The present invention relates to the field of self supporting roofing tiles.
Although the commercial market of tile roofing is quite crowded, and a competitive one, it is yet very conservative in terms of costs per square meter, that is nearly the same all around the globe. It seems that during several decades of years, or even more, there have been achieved a stable balance between the requirements in which a roofing element should withstand (i.e. minimal load to be carried by, its stability to wind and so on) and between the minimal quantity of raw material that should be used in order to comply with the requirements. When referring to sheet metal tiles, for example, the costs per square meter are mainly derived from the price of steel in the international market, that is substantially fixed.
It is therefore a very high motivation for the competitor manufacturers in such market to affect a reduction, let say even of a few fractions of a percent, in their expenses per square meter roofing.
On the background of said conservative market, the object of the present invention is to provide the knowledge how roofing costs may be reduced in tens of percents.
It should be considered that although the discussion from now on in this specification will hang around steel made roof tile, the present invention does not limit itself to this specific material. The same principles that will become more apparent after reading the technical parts of this text, apply for a variety of manufacturing materials without departing from the scope of this invention.
More than twenty years ago, the invention disclosed by the WO 81/03196 publication (hereinafter will be referred to as “D1”) was aimed and directed to show how the purlins that used to be an integral part of the traditional infrastructural construction of tile roofs, are replaced by purlins that are integral part of the roofing tile itself, while the roofing infrastructural construction is comprised of rafters only, i.e. without purlins.
The integral purlin according to said invention is made in the tile by a modification in its shape and with no significant increase in the amount of material that should be used. The actual implementation of said patent could be found in a product named “Scanroof”, which is manufactured by the assignee of the invention disclosed by said D1 publication.
The benefit in using this D1 invention is double: firstly there is a reduction in the amount of material that should be used for the infrastructural construction since purlins are no more necessary, and secondly there is a reduction in the working time that should be spent to erect the economical construction.
U.S. Pat. No. D288,771 publication (hereinafter will be referred to as “D2”) discloses a support strip which as could be appreciated is aimed not only for supporting but also to help in positioning and assembling of the D1 type tile, that is necessary since the tile itself does not contain means that ensures precise positioning and assembling of one roofing sheet respect to another, and as will be explained in detail in the following chapters of this specification.
As mentioned before, the motivation of a manufacturer to reduce production costs is clear, hence, it is believed whether there was a chance to utilize the technical features disclosed by said inventions by those who skill in the art in order to reduce roofing production costs furthermore, it was completely exhausted, either by the assignees of the patents that were granted to said invention in several countries, or by manufacturers in other countries, were the invention was not protected. More than three years after the expiry of the patent term, and despite of a long felt need, no body in the market of steel tile roofing shows ability to break through the bar and to reduce the roofing manufacturing costs beyond the effective limits determined by said invention.
It is therefore an object of the present invention to provide a new set of features that will allow for a reduction of up to several tens of percents in the manufacturing costs of steel tile roofing.
As mentioned above in the background chapter, the aim of the D1 was to replace the traditional purlins commonly used in conventional roofing constructions, with a Z-beam supporter that is an integral part of the tile. While the D1 invention, and the derivates “Scanroof” product were concentrating in the avoidance of external purlins as a means to reduce roofing costs, the present invention will concentrate in another factor of roofing costs, that is the rafters construction, and after decades of years standstill in that field of the art, the present invention will provide the breaking through guidelines which will allow for a further reduction of up to 50% in the complete roofing costs. While the D1 invention, and the derivates “Scanroof” product, gave neither guidelines nor motivation to deal with the infrastructural roofing construction beyond the avoidance of purlins, the present invention deal, and motivation, is in thinning out the rafters construction to minimum.
Referring again to D1, and studying the actual products manufactured accordingly in the global market, show the limit of 1.5 meter maximal gap allowed between each two rafters of the infrastructure construction of the roof. This max allowed gap is reflected from the features of the sheet metal tile, which at a preferred given thickness of material would not be able to withstand expected loads in case it will be supported by rafters that are spaced in a greater gap.
The present invention is aimed to increasing said max gap of 1.5 meter between each pair of rafters, in between 35% (e.g. when implementing the principles of the present invention in a partial manner) and 120% (e.g. when implementing in full the principles given by the present invention), namely to a meaningful gap of between 200 and up to 330 cm without decreasing the performances of the prepared roof. The resulting reduction in the total number of rafters required for the roofing construction, together with the resulting reduction in the labor required for erecting the roof shows the breaking through reduction of up to 50% in the total roofing cost. According to another perspective, the present invention will allow for loading a given tile roof (e.g. by snow) by e.g. two, three, or four times weight (depending on the extent of utilization of the principles of the present invention), comparing to any other tile roof using the same quantity (weight) of material per square meter roof and having the same gap between its rafters in a purlinless infrastructure construction. Although the present invention is naturally aimed to allow a meaningful increase in the max allowed distance between rafters (according to the preferences of the inventor of the present invention meaningful in this regard relates to let say an improvement of at least one third, that is about 35%, more preferably of at least 70%, and most preferably of at least 100% and more) one whose requirements are modest may want to improve the capabilities of prior art roofing plates only in part, for example by 10% only, by 20% only, by 30% only (or by any other percentage lesser than may be achieved when full implementation of each and all of the principles outlined by the present invention are carried out) through a deficient implementation of any of the principles outlined by the present invention. Such deficient implementation should not be considered as departing from the scope of protection as defined by any separate claim of the present invention, regardless of what actual percentage of improvement was achieved by the deficient implementation of the principles defined by the claims.
Accordingly, a method is herewith disclosed, for enlarging by 35% and beyond the max allowed distance between neighboring rafters in purlinless roofing construction for self supporting roofing plates for pitched roofs having ridge and eaves, the enlargement is comparing to the max allowed distance when using roofing plates made of similar amounts of raw material and without making use of the method, the method comprising the production of roofing plates of a length greater than the max allowed distance to be achieved by the method, and having at least one of the following reinforcements; (a) continuous upright double wall support comprising two upright walls forming a gap in between uninterrupted along the entire longitudinal dimension of the plate, a first of the two upright walls is being oriented toward the ridge and the second of the two is being oriented toward the eaves, when the roofing plate is mounted on a roof; (b) integral mini ribs located at the boundary region between a top wall of the plate and at least one upright wall of the plate, acting as struts connecting between mid portions of the upright wall and corresponding mid portions of the top wall; (c) integral mini ribs located at the boundary region between an upright wall of the plate and between a horizontal flange bent from its lower end, acting as struts connecting between mid portions of the upright wall and corresponding mid portions of the flange. The production of the roofing plates according to the method and their availability in the market will enable roof constructors to prepare purlinless infrastructure constructions for pitched roofs, with widely spaced apart rafters distant from each other by two or three meters and even more, thus saving labor and costs.
For the aim of clarity, in the context of the present invention the tile (hereinafter referred to also as “roofing plate”) structure will be divided to the following regions
Rear side—the side of the roofing plate aimed to be oriented toward the ridge of the roof.
Front side—the side of the roofing plate aimed to be oriented toward the eaves of the roof.
Horizontal surface—the main surface of the roofing plate, aimed to be facing the sky.
Top wall—the wall who is leveled at the max height of the roofing plate and who is aimed to be covered and hidden by the horizontal surface of a roofing tile neighboring from above. The top wall may also be a marginal meeting region between two upright walls, wherein the area of the top wall tends to nearly zero, or is undefined, or is somewhat uneven or wavy, e.g. when two upright walls having a gap in between has a cross sectional shape of an inverted U or of an inverted V, or of the letter M. (when referring to the top wall of the D1 type tile, or to roofing plates having Z-beam support, wherein the top wall and portions of the horizontal surface of the tile or the plate are leveled the same, the intention in the wording “top wall” is to the top wall of the Z-beam only, i.e. that part extending between the upright wall of the z-beam and between the wavy main surface of the tile).
The roofing plate of the present invention will be further disclosed by setting out in detail the principles according which it should be designed and manufactured.
A first principle of the present invention is to provide a tile with an inherent double wall vertical support along the entire length of the tile (hereinafter referred to also as “roofing plate”). This is in contrast to the D1 invention wherein there is a continuity of only a single vertical wall. Although the D1 illustrates in its
Furthermore, it should be emphasized that as can be appreciated from the figures (either of the D1 document and of the present invention), the term ‘vertical’ in the context of either the single or double wall support does not strictly relates to a pure vertical orientation, but to a position that is much closer to the vertical than to the horizontal, which in a double wall embodiment forms the side walls of a trapezoid shape. The vertical orientation and the orientation of a side wall of a trapezoid shape are both referred to also as “upright” orientation, in the context of the present invention.
The incline of the trapezoid shaped walls is essential in the aspect of stacking a plurality of similar tiles for storage or for delivery (it is self explanatory that pure vertical double wall, does not allow for stacking one inside another), wherein the trapezoid-like gap allows for minimizing the space between the horizontal surfaces of stacked tiles to nearly zero. It should be appreciated that using the term trapezoid is only for describing the mutual orientation of the two side walls and in no manner intends to limit the scope of the present invention. In this regard, every double wall vertical (or upright) support located continuously all along the rear side of the tile, with a gap in between the two walls, and with the frontal one of the double wall extends in one line between a top toward which it is elevating sharply and discernibly for at least eight or ten millimeters (in the worst and very unrecommended situations), and more preferably for at least twelve millimeters (and up to several tens of millimeters) above the apexes of the horizontal surface of the tile and between a bottom that follows the wavy shape of the horizontal surface, should be appreciated as included in the scope of the present invention.
It should be appreciated that the sharp and discernible elevating of the frontal one of the double wall toward its top above the apexes of the horizontal surface, is essential not only for dramatically improving the supporting capabilities of the tile, but also to effectively block storm winds and to completely prevent rain water crawling by storm winds from an infiltration over the top of the tile and into the house. In the D1 invention the top of the tile is at a similar level as the apexes of the horizontal surface, i.e. it lacks a frontal wall that is sharply elevating from above the apexes of the horizontal surface. Therefore, the self-supporting tile according to the present invention has improved wind and water protecting capabilities comparing to the D1 invention, and comparing to the Scanroof product that has a frontal wall with a relatively flatten angle to the horizontal.
However, and as already mentioned above, the vertical support walls are not completely vertical, rather form a trapezoid shape, in order to allow stacking of the plates one above another. There is a disadvantage in this inclined orientation of the vertical support walls, which is their tendency to open the trapezoid shape wider upon a vertical pressure on the tile (hereinafter will be referred to also as “flattening tendency”). The flattening tendency of the vertical supporting walls has been recognized by the inventor of the present invention as the most significant obstacle existing in the way of improving the tile resistance against loads, an obstacle which the D1 invention does not refer to. The flattening tendency problem is more critical in the rear vertical wall, because the moment exerted on it is greater due to its greater height (and, in the WO 81/03196, also due to the fact that the front wall is fake, i.e. exists only at the valley regions of the horizontal surface, where it is protected in between the apexes). Once such pressure on the roofing plate widens the trapezoid shape, the vertical support stamina deteriorates (since it becomes more horizontal) which encouraging a possible collapse of the tile. The principles of the present invention inter alia come to reduce to minimum the tendency of the vertical supporting walls to flatten towards the horizontal under vertical loads such as those resulting from snow, from a person walking on the tile (either during its build or during maintenance work on a prepared roof), or from loads suspended from the tile inside the house. Said first principle of the present invention reduces the flattening tendency of the vertical supporting wall facing the apex, by dividing the vertical loads exerted on the tile between two full none faked vertical walls, having no dead regions as existing at the apex regions of the horizontal surface of the D1 product.
Once again, the first principle of the present invention is to provide the tile with a continuous non-interrupted double wall vertical support, that will increase the tenability of the tile (and in turn of the entire roof) against vertical loads and that will reduce the flattening tendency of the rear vertical wall.
A second principle of the present invention is to solve an inevitable problem appended to the implementation of the first principle. In this regard, it should be remembered that the present invention (as well as the WO 81/03196) relates to relatively long dimensioned tiles, i.e. which are usually having a length of at least several meters each (regardless of what is the max allowed space between the rafters). Furthermore, these types of metal tiles are used to be painted and coated by aggregated rough coating materials.
The problem to be solved is that when stacking such tiles having two non faked vertical (in the context of the present invention the term “vertical” when relating to the walls which intend to support the tile without the help of purlins, does not come to say pure vertical, because pure vertical will not allow stacking one tile inside another, rather to say close to vertical or substantially vertical, in order to allow stacking) walls, and especially when using long dimensioned ones (which is the case under discussion), the tiles become locked one inside another (in the gap area between the vertical walls) under the friction forces acting between the outer wall surfaces of one tile and the inner wall surfaces of an adjacent tile positioned from above, and due to the accumulated weight of the remaining tiles stacked above, which presses the tiles lock.
This problem disables normal stacking of tiles for economical storage and delivery, which complicates the pack process of the tiles and dramatically increase the room required for their storage and delivery, and in turn the costs involved.
One solution for this problem, which is a non-preferred embodiment of the second principle of the present invention, is to provide external spacers such as strips of foamed polystyrene, or the like, to be placed between the top walls of the trapezoid shape of each pair of adjacent tiles in the stack.
The preferred embodiment according to the second principle of the present invention is to provide the tiles with integral spacers. The integral spacers according to the present invention are made of the same sheet of material from which the tile is made, and are produced as at least two vertical protrusions, protruding downwardly from the top wall of the trapezoid shape, and located among the two side walls of the trapezoid remotely from one another along the longitudinal direction of the side walls. The protrusions are of height useful for contacting the top of another similar tile located from below before it reaches a lock position inside the top portion where the protrusions are located.
When the tile is made of sheet metal, the protrusions are produced by cutting out (from three directions only) and bending small appropriate regions of the top surface of the tile for having them protrude among the two side walls. According to the preferred embodiment the protrusions are bent in substantially right angle from the top surface and produced with random intervals between them in order to prevent the protrusions of one tile from poking at cutouts of corresponding protrusions of an underneath tile.
Implementation of the above mentioned principles allow for a significant reduction in the costs per square meter roofing. The first principle allows for increasing the maximum allowed space between rafters in tens of centimeters, thus to save certain costs involved in the constructing material and labor. The second principle allows for maintaining cost effective packing process (in terms of storage and delivery room). The implementation of both principles together may provide a reduction of between 15% and 30% in the costs involved in the roof construction (labor and material). Implementation of both first and second principles together with the implementation of the third one, as will be detailed hereinafter, will improve the resistance of the tile of the present invention against loads furthermore, thus allowing to increase the allowed space between rafters up to a distance of 330 cm, while dramatically reducing the roofing costs. According to inventor calculation, there will be a reduction of nearly 50% in the complete roofing costs when the principles of the present invention are followed.
The third principle of the present invention is to further improve the resistance of the double wall vertical support from flattening in load conditions. As mentioned in the first principle, the first improvement in reducing the flattening of the rear wall of the tile was the addition of another continuous and non interrupted vertical wall which divides loads between the two walls, thus reduces the load exerted upon the rear wall and decreases its flattening tendency. According to the third principle of the present invention, the boundary region between the top wall of the tile and at least one of the vertical supporting walls should be provided with a plurality of mini ribs for reinforcement at predetermined intervals along the walls. These mini ribs act as struts connecting between mid portions of the vertical wall and corresponding mid portions of the top wall of the tile, which resist increase in the bending angle between the vertical wall and the top portion of the tile.
According to the preferred embodiment of the roofing plate of the present invention both vertical supporting walls has mini ribs connecting them to the top wall in order to resist flattening of their upright orientation. As will be further explained in detail hereinbelow, the lower end of the rear upright wall may comprise according to various embodiments of this present invention a horizontal extension bent from its lower end to form a convenient contact and connecting region with the widely spaced apart rafters of the roof construction. Preferably, the third principle applies also to the bending area between the lower end of the upright wall and the horizontal extension, therefore, according to various preferred embodiments of the present invention having a horizontal extension at the lower end of the rear upright wall, mini ribs are formed at the bending area in order to prevent flattening of the upright wall respective to the horizontal extension wall. This mini ribs reinforcement reduces furthermore the tendency of the upright wall to flatten under load conditions, since it fixes the rear upright wall to the rafter below in its normal orientation, through the connection of the extension to the rafter and due to the reinforcement given by the mini-ribs.
When the tile is made of sheet metal, the ribs are preferably made as small deformations produced by forming a plurality of tiny depressions shaped like ribs that connect between the vertical supporting wall and the top wall at intervals of between several centimeters and up to several tens of centimeters (according to needs, and with respect to the size of the ribs) along the longitudinal dimension of the top and the vertical walls.
A fourth principle of the present invention relates to the connection between the tiles. According to the preferred embodiment of the present invention the tiles are connected to each other by means of a horizontally oriented joining member, for example a screw. The horizontally oriented screw ensures appropriate positioning of one tile respective to the adjacent one, because it tightens the front vertical wall of an upper tile to the vertical front wall of the double wall vertical support of the tile underneath as a constraint of the screwing operation, thus avoiding imprecise positioning between roofing plates. This is contrarily to the D1 invention, wherein there is no prevention for connecting the joining member between improperly positioned tiles, since the connection does not constrain precise positioning of a tile as an inescapable condition for being able to join it to another (the connection area of an upper tile of D1 through which pass the joining member, may overlap the horizontal surface of the tile underneath at any point along the surface, thus allowing the fastening of the joining member at any such point regardless whether or not the upper tile is in its appropriate assembling position). In order to solve the problem of inaccurate positioning of the D1 type tiles, there was developed the positioning strip defined by the U.S. Pat. No. D288,771 publication (hereinafter will be referred to also as D2). As can be clearly appreciated, since the fourth principle of the present invention provides an inherent means in the roofing plate that ensures accurate positioning, it eliminates the need in a positioning strip, thus saves the costs, logistics and labor, involved in supplying measuring and fixing in advance, the strips disclosed by the D2 which is required for the assembling of the D1 type tiles. Furthermore, the horizontally oriented joining member according to the present invention eliminates the need in a frontal tongue as required by the D1 type tile for placing a vertically oriented joining member. This extra raw material spent for the tongue portion according to the Plannja product, can be utilized according to the present invention for creating the second upright wall, or for enlarging the height of the upright supporting wall (or walls), which in turn, increases the load withstanding capabilities of the roofing plate of the present invention (while enhancing blocking of winds and rain as explained hereinbefore), allowing to furthermore increase the space between the roofing construction rafters. Referring again to the fourth principle, the frontal wall of the roofing plate of the present invention is preferably pre-fabricated with holes at the appropriate locations where the joining screw is to be inserted, thus prevents miss location of the screw by a constructor in field conditions. The holes are located in an upper region of the vertical wall, so that the joining between tiles will be made above or near the apexes of the horizontal surface in order to prevent rain water infiltration. This is contrarily to the D1 wherein the joint between tiles is made through the horizontal surface, with a greater chance of leak of rain water through the apertures of the joint.
To summarize, the present invention discloses between its various embodiments a self supporting roofing plate, a plurality of which are to be fit together for covering pitched roofs having ridge and eaves, in a manner allowing for a sparse supporting structure of the roof having widely spaced apart rafters without crossing purlins, the roofing plate is made of a sheet of material formed to comprise at least the following four principal non-interrupted walls;
(a) a first and a second upright walls forming a gap in between (and connected to each other from above, by a top wall of the roofing plate, as will be described hereinafter) and both are extending along the entire longitudinal dimension of the plate for self supporting of the plate, the first wall is being oriented toward the ridge and the second wall is being oriented toward the eaves, when the roofing plate is mounted on a roof;
(b) an upright third wall, also being oriented toward the eaves, parallel to and adjacent the second upright wall of a neighboring similar roofing plate when the roofing plates are mounted on a roof;
(c) a fourth wall extending along the entire longitudinal dimension of the plate leveled and delimited between the bottom of the upright second wall and the top of the upright third wall and being oriented facing the sky when the roofing plate is mounted on a roof;
The second upright wall has a minimum height greater than 1 cm, and preferably is of several centimeters.
According to various preferred embodiments the second upright wall forms an angle with the fourth wall not greater than 105 degrees.
Preferably the roofing plate is further comprising integral spacers located inside the gap between the first and the second principal walls. The spacers are cut and bent from a top wall of the roofing plate, that is the area where the first and the second upright walls are connected to each other, and as mentioned before this area may have a width of between 0 cm (in an embodiment where the first and the second upright walls form an inverted V shape cross section view; in this case however there is no need in spacers since V shapes dose not use to lock one inside another when stacked) and between several centimeters (in case the top wall is wide, e.g. when the first and the second upright walls are connected in an inverted U shape, or in the form of an M), all according to the design of the specific embodiment. It should be appreciated also, that the gap width may vary between the walls, according to the contour of the upright walls delimiting it. Furthermore, the first upright wall is naturally formed greater in several centimeters from the second upright wall, thus the gap is ending with the lower end of the second upright wall (and from there and below the first upright wall continue downwards separately, without the second upright wall. As could be appreciated, in many embodiments the boundaries between the top wall of the tile and between the first and the second upright walls are hard to define, since there is a variety of possible designs and since in many embodiments there contour of these three walls (or at least of one upright wall and the top wall) is outlined by one continuous line. Therefore, many times in this specification, when defining the relations between the first and the second upright walls, there will be mentioned the gap formed in between these walls, without referring to the top wall which however always connects them from above in one of the plurality of possible designs.
According to various preferred embodiments the spacers are formed in random intervals between one another in order to prevent spacers of one roofing plate from penetrating the cuts from which formed and bent the corresponding spacers of a neighboring roofing plate located underneath.
According to various preferred embodiments of the present invention, mini ribs are located at the boundary region between a top wall of the roofing plate and at least one of the first and the second upright walls acting as struts connecting between mid portions of at least one of the upright walls and corresponding mid portions of the top wall of the roofing plate and resisting increase in the bending angle between the at least one upright wall and the top portion of the roofing plate.
Preferably the roofing plate according to the present invention is further comprising prefabricated apertures located at the third upright wall in predetermined intervals, useful for locating a horizontal joining member connecting between the third upright wall and a second upright wall of an adjacent similar roofing plate.
Preferably the roofing plate according to the present invention is further comprising a fifth principal wall bent horizontally from the lower end of the first upright wall to form a contact and connecting region with the widely spaced apart rafters of the roof construction. Furthermore, integral mini ribs are preferably located at the boundary region between the first upright wall and the fifth principal wall, wherein the mini ribs are acting as struts connecting between mid portions of the upright wall and corresponding mid portions of the fifth wall of the roofing plate and resisting increase in the bending angle between the upright wall and the fifth wall.
When using a sheet metal as a raw material for the roofing plate, the mini ribs are preferably formed as small deformations in the material, at the boundary regions between the walls that should be reinforced.
The present invention further relates to a support member for use with the self supporting tiles, to a roofing method using the tiles and the click-on supporter, and to a roof constructed accordingly.
The support member for roofing plates according to the present invention is comprised of a base portion adapted to contact a rafter from below, an upright leg upwardly protruding from the base portion and dimensioned as to contact and support either the top wall of a the roofing plate or the upright self supporting wall, and a mutual connection with the roofing plate, useful for holding the support member attached to the plate in position during the build process of the roof, without needing to hold and place the support member separately. The mutual connection according to the present invention is preferably a click-on connection, but may be any other appropriate connection which may free the hands of the construction worker from the need to grip the supporter. The comfortable click-on connection of the support member disclosed by the present invention, not only saves labor, but also improves the safety of work in the heights of roofs, by freeing the hands and the mind of construction workers from concentrating in how to keep the support member in place during its fastening.
In order to avoid heat and cold bridging between metal made roofing plate and metal made rafters, the support member is preferably fabricated from a heat isolating substance such as plastic or similar polymeric material. The support member may be produced either by casting of complete units, or by extrusion process forming an elongated profile which is then being cut in similar intervals into a plurality of support members of a similar shape.
The roofing method for pitched roofs having ridge and eaves according to the present invention, inter alia comprising; (a) erecting roof infrastructural construction having widely spaced apart rafters without crossing purlins, wherein the average space between two neighboring rafters is greater than 2 meters; (b) positioning a first roofing plate, or a first line of roofing plates, adjacent the roof eaves, wherein said plates are of a type defined by the text (and/or the figures) of the present invention; (c) clicking-on at least one support member of the type defined by the text (and/or the figures) of the present invention, to the rear portion of each roofing plate in a position corresponding to a rafter crossing underneath; (d) joining the support member with the roofing plate held thereof, to the rafter; (e) positioning a second roofing plate, or a second line of roofing plates, from above the first ones, wherein the third upright surface of each of the second roofing plates is attached to the second upright surface of each of the first roofing plates; (f) joining together the second upright surface of a second roofing plate and the third upright surface of a first roofing plate, wherein the joint is by means horizontally oriented joining members that are spaced laterally in predetermined intervals; (g) repeating steps ‘c’ to ‘f’ while referring the second roofing plate of a former repeat as a first roofing plate or plates for the current repeat, until roofing the entire roof.
When using the roofing plates with the fifth wall (in the context of the present invention will be referred to also as “flange” or “horizontal flange”) as explained hereinbefore, the same wall may be utilized also for the build of an isolating layer underneath the roof, thus reducing furthermore the labor and time conventionally involved when the isolation is built separately. If so desired, the roofing method may further comprise the positioning of a first end of a block of isolating material to lean on the fifth principal wall located at the rear portion of each roofing plate, and catching a second end of the block to the first upright surface of a second roofing plate, wherein said positioning is in correlation with the positioning of the roofing plates such that the completion of the roofing process is accompanied by a completion of an entire isolating layer. Since isolating material is normally very soft, it could be very facile way to catch it to first upright surface of the relevant roofing plate by means of nails (e.g. of a length of between 2 and 10 cm, each) inserted into the upright first surface in a horizontal orientation through appropriate apertures. Thus, according to the preferred embodiment of the present invention the first upright surface is prefabricated with apertures useful for the insertion of horizontally oriented nails for catching blocks of isolating material.
Due to the fact the vertical load on a roofing plate of the present invention is self supported by the plate, without the use of external purlins, those portions of the plate which are used for the support, can be seen as a purlin substitute. Since the fortunate mechanical features of the roofing plates according to the present invention which allows for a sparse supporting structure of the roof having widely spaced apart rafters, are achieved due to the features of the vertical support implementing the principles of the present invention, this portions of the roofing plate using for the support may be utilized separately, as purlins substitute, for supporting conventional tiles. Therefore, the present invention relates also to a substitute for conventional purlins. This purlin substitute according to the present invention, is an example how one may utilize the principles of the present invention partially or in an incomplete manner, in order to gain an increase in load withstanding capabilities, or in order to reduce roofing costs, in a partial manner. In this regard, the purlin substitute together with the tiles supported by, should be seen and interpreted as one integral unit being a deficient imitation of the roofing plate of the present invention.
The Purlin substitute, comprising (a) a sheet metal beam having a first and a second upright walls forming a gap in between and both are extending along the entire longitudinal dimension of the beam for self supporting of at least one roofing plate, the first wall is being oriented toward the ridge and the second wall is being oriented toward the eaves, when the roofing plate is mounted on a roof, the walls are connected to each other at their upper end either directly (having a cross section view of an inverted V shape or U shape) or through an horizontally oriented wall (either flat, or wavy); (b) at least two support members for supporting the beam, each support member is comprised of a base portion adapted to contact a rafter from below, an upright leg upwardly protruding from the base portion and dimensioned as to contact and support either a top portion of the beam or at least one of its upright walls, and a mutual connection with the beam, useful for holding the support member attached to the beam in position during the build process of the roof, without needing to hold and place the support member separately.
According to one preferred embodiment the beam of the purlin substitute is further comprising a horizontally oriented flange extended from the bottom end of the rear upright wall. Further more, and according to various preferred embodiments of the purlin substitute mini ribs are formed along the folding areas of the beam walls in order to eliminate flattening of the upright walls to the horizontal in load conditions.
According to the best mode of the purlin substitute, the supported roofing plate forms an integral part with the beam, in the following manner: the beam is further comprising (c) an upright third wall, also being oriented toward the eaves, parallel to and adjacent the second upright wall of a neighboring similar beam having integral roofing plate, when the beams are mounted on a roof; and (d) a fourth wall extending along the entire longitudinal dimension of the beam leveled and delimited between the bottom of the upright second wall and the top of the upright third wall and being oriented facing the sky when the beam with its integral roofing plate is mounted on a roof.
The present invention will be further explained in detail by
It will therefore be an object of the present invention to provide the guidelines for increasing the resistance of the upright self supporting wall against regression in its upright orientation, implementation of which will allow for a production of a new type of self supporting roofing plate having dramatically improved attributes.
(b) an upright third wall(17c)(18c)(19c), also being oriented toward the eaves, parallel to and adjacent the second upright wall of a neighboring similar roofing plate when the roofing plates are mounted on a roof; and
(c) a fourth wall (17d)(18d)(19d) extending along the entire longitudinal dimension of the plate leveled and delimited between the bottom of the upright second wall and the top of the upright third wall and being oriented facing the sky when the roofing plate is mounted on a roof.
Number | Name | Date | Kind |
---|---|---|---|
2870981 | Dellinger | Jan 1959 | A |
3629988 | Zylstra | Dec 1971 | A |
3884328 | Williams | May 1975 | A |
4499700 | Gustafsson | Feb 1985 | A |
4617773 | Studwell | Oct 1986 | A |
D288771 | Kero | Mar 1987 | S |
5056288 | Funaki | Oct 1991 | A |
5479752 | Menegoli | Jan 1996 | A |
6715256 | Fischer | Apr 2004 | B1 |
Number | Date | Country |
---|---|---|
25313 77 | Nov 1978 | AU |
78-42781 | Jul 1982 | AU |
0 017 647 | Oct 1980 | EP |
0 115 968 | Aug 1984 | EP |
0 126 719 | Nov 1984 | EP |
0 317 923 | May 1989 | EP |
0 964 114 | Dec 1999 | EP |
1 236 840 | Sep 2002 | EP |
1 342 862 | Sep 2003 | EP |
WO 8103196 | Nov 1981 | WO |
Number | Date | Country | |
---|---|---|---|
20050210825 A1 | Sep 2005 | US |