This disclosure relates to a system and process for temporarily repairing a roof structure damaged by the environment or accident in order to provide for a dry interior space.
As noted, this disclosure relates to a system and process for temporarily repairing a roof structure damaged by the environment or accident in order to provide for a dry interior space. Such damage may be caused by a storm, high winds, hurricane, tornado, explosion, fire, and other like events caused by nature or man. Such a process of providing a dry interior space after such an event is commonly referred to as “drying in” the structure by way of a “dry-in” process. This process can be used in connection with at least rubber, smooth asphalt and metal roofs.
This invention involves utilizing a specific dry-in process and spray product for such dry-in situations. In one embodiment, the preferred spray product is a foam spray product. Spray roofing foam (“SPF”), often referred to as “SPF Roofing Systems,” provides many benefits to property owners. Two important benefits are waterproofing/leak prevention and insulation value. SPF Roofing Systems also provide a leak-free monolithic seal over the roof section at issue.
The novel process provided by this invention preferably involves the following steps:
Some of the figures shown herein may include dimensions. Further, some of the figures shown herein may have been created from scaled drawings or from photographs that are scalable. It is understood that such dimensions, or the relative scaling within a figure, are by way of example, and not to be construed as limiting.
The embodiments disclosed below are not intended to be exhaustive or limit the disclosure to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may simply utilize their teachings.
In a preferred embodiment, this invention involves a utilizing a specific dry-in process and spray product for such dry-in situations. In one embodiment, the preferred spray product is a foam spray product. In another embodiment, such as where hi-sloped roofs are involved, the preferred spray product is a polyurea product. As noted, SPF Roofing Systems provide many benefits to property owners, including waterproofing/leak prevention and insulation value. Other additional benefits include superior compressive strength, lightweight, self-flashing, durable and long lasting. SPF Roofing Systems also provide a leak-free monolithic seal over the roof section at issue. A strong adhesion further provides substantial wind-uplift resistance. In certain situations where reflective roof coating is utilized, lower roof temperatures can also be achieved.
The novel process provided by this invention preferably involves the following steps:
The barrier substrate contemplated by this invention is preferably synthetic roofing underlayment, such as, for example, a TITANIUM™ brand moisture barrier (model “UDL-25 Plus” available from InterWrap, Vancouver, BC Canada). Any such synthetic roofing underlayment is preferably mold-free and stronger than felt paper commonly used in roofing applications, as well as impermeable to liquid moisture. While the mechanical fasteners penetrate the barrier, the foam acts to seal over the penetrations, seal the edges of any overlapping barrier sheets, while adding rigidity and firmness to the temporary structure. For example, a one-half inch layer of the preferred foam of this invention adds “uplift” strength of over 100 miles-per-hour wind force. No SPF product commercially available on the market as of the priority date of this application warrants against such high winds.
Another advantage of an SPF Roofing System is that the resulting surface closely fits to irregular shapes and does not require a smooth undersurface. This inventive process further results in a seamless surface (thereby avoiding the need for any tape or caulk), is chemically stable and may be applied cold (thereby avoiding the need for any torches or hot kettles for application).
One preferred SPF product employed in this novel process is a polyurethane foam preferably about no less than 2.7 pound foam, and more preferably about 3 pound foam. (The weight of a given foam refers to the weight per cubic foot of expanded foam.) Such product is a two-component, liquid-spray applied, hydrofluorocarbon (HFC) blown, rigid polyurethane foam, available in varying reactivity grades in order to be applied in a wide range of temperature conditions—winter, regular or summer. In a preferred embodiment, the SPF product is closed-cell foam in order to provide a dense moisture barrier, as compared to an “open cell” barrier that would not be sufficiently dense to provide a proper barrier. One such suitable poly foam is available from Dr. Restoration, LLC, Indianapolis, Ind. (model “DRX-ISO” polyurethane foam).
In use, an applied coating of the SPF coating will preferably be tack free in a very short period of time (preferably in about 10-30 seconds), will set up preferably in about 2-10 minutes at 70 degrees F. (depending on the film thickness and substrate temperature), and will typically be totally dry (cured) preferably in about 30 minutes or less. Such a product also preferably expands and contracts as atmospheric conditions change to ensure a tight seal on the damaged roof section. The SPF coating's ability to be applied in cooler temperatures and its rapid dry time allows it to be applied quickly before subsequent inclement weather might cause further damage.
This novel dry-in process will now be described in reference to the accompanying
Referring now to
The preferred fastener contemplated by this system is a screw combined with a spacer, washer, or grommet-like plate, to prevent the fastener from simply tearing through the barrier 24. Suitable spacers 50, 60 are shown in
As a next (and final) step, an operator applies the preferred SPF product by way of a pressurized spraying process known in the art. During the application process, as shown in
For application of the preferred SPF products, plural component spray equipment is recommended. For the preferred poly foam, employing around 2,000 lbs. per square inch of pressure is recommended in order to achieve a suitable application. Human applicators should also wear proper safety wear.
In commercial dry-in applications, most contractors will not warrant dry-in work because of substrate moisture problems. Even in this instance, foam will not typically adhere to a wet surface because the moisture causes the foam to breakdown. The novel system provided by this invention provides a durable, moisture-tight encapsulation or seal of the damaged portion of the roof. This process forms a temporary yet superior monolithic patch of the damaged portion of the roof that protects the roof and prevents moisture from entering the structure pending permanent repair of the damaged roof. This allows the contractor to indeed warrant its dry-in work, thereby providing a substantial competitive advantage to the contractor.
While this disclosure has been described as having an exemplary design, the present disclosure may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains.
This application claims the benefit of priority to U.S. Provisional Patent Application Serial No. 61/765,933, filed Feb. 18, 2013, entitled ROOFING DRY-IN METHOD & SYSTEM, incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61765933 | Feb 2013 | US |