that characteristically sweep through in Southern California and northern Baja California. They can range from hot to cold, depending on the prevailing temperatures in the Great Basin and upper Mojave Desert. However, the winds are noted most for the hot dry weather that they bring in autumn With extremely low to no humidity and high temperatures, all that is necessary is a spark, and with the strong winds fanning the flames, in no time there is a full scale wildfire.
There is a widely held belief that fast moving wildfires explode houses into flames, burning them down in minutes, however, this not borne out by scientific observation. Typically, the majority of houses destroyed in wildfires actually survive the passage of the fire front, only to burn down from ignitions caused by buoyant burning debris. In fact, showers of burning debris may attack a building for some time before the fire front arrives, during the passage of the fire front and for several hours after the fire front has passed. This long duration of attack, to a large extent, explains why burning debris is a major cause of ignition of roof-containing structures.
Further, video footage of burning buildings caused by wildfires shows that a fire usually starts from the roofs and attics, then propagates downward to the support, and then collapses onto the lower section of the structure. The most common culprits for the observed vulnerability of roofed-structures are interstices between tiles and/or shingles and the openings for ventilation. These interstices and openings provide an entry path for flying embers to ignite structural items that make up the roof (i.e., plywood panels, support tresses, and felt liners), as well as fuels available in attics (e.g., old papers, clothing and the like).
While systems exist claiming to prevent fires on roof-containing structures, they all must be placed on or over the top or apex of the roof, and/or use copious amounts of water (see, e.g., U.S. Pat. Nos. 4,330,040; 5,263,543; 5,692,571; 6,679,337). What is needed is a system that douses embers as they enter interstices and openings available on roofs, which embers escape systems that provide water only in a downward direction along the slope of the roof via gravity.
In addition, during an emergency, the water supply and its pressure are often reduced, and without water and appropriate pressure, a misting system may be rendered useless. Thus, a system that may compensate for changes in water supply and pressure is also needed.
The present invention fulfills these needs.
The present invention describes devices and methods for preventing the destruction of dwellings and other roof-containing structures from fires caused primarily from burning debris, especially embers from brush/bush fires, including a system for automation of filling of water tanks, pressurizing the tanks and alternating discharge of water from the tanks to maintain a reliable water supply and pressure to a misting system.
In one embodiment, a system for protecting a roof-containing structure from fire embers is disclosed including at least two fluid containers comprising a first, second, third and fourth aperture, and a water level float sensor suspended from a surface within the at least two fluid containers, which third aperture is coupled to a pressure relief valve, and which fourth aperture is connected to a first lumen-containing conveyance configured to be in one-way fluid communication with a water supply separate from the at least two fluid containers via a check valve; a first device connected to each fluid container through the first aperture that discontinuously increases the pressure of a gas above a fluid in the at least two fluid containers by providing air flow into the at least two fluid containers, where the first device is connected to the first aperture via a second lumen-containing conveyance connected to a first T-fitting connector, which first T-fitting connector is connected to an air venting valve; at least one third lumen-containing conveyance where one end is connected to each at least two fluid containers at the second aperture, where the each at least one third lumen-containing conveyance is configured to be in one-way fluid communication with the at least two fluid containers via a check valve, which each at least one third lumen containing conveyance is connected at a second end to a second T-fitting connector; at least one fourth lumen-containing conveyance connected at one end to the second T-fitting connector, where the fourth lumen-containing conveyance includes
i) at least one pressure sensor proximal to the second T-fitting connector and
ii) one or more nodal points along the at least one fourth lumen-containing conveyance distal to the at least two fluid containers which comprises a second device at the one or more nodal points, where the second device comprises one or more atomizing orifices; and a controller module in electro-mechanical communication with the first device, the pressure sensor, the air venting valve, and the water level float sensor, where the at least one fourth conveyance is releasably coupled to an outer surface of the roof-containing structure such that an atomized fluid delivered by the at least one fourth lumen-containing conveyance and buoyant fire embers co-segregate via heat convection.
In one aspect, the controller module communicates with the first device, the pressure sensor, the air venting valve, and the water level float sensor wirelessly. In a related aspect, the water supply is connected to the first lumen-containing conveyance via a third T-fitting connector and a fifth lumen-containing conveyance, which the fifth lumen-containing conveyance is directly connected to at least one source of water. In a further related aspect, one source of water is pressurized. In another related aspect, the system further includes a third device in fluid communication with the fifth lumen-containing conveyance that discontinuously moves water into the fifth lumen-containing conveyance, where the third device is submerged in a source of water which is not pressurized or is at ambient pressure.
In another related aspect, the source of water which is not pressurized or is at ambient pressure includes swimming pools, ponds, streams, lakes, rivers, tributaries, fountains, wells, reservoirs, oceans, seas, and combinations thereof.
In one aspect, the pressurized water is from a municipal source. In another aspect, the first device is an air-compressor. In one aspect, the air venting valve is an electrical latching solenoid valve. In another aspect, the check valves comprise passive, spring loaded shutters.
In one aspect, the third device is a pump. In another aspect, the at least one fourth lumen-containing conveyance is releasably coupled to the outer surface:
i) along one or more gutters at the periphery of the roof-containing structure;
ii) at one or more vents projecting from an upper surface of the roof-containing structure;
iii) along one or more valleys of the roof-containing structure; or
iv) a combination of (i), (ii), and (iii).
In another embodiment, an apparatus for protecting a roof-containing structure from fire embers is disclosed including at least two fluid containers comprising a first, second, third and fourth aperture, and a water level float sensor suspended from a surface within the at least two fluid containers, which third aperture is coupled to a pressure relief valve, and which fourth aperture is connected to a first lumen-containing conveyance configured to be in one-way fluid communication with a water supply separate from the at least two fluid containers via a check valve; a first device connected to each fluid container through the first aperture that discontinuously increases the pressure of a gas above a fluid in the at least two containers by providing air flow into the at least two fluid containers, where the first device is connected to the first aperture via a second lumen-containing conveyance connected to a first T-fitting connector, which first T-fitting connector is connected to an air venting valve; at least one third lumen-containing conveyance where one end is connected to each at least two fluid containers at the second aperture, where the each at least one third lumen-containing conveyance is configured to be in one-way fluid communication with the at least two fluid containers via a check valve, which each at least one third lumen containing conveyance is connected at a second end to a second T-fitting connector; at least one fourth lumen-containing conveyance connected at one end to the second T-fitting connector, where the fourth lumen-containing conveyance includes
i) at least one pressure sensor proximal to the second T-fitting connector and
ii) one or more nodal points along the at least one fourth lumen-containing conveyance distal to the at least two fluid containers which comprises a second device at the one or more nodal points, where the second device comprises one or more atomizing orifices; and a controller module in electro-mechanical communication with the first device, the pressure sensor, the air venting valve, and the water level float sensor.
In another embodiment, a method of maintaining pressure of a misting system as disclosed includes filling the at least two fluid containers with a liquid at a system water pressure of between about 50 to about 60 psi, where the air venting valve in each of the at least two fluid containers is open; closing the air venting valve in each of the at least two fluid containers when the liquid reaches the top of the at least two fluid containers via the communication between the water level sensor float and the controller module; detecting a drop in water inlet pressure via pressure sensor, where the first device is turned ON in one of the at least two fluid containers when the pressure sensor detects a system water pressure between about 0 psi and about 25 psi via communication between the pressure sensor and the controller module; turning the first device OFF in the one of the at least two fluid containers at a first set period of time; turning the first device ON in another one of the at least two fluid containers after the first period of time, where the air venting valve for the one of the at least two fluid containers is opened via the communication between the air venting valve in the one of the at least two fluid containers and the controller module, and where the air venting valve of the another one of the at least two fluid containers is closed via communication between the air venting valve in the another one of the at least two fluid containers and the controller module; turning the first device OFF in the another one of the at least two fluid containers at a second set period of time; turning the first device ON in the one of the at least two fluid containers after the second set period of time, where the air venting valve for the another one of the at least two fluid containers is opened via the communication between the air venting valve in the another one of the at least two fluid containers and the controller module, and where the air venting valve of the one of the at least two fluid containers is closed via communication between the air venting valve in the one of the at least two fluid containers and the controller module; and repeating steps the above until the system water pressure reaches a pressure greater than about 25 psi.
In one aspect, system water pressure and liquid release rate are such that the liquid is released over a period from about 0.5 to 8 hours. In another aspect, the liquid includes water; water and cellulose; water and ammonia; water, camphor, and ammonium chloride; hydroxyl ammonium nitrate; an amine nitrate salt; and combinations thereof.
Exemplary embodiments of the present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like numerals denote like elements.
Before the present composition, methods, and methodologies are described, it is to be understood that this invention is not limited to particular components, methods, and apparatus described, as such components, methods, and apparatus may vary. It is also to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only in the appended claims.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, references to “a valve” includes one or more valves, and/or components of the type described herein which will become apparent to those persons skilled in the art upon reading this disclosure and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, as it will be understood that modifications and variations are encompassed within the spirit and scope of the instant disclosure.
As used herein, “atomization,” including grammatical variations thereof, means the conversion of a liquid into a spray of very fine droplets.
As used herein, “co-segregate,” including grammatical variations thereof, means to migrate or move coordinately so as to separate or sequester jointly. For example, the fine droplets produced by atomization co-segregate with buoyant embers such that the embers are no longer available for combustion.
As used herein, “system water pressure” refers to the amount of force applied uniformly within the cavities of components which make up the apparatus as disclosed (e.g., lumen containing conveyances).
As used herein, “inlet water pressure” refers to the amount of force exhibited by the water supply coming from without the components which make up the apparatus as disclosed (e.g., from a municipal spigot or non-pressurized water source).
With reference to the accompanying Figures, the present invention generally relates to devices and methods for preventing the destruction of dwellings and other roof-containing structures from fires caused primarily from burning debris, especially embers from brush/bush fires.
The container 112 may be made of plastic or metal and/or any other material that allows for containment of multiple gallons of a fluid with at least the density of water, and that allows for pressurization of at least 60 psi. In one embodiment, the fluid comprises water, however, any atomizable fire-suppressant fluid may be used in the present invention. For example, fluids may be water or water-based mixtures, including but not limited to cellulose, water and ammonia; water, camphor, and ammonium chloride; hydroxyl ammonium nitrate, an amine nitrate salt, and water and the like.
The container 112 may contain one or more additional apertures to accommodate a pressure relief valve 108 and/or an additional water inlet 109. The container 112 is configured to be communication with a first device 105 or 106 that discontinuously increases the pressure of a gas above a liquid or other fluid by displacing (pump 105) or reducing (compressor 106) gas volume. The first device 105/106 is controlled by a passive feedback control loop via fluid communication with a pressure regulator 107 between the first device 105/106 and the container 112. The first device 105/106 may be an electrically or mechanically automated machine which provides discontinuous, intermittent airflow into the fluid container 112 via a pressure regulator 107 in a passive feedback-control loop configuration. This regulator 107 operates the system in a highly efficient manner, since the loop configuration does not require continuous power consumption by the first device 105/106 for pressure modulation control in the container 112 after the system 10 is activated. For example, when the egress pressure from the container 112 reaches a specific value (e.g., 24 psi) the feedback loop shuts off the first device 105/106, and when the egress pressure from the container 112 goes below 24 psi, the first device 105/106 is activated.
In embodiments, the first device 105/106 is electrically automated. In one aspect, the fluid is delivered under a pressure of about 15 to 18 psi, about 18 to 20 psi, about 20 to 22 psi, or about 22 to 24 psi. In another aspect, the fluid is delivered under a pressure of about 18 to 24 psi.
The embodiment shown in
The container 112 is also coupled to a lumen containing conveyance 117 (e.g., a hose, pipe or other fluid transfer conduit for directing the flow of liquids) which may comprise plastic, rubber, cloth, metal, fire resistant material or a combination thereof. Such a conveyance may comprise a valve 110 (manual or automatic) for regulating liquid egress from the container 112. Further, the conveyance 117 contains a plurality of nodal points (n) along its length, where such nodal points contain a second device 111. The second device 111 transforms the incoming pressure to a higher second pressure such that a liquid delivered by the conveyance 117 is converted into a spray of very fine droplets (i.e., an atomizing orifice; for example, but not limited to, a nozzle or mister). In one aspect, such a second device 111 has a fluid release rate of about 0.0083 to 0.0090 gallons per minute (GPM), about 0.0090 to 0.0100 GPM, about 0.0100 to 0.0150 GPM, about 0.0150 to 0.020 GPM, and from about 0.020 to 0.024 GPM. In another aspect, the fluid release rate is about 0.0084 to 0.023 GPM. The conveyance 117 may be of any length, and may contain lengths devoid of nodal points (n) to allow for distal placement of the second device 111.
The system 10 may also comprise gauges and additional valves to monitor and effect fluid flow. In one aspect, the system 10 is activated manually prior to leaving a home or other roof-containing structure once a wildfire emergency has been declared. In another aspect, the system 10 may be activated remotely if a user is notified away from a dwelling or other roof-containing structure that such an emergency exists. Further, automatic activation may be actuated by smoke detection, fire detection, or other external-environment based detection systems.
The embodiment of
The nozzle head 21 may be made from any material, including but not limited to, metal, plastic, rubber or a combination thereof. Such nozzles are commercially available (see, e.g., Ecologic Technologies, Pasadena, MD), and come in a wide variety of colors, angles and GPM rates. In one aspect, the angle of the orifice is about 115° or about 180°.
The first perpendicular conduit 20 may be of any length, such that nozzle 21 height provides a sufficient atomized liquid canopy for co-segregation via heat convection. The integral second parallel conduit 22 also contains protuberances 25 on its outer surface which produce an air-tight/water-tight seal against the inner lumen of the conveyance 117.
Referring to
The compressed air inlet 319 is an input aperture that enables a flexible lumen-containing conduit 319a to connect directly to an air compressor 106. This connection allows the compressor 106 to build up pressure inside the tanks 112, 112a. This build up of pressure inside the tanks 112, 112a is the driving force that raises the water pressure as water exits the outlet aperture 317b at the bottom of the tanks 112, 112a.
The air venting valve 320 may be an electrical latching solenoid valve (e.g., available from Solenoid Solutions, Inc., Erie, Pa.) which may be used as an air venting device. Typically, valves consume power to stay open or to close. However, this type of valve 320 has a magnetic latching plunger. The latching function enables the valve to stay opened or closed while consuming little power. The plunger stays open or closes depending on the polarities of a controlling pulse which drives the valve with short bursts of energy, hence it consumes very little power.
The pressure relief valve 322 functions in the event of over pressurizing the tanks 112, 112a, where the relief valve 322 discharges excess pressure and prevents the tanks 112, 112a and other components from being damaged.
The dual tank system 30 may contain at least four check valves 323 to control the direction of water flow. In embodiments, the check valves 323 are passive, spring loaded shutters; as such, they do not consume any battery power or require any controlling signals. In operation, they function to allow water to flow in only one direction.
In embodiments, air compressors 106 are high volume, high pressure units. In a related aspect, each compressor 106 connects directly to the third aperture 317c at the top of the tanks 112, 112a. One or more pressure sensors 325 may be placed after the union (e.g., by T-fitting connector 130) of the two water tank outlet conduits 117. The one or more sensors 325 are electrical switches that have two set trigger points. The “Cut-In” is set at about 25 psi, while the “Cut-Out” is set at about 45 psi. Sensor signals are sent to the control module 324, which is in electrical, mechanical, electro-mechanical, or telemetric communication with said one or more sensors 325, for processing. In the event of a wild fire, an operator may simply activate a single control switch 123a, 123b, 123c to start the system, which control switch 123a, 123b, 123c may be within the roof-containing structure 123, outside of the roof-containing structure 123, or may be activated by remote (telemetric) commands (
Referring to
The pressure from the water exiting the tanks 112, 112a overcomes the check valves 323, where the outlet water conduits 117 may come together at a T-fitting connector 130. The pressure sensor 325 after the T-fitting connector 130, monitors the water pressure as the water moves toward the misting heads 111. This is the critical sensing point of the feedback loop. Under the initial conditions, the incoming water pressure from the source 119, 330 and the outgoing water pressure to the misting heads 111 are equal as illustrated in
During an emergency event, pressure from a municipal source 119 may drop below 25 psi and affect the misting pattern severely. This condition is sensed by the pressure sensor 325 (
Referring to
The dual tank system 30 is a self-pressurizing water system that is taking water and raising its pressure to the point where it may be misted by downstream components of the system 30 when municipal water supply 119 pressure drops. Because of this function, the system is flexible and may easily be expanded to tap into other water sources 330, including but not limited to, swimming pools, ponds, streams, lakes, rivers, tributaries, fountains, wells, reservoirs, oceans, seas, and the like, to further supplement the duration of the water supply. These water sources may have no pressure (or are at ambient pressure), but with the addition of a submerged water pump 305 and check valve 223, the system now has access to such external water supplies 330 (
When there is a need for operators to turn “ON” the system 30 while away from the roof-containing structure 123, the system 30 may utilize a home Wi-Fi network, Bluetooth technology or a Telephone Landline Reverse 911 Emergency Service to turn the system 30 “ON”. This process may be fully automated and accessible via Smartphone or PC application. For operators that enroll in security services, this remote triggering function may be offered by the service provider to expand and include a wild fire protection service.
Although the invention has been described with reference to the above embodiments, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention.
All references cited herein are herein incorporated by reference in their entirety.
This is a continuation-in-part application of U.S. application Ser. No. 12/498,327, filed Jul. 6, 2009, now U.S. Pat. No. 8,276,679.
Number | Date | Country | |
---|---|---|---|
Parent | 12498327 | Jul 2009 | US |
Child | 13626102 | US |