This application was prepared with financial support from the Saudi Arabian Cultural Mission, and in consideration therefore the present inventor(s) has granted The Kingdom of Saudi Arabia a non-exclusive right to practice the present invention.
Embodiments described herein relate generally to a roof top snow removing apparatus, method, and computer program product. More particularly, the embodiments described herein relate generally to a plowing unit, a motor unit, and a track system for pushing snow disposed on a roof top to an area below the roof top along with a controller unit for controlling the roof top snow removing apparatus.
The “background” description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventor, to the extent it is described in this background section, as well as aspects of the description which may not otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted as prior art against the present invention.
During winter months in many locations, significant snow accumulation on a roof top can occur over time. While small amounts of snow typically do not present any danger or threat to the roof top, the accumulation of snow over time can produce a significant mass and generate a large downward force upon the roof top as well as the underlying structural support of the roof top. Over an extended period of time, accumulated snow can have severe and even catastrophic repercussions to a roof top structure, leading to structural damage and even a collapse of the entire structure.
Currently, the main method of removing snow from a roof top is by an individual manually removing the snow with a hand held tool, such as a rake. This is typically done from the ground using the hand held tool with an extension apparatus or directly from the roof. Both of these scenarios create very dangerous situations. From the ground, snow can fall on the individual, injuring or crushing them. From the roof, the individual may slip and fall from the roof top and become seriously injured.
Further, if the snow is not consistently removed from the roof top, significant amounts of snow may accumulate over time and overwhelm the current methods of snow removal, leading to inefficient or impossible snow removal. Constantly removing snow from a roof top, especially in blizzard conditions, can be burdensome and dangerous due to constant exposure to severe elements.
In view of the above noted deficiencies of conventional snow removal techniques, the inventor recognized the benefit of providing a roof top snow removing apparatus that can be controlled, automatically or under user-supervision, from a safe location and safely removes snow from the roof top.
The inventor further recognized the benefit of removing snow from a roof top based on a specified amount of time or a specified amount of snow disposed upon the roof top.
The present disclosure is directed to a roof top snow removing apparatus, method, and computer program product.
According to an exemplary embodiment, the roof top snow removing apparatus includes a plowing unit configured to plow snow disposed upon a roof top, a motor unit coupled to and providing a motive force for the plowing unit, a track system to guide the motor unit about the roof top, and a controller to control the motor unit based on received input from a user.
According to a method embodiment, there is also provided a process of generating an initiation signal within the controller based on a received user input, transmitting the initiation signal to the motor unit, and traversing the track system based on the commands present within the initiation signal.
The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The described embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
A more complete appreciation of the present advancements and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings. However, the accompanying drawings and the exemplary depictions do not in any way limit the scope of the advancements embraced by the specification. The scope of the advancements embraced by the specification and drawings are defined by the words of the accompanying claims.
While this disclosure may suggest many varied embodiments, there is shown in the drawings and will herein be described in detail specific exemplary embodiments, with the understanding that the present disclosure of such embodiments is to be considered as an example of the principles and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar, or corresponding parts in the several views of the drawings.
The plowing unit 2 can be any physical or mechanical structure designed to scoop, capture, or guide snow that has fallen and become disposed upon a rooftop surface. However, a curved shaped blade is used for illustrative purposes.
The motor unit 3 provides a motive force for the plowing unit 2. The motive force can be generated by any appropriate means to include, but not limited by, an electric motor system, a pulley system, a hydraulic system, or an electromagnetic system. Each of these systems can be used in various scenarios based on their availability, the design of the rooftop, and the expected amount of snow to be removed from a rooftop.
The track system 4 can be implemented in any configuration best suited for a particular rooftop. As rooftops come in a wide variety of shapes, sizes, and designs, different configurations of the track system 4 may be required to appropriately guide the motor unit 3 about the rooftop.
The controller unit 5 is configured to generate an initiation signal based on the received input of a user. The initiation signal generated by the controller unit 5 is transmitted to the motor unit 3 which initiates the motor unit 3 to perform an appropriate plowing cycle based on the received input from the user. A plowing cycle can be any predetermined timing cycle programmed by the user into the controller unit 5. In a non-limiting example, the user may wish to program a first set of plowing cycles into the controller 5 when light snowfall is expected. The user may wish to program a second set of plowing cycles if heavier snowfall is expected, such as a blizzard condition. These plowing cycles can be created, modified, or removed at any time by the user via a user interface. The above noted input received by the user, via the user interface, can be made by drop down menu, text input, touch screen selection, voice command, and the such as would be recognized by one of ordinary skill in the art.
The controller unit 5 can also store predefined programs and commands received from a user, via the user interface, in a memory. Stored programs can command the controller unit 5 to generate an initiation signal when certain predetermined conditions have been met such as exceeding a predetermined amount of time since a last cycle or a predetermined amount of snow accumulated upon a rooftop 10. Once a predetermined condition has been met, the controller unit 5 will generate an initiation signal and transmit the initiation signal to the motor unit 3. The initiation signal can command the motor unit 3 to perform a predetermined plowing cycled based on the predetermined condition detected.
In another embodiment,
In another embodiment,
In another embodiment,
In another embodiment,
In another embodiment, the snow removing apparatus 1 can also include a shield apparatus for guiding snow forced from the rooftop 10, by the plowing unit 2, to a designated area below the rooftop 10 as illustrated in
In another embodiment the plowing unit 2 also includes one or more sprinkler units 22 affixed upon the plowing unit 2 or the motor unit 3 for spraying liquid into the amount of snow currently disposed upon the roof 10 as illustrated in
In another embodiment the plowing unit 2 can also include a heating unit 23 to heat the snow disposed upon the rooftop 10 as the plowing unit 2 is guided about the rooftop 10 as illustrated by
In the exemplary method of a snow removing apparatus is presented in
Next, a hardware description of the snow removing apparatus 1 according to exemplary embodiments is described with reference to
Further, the claimed advancements may be provided as a utility application, background daemon, or component of an operating system, or combination thereof, executing in conjunction with CPU 500 and an operating system such as Microsoft Windows 7, UNIX, Solaris, LINUX, Apple MAC-OS and other systems known to those skilled in the art.
CPU 500 may be a Xenon or Core processor from Intel of America or an Opteron processor from AMD of America, or may be other processor types that would be recognized by one of ordinary skill in the art. Alternatively, the CPU 500 may be implemented on an FPGA, ASIC, PLD or using discrete logic circuits, as one of ordinary skill in the art would recognize. Further, CPU 500 may be implemented as multiple processors cooperatively working in parallel to perform the instructions of the inventive processes described above.
The snow removing apparatus 1 in
The snow removing apparatus 1 further includes a display controller 508, such as a NVIDIA GeForce GTX or Quadro graphics adaptor from NVIDIA Corporation of America for interfacing with display 510, such as a Hewlett Packard HPL2445w LCD monitor. A general purpose I/O interface 512 interfaces with a keyboard and/or mouse 514 as well as a touch screen panel 516 on or separate from display 510. General purpose I/O interface also connects to a variety of peripherals 518 including printers and scanners, such as an OfficeJet or DeskJet from Hewlett Packard.
A sound controller 520 is also provided in the snow removing apparatus 1, such as Sound Blaster X-Fi Titanium from Creative, to interface with speakers/microphone 522 thereby providing sounds and/or music. The speakers/microphone 522 can also be used to accept dictated words as commands for controlling the snow removing apparatus 1 or for providing location and/or property information with respect to the target property.
The general purpose storage controller 524 connects the storage medium disk 504 with communication bus 526, which may be an ISA, EISA, VESA, PCI, or similar, for interconnecting all of the components of the snow removing apparatus 1. A description of the general features and functionality of the display 510, keyboard and/or mouse 514, as well as the display controller 508, storage controller 524, network controller 506, sound controller 520, and general purpose I/O interface 512 is omitted herein for brevity as these features are known.