The present invention relates to roofing shingles and methods of manufacturing same.
Photovoltaic systems having solar shingles are commonly installed on roofing of structures.
In some embodiments, a system includes a plurality of roofing shingles installed on a roof deck, each of the roofing shingles includes a core layer having a first end and a second end opposite the first end, and a cap layer overlaying the core layer, wherein the cap layer includes a first end and a second end opposite the first end of the cap layer, wherein the second end of the cap layer is offset from the second end of the core layer, wherein the first end of the cap layer is offset from the first end of the core layer, wherein the cap layer includes a first surface and a pattern on the first surface, a side lap extending from the second end of the cap layer to the second end of the core layer, an extended portion at the first end of the cap layer, wherein the extended portion of a first one of the roofing shingles overlays the side lap of a second one of the roofing shingles; and a plurality of photovoltaic modules, each of the plurality of photovoltaic modules include at least one solar cell.
In some embodiments, the second end of the cap layer is offset from the second end of the core layer by 1 inch to 10 inches. In some embodiments, each of the core layer and the cap layer is composed of a polymeric material. In some embodiments, the polymeric material is thermoplastic polyolefin (TPO). In some embodiments, the cap layer is welded to the core layer. In some embodiments, the cap layer is adhered to the core layer by an adhesive. In some embodiments, the pattern includes a plurality of indentations. In some embodiments, the pattern includes a depiction of a plurality of solar cells.
In some embodiments, a roofing shingle includes a core layer having a first end and a second end opposite the first end; a cap layer overlaying the core layer; wherein the cap layer includes a first end and a second end opposite the first end of the cap layer, wherein the second end of the cap layer is offset from the second end of the core layer, wherein the first end of the cap layer is offset from the first end of the core layer, wherein the cap layer includes a first surface and a pattern on the first surface, a side lap extending from the second end of the cap layer to the second end of the core layer; and an extended portion at the first end of the cap layer, wherein the extended portion of the roofing shingle is configured to overlay a side lap of another one of the roofing shingles, and wherein the roofing shingle is configured to be installed on a roof deck.
In some embodiments, the second end of the cap layer is offset from the second end of the core layer by 1 inch to 10 inches. In some embodiments, each of the core layer and the cap layer is composed of a polymeric material. In some embodiments, the polymeric material is thermoplastic polyolefin (TPO). In some embodiments, the cap layer is welded to the core layer. In some embodiments, the cap layer is adhered to the core layer by an adhesive. In some embodiments, the pattern includes a plurality of indentations. In some embodiments, the pattern includes a depiction of a plurality of solar cells.
In some embodiments, a method includes the steps of obtaining a plurality of roofing shingles, each of the roofing shingles includes a core layer having a first end and a second end opposite the first end, a cap layer overlaying the core layer, wherein the cap layer includes a first end and a second end opposite the first end of the cap layer, wherein the second end of the cap layer is offset from the second end of the core layer, wherein the first end of the cap layer is offset from the first end of the core layer, wherein the cap layer includes a first surface and a pattern on the first surface, a side lap extending from the second end of the cap layer to the second end of the core layer, and an extended portion at the first end of the cap layer; obtaining a plurality of photovoltaic modules, each of the plurality of photovoltaic modules includes at least one solar cell, installing the plurality of photovoltaic modules on a roof deck; installing the plurality of roofing modules on the roof deck proximate to the plurality of photovoltaic modules, and wherein the extended portion of a first roofing shingle of the plurality of roofing shingles overlays the side lap of a second roofing shingle of the plurality of roofing shingles.
In some embodiments, a method includes the steps of obtaining a core layer of a first material, wherein the core layer includes a first end and a second end opposite the first end; obtaining a cap layer of a second material, wherein the cap layer includes a first end and a second end opposite the first end of the cap layer; positioning the second end of the cap layer offset from the second end of the core layer and positioning the first end of the cap layer offset from the first end of the core layer; overlaying the cap layer over the core layer; and attaching the cap layer to the core layer to form at least one roofing shingle, wherein the at least one roofing shingle includes a side lap extending from the second end of the cap layer to the second end of the core layer, and wherein the at least one roofing shingle includes an extended portion at the first end of the cap layer, wherein the extended portion of a first roofing shingle of the at least one roofing shingle is configured to overlay the side lap of a second roofing shingle of the at least one roofing shingle. In some embodiments, the method further includes the step of creating a pattern on a surface of the cap layer. In some embodiments, the overlaying step includes rolling the core layer by a first infeed roller and rolling the cap layer by a second infeed roller, wherein the first infeed roller is offset from the second infeed roller.
Referring to
In some embodiments, the length L1 is 1 inch to 10 inches. In some embodiments, the length L1 is 1 inch to 9 inches. In some embodiments, the length L1 is 1 inch to 8 inches. In some embodiments, the length L1 is 1 inch to 7 inches. In some embodiments, the length L1 is 1 inch to 6 inches. In some embodiments, the length L1 is 1 inch to 5 inches. In some embodiments, the length L1 is 1 inch to 4 inches. In some embodiments, the length L1 is 1 inch to 3 inches. In some embodiments, the length L1 is 1 inch to 2 inches. In some embodiments, the length L1 is 2 inches to 10 inches. In some embodiments, the length L1 is 2 inches to 9 inches. In some embodiments, the length L1 is 2 inches to 8 inches. In some embodiments, the length L1 is 2 inches to 7 inches. In some embodiments, the length L1 is 2 inches to 6 inches. In some embodiments, the length L1 is 2 inches to 5 inches. In some embodiments, the length L1 is 2 inches to 4 inches. In some embodiments, the length L1 is 2 inches to 3 inches. In some embodiments, the length L1 is 3 inches to 10 inches. In some embodiments, the length L1 is 3 inches to 9 inches. In some embodiments, the length L1 is 3 inches to 8 inches. In some embodiments, the length L1 is 3 inches to 7 inches. In some embodiments, the length L1 is 3 inches to 6 inches. In some embodiments, the length L1 is 3 inches to 5 inches. In some embodiments, the length L1 is 3 inches to 4 inches. In some embodiments, the length L1 is 4 inches to 10 inches. In some embodiments, the length L1 is 4 inches to 9 inches. In some embodiments, the length L1 is 4 inches to 8 inches. In some embodiments, the length L1 is 4 inches to 7 inches. In some embodiments, the length L1 is 4 inches to 6 inches. In some embodiments, the length L1 is 4 inches to 5 inches.
In some embodiments, the length L1 is 5 inches to 10 inches. In some embodiments, the length L1 is 5 inches to 9 inches. In some embodiments, the length L1 is 5 inches to 8 inches. In some embodiments, the length L1 is 5 inches to 7 inches. In some embodiments, the length L1 is 5 inches to 6 inches. In some embodiments, the length L1 is 6 inches to 10 inches. In some embodiments, the length L1 is 6 inches to 9 inches. In some embodiments, the length L1 is 6 inches to 8 inches. In some embodiments, the length L1 is 6 inches to 7 inches. In some embodiments, the length L1 is 7 inches to 10 inches. In some embodiments, the length L1 is 7 inches to 9 inches. In some embodiments, the length L1 is 7 inches to 8 inches. In some embodiments, the length L1 is 8 inches to 10 inches. In some embodiments, the length L1 is 8 inches to 9 inches. In some embodiments, the length L1 is 9 inches to 10 inches.
In some embodiments, the length L1 is 1 inch. In some embodiments, the length L1 is 2 inches. In some embodiments, the length L1 is 3 inches. In some embodiments, the length L1 is 4 inches. In some embodiments, the length L1 is 5 inches. In some embodiments, the length L1 is 6 inches. In some embodiments, the length L1 is 7 inches. In some embodiments, the length L1 is 8 inches. In some embodiments, the length L1 is 9 inches. In some embodiments, the length L1 is 10 inches.
In some embodiments, the offset of the core layer 12 from the cap layer 14 forms a side lap 32. In some embodiments, the first end 16 of the core layer 12 is offset from the first end 24 of the cap layer 14. In some embodiments, the first end 16 of the core layer 12 is offset from the first end 24 of the cap layer 14 by a length L2.
In some embodiments, the length L2 is 1 inch to 10 inches. In some embodiments, the length L2 is 1 inch to 9 inches. In some embodiments, the length L2 is 1 inch to 8 inches. In some embodiments, the length L2 is 1 inch to 7 inches. In some embodiments, the length L2 is 1 inch to 6 inches. In some embodiments, the length L2 is 1 inch to 5 inches. In some embodiments, the length L2 is 1 inch to 4 inches. In some embodiments, the length L2 is 1 inch to 3 inches. In some embodiments, the length L2 is 1 inch to 2 inches. In some embodiments, the length L2 is 2 inches to 10 inches. In some embodiments, the length L2 is 2 inches to 9 inches. In some embodiments, the length L2 is 2 inches to 8 inches. In some embodiments, the length L2 is 2 inches to 7 inches. In some embodiments, the length L2 is 2 inches to 6 inches. In some embodiments, the length L2 is 2 inches to 5 inches. In some embodiments, the length L2 is 2 inches to 4 inches. In some embodiments, the length L2 is 2 inches to 3 inches. In some embodiments, the length L2 is 3 inches to 10 inches. In some embodiments, the length L2 is 3 inches to 9 inches. In some embodiments, the length L2 is 3 inches to 8 inches. In some embodiments, the length L2 is 3 inches to 7 inches. In some embodiments, the length L2 is 3 inches to 6 inches. In some embodiments, the length L2 is 3 inches to 5 inches. In some embodiments, the length L2 is 3 inches to 4 inches. In some embodiments, the length L2 is 4 inches to 10 inches. In some embodiments, the length L2 is 4 inches to 9 inches. In some embodiments, the length L2 is 4 inches to 8 inches. In some embodiments, the length L2 is 4 inches to 7 inches. In some embodiments, the length L2 is 4 inches to 6 inches. In some embodiments, the length L2 is 4 inches to 5 inches.
In some embodiments, the length L2 is 5 inches to 10 inches. In some embodiments, the length L2 is 5 inches to 9 inches. In some embodiments, the length L2 is 5 inches to 8 inches. In some embodiments, the length L2 is 5 inches to 7 inches. In some embodiments, the length L2 is 5 inches to 6 inches. In some embodiments, the length L2 is 6 inches to 10 inches. In some embodiments, the length L2 is 6 inches to 9 inches. In some embodiments, the length L2 is 6 inches to 8 inches. In some embodiments, the length L2 is 6 inches to 7 inches. In some embodiments, the length L2 is 7 inches to 10 inches. In some embodiments, the length L2 is 7 inches to 9 inches. In some embodiments, the length L2 is 7 inches to 8 inches. In some embodiments, the length L2 is 8 inches to 10 inches. In some embodiments, the length L2 is 8 inches to 9 inches. In some embodiments, the length L2 is 9 inches to 10 inches.
In some embodiments, the length L2 is 1 inch. In some embodiments, the length L2 is 2 inches. In some embodiments, the length L2 is 3 inches. In some embodiments, the length L2 is 4 inches. In some embodiments, the length L2 is 5 inches. In some embodiments, the length L2 is 6 inches. In some embodiments, the length L2 is 7 inches. In some embodiments, the length L2 is 8 inches. In some embodiments, the length L2 is 9 inches. In some embodiments, the length L2 is 10 inches.
In some embodiments, the length L1 is equal to the length L2. In some embodiments, the length L1 is different from the length L2. In some embodiments, the offset of the core layer 12 from the cap layer 14 forms an extended portion 35.
In some embodiments, the core layer 12 has a length L3. In some embodiments, the length L3 is 30 inches to 60 inches. In some embodiments, the length L3 is 30 inches to 50 inches. In some embodiments, the length L3 is 30 inches to 40 inches. In some embodiments, the length L3 is 40 inches to 60 inches. In some embodiments, the length L3 is 40 inches to 50 inches. In some embodiments, the length L3 is 50 inches to 60 inches. In some embodiments, the length L3 is 30 inches. In some embodiments, the length L3 is 40 inches. In some embodiments, the length L3 is 50 inches. In some embodiments, the length L3 is 60 inches.
In some embodiments, the cap layer 14 has a length L4. In some embodiments, the length L4 is 30 inches to 60 inches. In some embodiments, the length L4 is 30 inches to 50 inches. In some embodiments, the length L4 is 30 inches to 40 inches. In some embodiments, the length L4 is 40 inches to 60 inches. In some embodiments, the length L4 is 40 inches to 50 inches. In some embodiments, the length L4 is 50 inches to 60 inches. In some embodiments, the length L4 is 30 inches. In some embodiments, the length L4 is 40 inches. In some embodiments, the length L4 is 50 inches. In some embodiments, the length L4 is 60 inches. In some embodiments, the roofing shingle 10 has a total length L5. In some embodiments, the length L5 is 32 inches to 66 inches.
In some embodiments, the roofing shingle 10 includes a head lap portion 34 extending from the first end 24 to the second end 26 of the cap layer 14, and from the first edge 28 to a location 36 between the first edge 28 to second edge 30 of the cap layer 14. In some embodiments, the roofing shingle 10 includes a reveal portion 38 extending from the first end 24 to the second end 26 of the cap layer 14, and from the second edge 30 to the location 36.
In some embodiments, the head lap portion 34 has a width W1. In some embodiments, the width W1 is 1 inch to 16 inches. In some embodiments, the width W1 is 1 inch to 15 inches. In some embodiments, the width W1 is 1 inch to 10 inches. In some embodiments, the width W1 is 1 inch to 5 inches. In some embodiments, the width W1 is 5 inches to 16 inches. In some embodiments, the width W1 is 5 inches to 15 inches. In some embodiments, the width W1 is 5 inches to 10 inches. In some embodiments, the width W1 is 10 inches to 16 inches. In some embodiments, the width W1 is 10 inches to 15 inches. In some embodiments, the width W1 is 15 inches to 16 inches. In some embodiments, the width W1 is 1 inch. In some embodiments, the width W1 is 5 inches. In some embodiments, the width W1 is 10 inches. In some embodiments, the width W1 is 15 inches. In some embodiments, the width W1 is 16 inches.
In some embodiments, the reveal portion 38 has a width W2. In some embodiments, the width W2 is 5 inches to 12 inches. In some embodiments, the width W2 is 5 inches to 10 inches. In some embodiments, the width W2 is 10 inches to 12 inches. In some embodiments, the width W2 is 5 inches. In some embodiments, the width W2 is 10 inches. In some embodiments, the width W2 is 12 inches.
In some embodiments, the core layer 12 is composed of a polymeric material. In some embodiments, the core layer 12 is composed of a thermoplastic polymer. In some embodiments, the core layer 12 is composed of polyethylene terephthalate (“PET”). In another embodiment, the core layer 12 is composed of ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the core layer 12 is composed of an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the core layer 12 is composed of thermoplastic polyolefin (TPO). In some embodiments, the core layer 12 is composed of a single ply TPO roofing membrane. In other embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In another embodiment, the core layer 12 includes polyvinyl chloride. In some embodiments, the core layer 12 is composed of ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the core layer 12 is composed of a natural rubber. In some embodiments, the core layer 12 is composed of high density polyethylene (HDPE). In some embodiments, the core layer 12 is composed of polypropylene (PP). In some embodiments, the core layer 12 is composed of a polyolefin elastomer (POE). In some embodiments, the core layer 12 is composed of polyvinyl chloride (PVC). In some embodiments, the core layer 12 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof.
In some embodiments, the core layer 12 includes a composite material. In some embodiments, the core layer 12 is composed of a composite material that incorporates fiberglass into a polymer matrix of a PP, asphalt or TPO. In some embodiments, the composite materials may have a solar reflectance that is at least 20% greater than conventional composite materials. In some embodiments, the composite materials may be used as a roof attachment and a water shedding layer. In some embodiments, the composite materials, when used as roofing materials for photovoltaic modules, may increase power for such photovoltaic modules by 1% to 2%. In some embodiments, the composite materials may have a relative temperature index (RTI) of greater than 90° C. In some embodiments, the composite material may be a black thermoplastic polyolefin membrane.
As used herein, the term “building material” may include, without limitation, at least one of a roofing material, a siding, a flooring, or any combination thereof. As used herein, the term “roofing material” may include any material of a roof and may include, for example and without limitation, at least one of shingles (e.g., such as photovoltaic modules), roofing membranes (e.g., such as waterproofing membranes), underlayments, tiles, any component thereof, or any combination thereof In some embodiments, the roofing material may comprise, consist of, or consist essentially of a component of a photovoltaic module. For example, in some embodiments, the roofing material may comprise, consist of, or consist essentially of a backsheet or a portion of a backsheet (e.g., a bottom flap, a head lap, etc.). Further examples of roofing materials include, without limitation, at least one of rolled roofing, flexible rolled roofing, or any combination thereof.
In some embodiments, the composite material is a roofing composite material. In some embodiments, the roofing composite material may comprise, consist of, or consist essentially of one or more layers. For example, in some embodiments, the roofing composite material may comprise, consist of, or consist essentially of at least one of a substrate, a cap, a core, or any combination thereof In some embodiments, the substrate may have a first surface and a second surface opposite the first surface. In some embodiments, the cap may be on the first surface of the substrate. In some embodiments, the cap may be in contact with the first surface of the substrate. In some embodiments, the core may be on the second surface of the substrate. In some embodiments, the core may be in contact with the second surface of the substrate. In some embodiments, one or more layers may be located between the cap and the substrate. In some embodiments, one or more layers may be located between the core and the substrate.
In some embodiments, the core layer 12 has a thickness of 0.1 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 3 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 2 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 1 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 3 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 2 mm. In some embodiments, the core layer 12 has a thickness of 2 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 2 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 2 mm to 3 mm. In some embodiments, the core layer 12 has a thickness of 3 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 3 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 4 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm. In some embodiments, the core layer 12 has a thickness of 1 mm. In some embodiments, the core layer 12 has a thickness of 2 mm. In some embodiments, the core layer 12 has a thickness of 3 mm. In some embodiments, the core layer 12 has a thickness of 4 mm. In some embodiments, the core layer 12 has a thickness of 5 mm.
In some embodiments, the cap layer 14 includes a polymeric material. In some embodiments, the cap layer 14 includes polyethylene terephthalate (“PET”). In another embodiment, the cap layer 14 includes ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the cap layer 14 includes an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the cap layer 14 includes thermoplastic polyolefin (TPO). In some embodiments, the cap layer 14 includes a single ply TPO roofing membrane. In other embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In another embodiment, the cap layer 14 includes polyvinyl chloride. In some embodiments, the cap layer 14 includes ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the cap layer 14 is composed of a natural rubber. In some embodiments, the cap layer 14 is composed of high density polyethylene (HDPE). In some embodiments, the cap layer 14 is composed of polypropylene (PP). In some embodiments, the cap layer 14 is composed of a polyolefin elastomer (POE). In some embodiments, the cap layer 14 is composed of polyvinyl chloride (PVC). In some embodiments, the cap layer 14 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof. In some embodiments, the cap layer 14 includes a composite material. In some embodiments, the cap layer 14 is composed of a composite material that incorporates fiberglass into a polymer matrix of a PP, asphalt or TPO. In some embodiments, the cap layer 14 is composed of a composite material as described above with respect to the core layer 12.
In some embodiments, the core layer 12 includes magnesium oxide (MgO). In some embodiments, the core layer 12 includes 35% to 50% by weight of MgO. In some embodiments, the core layer 12 includes 35% to 45% by weight of MgO. In some embodiments, the core layer 12 includes 35% to 40% by weight of MgO. In some embodiments, the core layer 12 includes 40% to 50% by weight of MgO. In some embodiments, the core layer 12 includes 40% to 45% by weight of MgO. In some embodiments, the core layer 12 includes 45% to 50% by weight of MgO. In some embodiments, the core layer 12 includes 35% by weight of MgO. In some embodiments, the core layer 12 includes 40% by weight of MgO. In some embodiments, the core layer 12 includes 45% by weight of MgO. In some embodiments, the core layer 12 includes 50% by weight of MgO.
In some embodiments, the core layer 12 includes ketone ethylene ester (KEE). In some embodiments, the core layer 12 includes a PVC-KEE hybrid membrane. In some embodiments, the roofing shingle 10 is adapted to be a component of a photovoltaic system that includes a fire resistance that conforms to standards under UL 790/ASTM E 108 test standards. In some embodiments, the roofing shingle 10 includes a Class A rating when tested in accordance with UL 790/ASTM E 108.
In some embodiments, the core layer 12 and the cap layer 14 are welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are ultrasonically welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are heat welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are thermally bonded to one another.
In some embodiments, the core layer 12 and the cap layer 14 are adhered to one another by an adhesive layer 15 (see
In some embodiments, the core layer 12 and the cap layer 14 are laminated. In some embodiments, the core layer 12 and the cap layer 14 are co-extruded. In some embodiments, the core layer 12 and the cap layer 14 are mechanically attached to one another. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by at least one fastener. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by a plurality of fasteners. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by deforming one of the core layer 12 and the cap layer 14 into the other one of the core layer 12 and the cap layer 14. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by deforming a portion of one of the core layer 12 and the cap layer 14 into the other one of the core layer 12 and the cap layer 14. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by forming at least one hole in one or both of the core layer 12 and the cap layer 14 and dispensing molten material into the at least one hole to connect the core layer 12 and the cap layer 14. In some embodiments, non-limiting examples of fasteners, fastening means and methods for fastening, connecting and attaching the core layer 12 to the cap layer 14 are disclosed in U.S. Pat. No. 7,833,371 to Binkley et al, U.S. Pat. No. 8,006,457 to Binkley et al, U.S. Pat. No. 8,127,514 to Binkley et al, and U.S. Pat. No. 8,316,608 to Binkley et al, each of which is incorporated by reference herein in its entirety.
In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 3 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 2 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 1 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 3 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 2 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm to 3 mm. In some embodiments, the cap layer 14 has a thickness of 3 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 3 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 4 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm. In some embodiments, the cap layer 14 has a thickness of 3 mm. In some embodiments, the cap layer 14 has a thickness of 4 mm. In some embodiments, the cap layer 14 has a thickness of 5 mm.
In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 2 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 1 mm.
In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 2 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 5 mm.
In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 8 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 8 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 9 mm to 10 mm.
In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 10 mm.
In some embodiments, the roofing shingle 10 includes a structure, composition, components, and/or function similar to those of one or more embodiments of the photovoltaic modules disclosed in U.S. Patent Application Publication No. 2022/0393637, published Dec. 8, 2022, entitled “Roofing Module System,” owned by GAF Energy LLC, the contents of which are incorporated by reference herein in its entirety.
Referring to
Referring to
Referring to
Referring to
In some embodiments, the first surface 42 of the roofing shingle 10 is textured. In some embodiments, the first surface 42 of the roofing shingle 10 is textured to impart an appearance of a traditional asphalt roofing shingle. In some embodiments, the first surface 42 of the roofing shingle 10 is textured to impart an appearance of and aesthetically match a photovoltaic module 100 (see
In some embodiments, the first surface 42 is an embossed surface. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of indentations. In some embodiment, each of the plurality of indentations has a circular shape. In some embodiment, each of the plurality of indentations has a rectangular shape. In some embodiments, each of the plurality of indentations has a square shape. In some embodiments, each of the plurality of indentations has a triangular shape. In some embodiments, each of the plurality of indentations has an elliptical shape. In some embodiments, each of the plurality of indentations has an oval shape. In some embodiments, each of the plurality of indentations has a rhombus shape. In some embodiments, each of the plurality of indentations has a hexagonal shape. In some embodiments, each of the plurality of indentations includes a pentagonal shape. In some embodiments, each of the plurality of indentations has a polygonal shape. In some embodiments, each of the plurality of indentations has a non-polygonal shape. In some embodiments, each of the plurality of indentations has a geometric shape. In some embodiments, each of the plurality of indentations has a non-geometric shape. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of dimples. In some embodiments, the indentations are created by embossing a portion of the first surface 42. In some embodiments, the texture includes a surface roughness (Ra). In some embodiments, the surface roughness (Ra) is 1 micron to 200 microns. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of lines. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of grooves. In some embodiments, the pattern 40 on the first surface 42 includes cross-hatches.
In some embodiments, a pattern roller 44 forms the pattern 40 on the first surface 42 of the cap layer 14. In some embodiments, the pattern roller 44 includes a circumferential face 46. In some embodiments, the face 46 includes at least one pattern. In some embodiments, the at least one pattern includes a plurality of patterns. In some embodiments, the plurality of patterns are strips 45 along a length of the roller 44 in a longitudinal direction. In some embodiments, the plurality of patterns includes at least two patterns. In some embodiments, the plurality of patterns includes at least three patterns. In some embodiments, the plurality of patterns includes at least four patterns. In some embodiments, the plurality of patterns includes at least five patterns. In some embodiments, the plurality of patterns includes at least six patterns. In some embodiments, each of the plurality of patterns is identical to one another. In some embodiments, each of the plurality of patterns is different from one another. In some embodiments, at least one of the plurality of patterns is different from at least another one of the patterns. In some embodiments, at least one of the plurality of patterns is similar to at least another one of the patterns. In some embodiments, the pattern roller 44 has a circumference of 68.5 inches and a diameter of 21.8 inches. In some embodiments, the pattern roller 44 includes four patterns. In some embodiments, each of the patterns extends for 17-⅛ inches along the circumference of the pattern roller 44. In some embodiments, the pattern roller 44 has a greater or lower circumference than 68.5 inches and a corresponding lower or greater diameter.
In some embodiments, the pattern 40 is formed simultaneously with the processing of the core layer 12 and the cap layer 14 of the roofing shingle 10. In some embodiments, the pattern 40 processed during a roll-to-roll (R2R) process of the core layer 12 and the cap layer 14.
In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14. In some embodiments, a pattern or depiction of solar cells is printed on the first surface 42 of the cap layer 14. In some embodiments, each of the depicted solar cells has a width of 5 inches to 8 inches. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by ink jet printing. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by laser printing. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by lithography. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by flexography. In another embodiment, the cap layer 14 is painted. In another embodiment, the cap layer 14 is a colored layer. In another embodiment, the cap layer 14 includes a black color. In some embodiments, the color of the cap layer 14 includes a mixture of colors. In some embodiments, the cap layer 14 includes an infrared reflective pigment. In some embodiments, the infrared reflective pigment includes graphene. In some embodiments, the roofing shingle 10 meets standards of California Building Energy Efficiency Standards of Residential and Nonresidential Buildings, Title 24, Part 6.
In some embodiments, the cap layer 14 includes magnesium oxide (MgO). In some embodiments, the cap layer 14 includes 35% to 50% by weight of MgO. In some embodiments, the cap layer 14 includes 35% to 45% by weight of MgO. In some embodiments, the cap layer 14 includes 35% to 40% by weight of MgO. In some embodiments, the cap layer 14 includes 40% to 50% by weight of MgO. In some embodiments, the cap layer 14 includes 40% to 45% by weight of MgO. In some embodiments, the cap layer 14 includes 45% to 50% by weight of MgO. In some embodiments, the cap layer 14 includes 35% by weight of MgO. In some embodiments, the cap layer 14 includes 40% by weight of MgO. In some embodiments, the cap layer 14 includes 45% by weight of MgO. In some embodiments, the cap layer 14 includes 50% by weight of MgO.
In some embodiments, the cap layer 14 includes ketone ethylene ester (KEE) In some embodiments, the cap layer 14 includes a PVC-KEE hybrid membrane. In some embodiments, the roofing shingle 10 is adapted to be a component of a photovoltaic system that includes a fire resistance that conforms to standards under UL 790/ASTM E 108 test standards. In some embodiments, the roofing shingle 10 includes a Class A rating when tested in accordance with UL 790/ASTM E 108.
Referring to
In some embodiments, a roofing system includes at least one of the roofing shingle 10 and at least one photovoltaic module 100. In some embodiments, the at least one of the roofing shingle 10 includes a plurality of roofing shingles 10. In some embodiments, the at least one photovoltaic module 100 includes a plurality of photovoltaic modules 100. In some embodiments, the at least one photovoltaic module 100 is electrically active. In some embodiments, the system includes at least one roofing shingle 10 and at least one electrically active photovoltaic module 100. In some embodiments, the system includes at least one roofing shingle 10, at least one electrically active photovoltaic module 100, and at least one nonactive photovoltaic module 100. In some embodiments, the at least one roofing shingle 10 and the at least one photovoltaic module 100 are installed on a roof deck. In some embodiments, the appearance of the at least one roofing shingle 10 aesthetically matches the appearance of the at least one photovoltaic module 100. As used herein, the term “aesthetically matches” means having a similar overall visual appearance, texture, gloss, and/or color, and with respect to an embodiment of the roofing shingle 10, the roofing shingle 10 includes a visual appearance, texture, gloss, and/or color that is similar to those of the photovoltaic module 100. In some embodiments, the color is measured under a CIELAB color space system. In some embodiments, the gloss can be quantified in accordance with the ASTM E430 Standard Test Methods for Measurement of Gloss of High-Gloss Surfaces by Abridged Goniophotometry. In some embodiments, the appearance of each of the roofing shingle 10 and the photovoltaic module 100 are visually perceptible by and subjective to a human.
In some embodiments, the roofing shingle 10 is cuttable. In some embodiments, the roofing shingle 10 is cuttable to a desired size and shape. As used herein, the term “cuttable” means capable of being cut or penetrated with or as if with by an edged instrument, and with respect to certain embodiments of the roofing shingle 10, the roofing shingle 10 is capable of being cut or penetrated by am edged instrument such as a cutting knife, scissors, razor, or other suitable roofing module cutting instruments and tools. In some embodiments, the roofing shingle 10 is configured to be installed on the roof deck 50. In some embodiments, the roofing shingle 10 is configured to be installed on non-solar roof planes of the roof deck 50. In some embodiments, the roofing shingle 10 is configured to be installed either partially or fully around an array of the photovoltaic modules 100. In some embodiments, the roofing shingle 10 is cuttable to a size and shape for positioning around obstacles, such as vents, chimneys, antennas, and other roofing structures. In some embodiments, the roofing shingle 10 cuttable to a size and shape to extend to roofing eaves and ridges.
In some embodiments, a method includes the steps of:
In some embodiments, a method includes the steps of:
This application is a Section 111(a) application relating to and claiming the benefit of commonly-owned, co-pending U.S. Provisional Patent Application Ser. No. 63/313,024, filed Feb. 23, 2022, entitled “ROOFING SHINGLE AND METHOD OF MANUFACTURING SAME,” the contents of each of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1981467 | Radtke | Nov 1934 | A |
3156497 | Lessard | Nov 1964 | A |
3581779 | Gilbert, Jr. | Jun 1971 | A |
3894376 | Shearer | Jul 1975 | A |
3973887 | Breckenfelder | Aug 1976 | A |
4258948 | Hoffmann | Mar 1981 | A |
4349220 | Carroll et al. | Sep 1982 | A |
4499702 | Turner | Feb 1985 | A |
4636577 | Peterpaul | Jan 1987 | A |
4848057 | MacDonald | Jul 1989 | A |
5167579 | Rotter | Dec 1992 | A |
5305569 | Malmquist | Apr 1994 | A |
5437735 | Younan et al. | Aug 1995 | A |
5590495 | Bressler et al. | Jan 1997 | A |
5642596 | Waddington | Jul 1997 | A |
6008450 | Ohtsuka et al. | Dec 1999 | A |
6033270 | Stuart | Mar 2000 | A |
6046399 | Kapner | Apr 2000 | A |
6201180 | Meyer et al. | Mar 2001 | B1 |
6220329 | King et al. | Apr 2001 | B1 |
6308482 | Strait | Oct 2001 | B1 |
6319456 | Gilbert | Nov 2001 | B1 |
6320114 | Kuechler | Nov 2001 | B1 |
6320115 | Kataoka et al. | Nov 2001 | B1 |
6336304 | Mimura et al. | Jan 2002 | B1 |
6338230 | Davey | Jan 2002 | B1 |
6341454 | Koleoglou | Jan 2002 | B1 |
6407329 | Iino et al. | Jun 2002 | B1 |
6576830 | Nagao et al. | Jun 2003 | B2 |
6928781 | Desbois et al. | Aug 2005 | B2 |
6972367 | Federspiel et al. | Dec 2005 | B2 |
7138578 | Komamine | Nov 2006 | B2 |
7155870 | Almy | Jan 2007 | B2 |
7178295 | Dinwoodie | Feb 2007 | B2 |
7487771 | Eiffert et al. | Feb 2009 | B1 |
7587864 | McCaskill et al. | Sep 2009 | B2 |
7678990 | McCaskill et al. | Mar 2010 | B2 |
7678991 | McCaskill et al. | Mar 2010 | B2 |
7726086 | Kalkanoglu | Jun 2010 | B2 |
7748191 | Podirsky | Jul 2010 | B2 |
7819114 | Augenbraun et al. | Oct 2010 | B2 |
7824191 | Podirsky | Nov 2010 | B1 |
7832176 | McCaskill et al. | Nov 2010 | B2 |
8118109 | Hacker | Feb 2012 | B1 |
8168880 | Jacobs et al. | May 2012 | B2 |
8173889 | Kalkanoglu et al. | May 2012 | B2 |
8210570 | Railkar et al. | Jul 2012 | B1 |
8276329 | Lenox | Oct 2012 | B2 |
8312693 | Cappelli | Nov 2012 | B2 |
8319093 | Kalkanoglu et al. | Nov 2012 | B2 |
8333040 | Shiao et al. | Dec 2012 | B2 |
8371076 | Jones et al. | Feb 2013 | B2 |
8375653 | Shiao et al. | Feb 2013 | B2 |
8404967 | Kalkanoglu et al. | Mar 2013 | B2 |
8410349 | Kalkanoglu et al. | Apr 2013 | B2 |
8418415 | Shiao et al. | Apr 2013 | B2 |
8438796 | Shiao et al. | May 2013 | B2 |
8468754 | Railkar et al. | Jun 2013 | B2 |
8468757 | Krause et al. | Jun 2013 | B2 |
8505249 | Geary | Aug 2013 | B2 |
8512866 | Taylor | Aug 2013 | B2 |
8513517 | Kalkanoglu et al. | Aug 2013 | B2 |
8586856 | Kalkanoglu et al. | Nov 2013 | B2 |
8601754 | Jenkins et al. | Dec 2013 | B2 |
8629578 | Kurs et al. | Jan 2014 | B2 |
8646228 | Jenkins | Feb 2014 | B2 |
8656657 | Livsey et al. | Feb 2014 | B2 |
8671630 | Lena et al. | Mar 2014 | B2 |
8677702 | Jenkins | Mar 2014 | B2 |
8695289 | Koch et al. | Apr 2014 | B2 |
8713858 | Xie | May 2014 | B1 |
8713860 | Railkar et al. | May 2014 | B2 |
8733038 | Kalkanoglu et al. | May 2014 | B2 |
8776455 | Azoulay | Jul 2014 | B2 |
8789321 | Ishida | Jul 2014 | B2 |
8793940 | Kalkanoglu et al. | Aug 2014 | B2 |
8793941 | Bosler et al. | Aug 2014 | B2 |
8826607 | Shiao et al. | Sep 2014 | B2 |
8835751 | Kalkanoglu et al. | Sep 2014 | B2 |
8863451 | Jenkins et al. | Oct 2014 | B2 |
8898963 | Amatruda | Dec 2014 | B1 |
8898970 | Jenkins et al. | Dec 2014 | B2 |
8898987 | Amatruda | Dec 2014 | B1 |
8925262 | Railkar et al. | Jan 2015 | B2 |
8925272 | Amatruda | Jan 2015 | B1 |
8943766 | Gombarick et al. | Feb 2015 | B2 |
8946544 | Jabos et al. | Feb 2015 | B2 |
8950128 | Kalkanoglu et al. | Feb 2015 | B2 |
8959848 | Jenkins et al. | Feb 2015 | B2 |
8966838 | Jenkins | Mar 2015 | B2 |
8966850 | Jenkins et al. | Mar 2015 | B2 |
8994224 | Mehta et al. | Mar 2015 | B2 |
9032672 | Livsey et al. | May 2015 | B2 |
9153950 | Yamanaka et al. | Oct 2015 | B2 |
9166087 | Chihlas et al. | Oct 2015 | B2 |
9169646 | Rodrigues et al. | Oct 2015 | B2 |
9170034 | Bosler et al. | Oct 2015 | B2 |
9178465 | Shiao et al. | Nov 2015 | B2 |
9202955 | Livsey et al. | Dec 2015 | B2 |
9212832 | Jenkins | Dec 2015 | B2 |
9217584 | Kalkanoglu et al. | Dec 2015 | B2 |
9270221 | Zhao | Feb 2016 | B2 |
9273885 | Rordigues et al. | Mar 2016 | B2 |
9276141 | Kalkanoglu et al. | Mar 2016 | B2 |
9331224 | Koch et al. | May 2016 | B2 |
9356174 | Duarte et al. | May 2016 | B2 |
9359014 | Yang et al. | Jun 2016 | B1 |
9412890 | Meyers | Aug 2016 | B1 |
9528270 | Jenkins et al. | Dec 2016 | B2 |
9605432 | Robbins | Mar 2017 | B1 |
9711672 | Wang | Jul 2017 | B2 |
9755573 | Livsey et al. | Sep 2017 | B2 |
9786802 | Shiao et al. | Oct 2017 | B2 |
9831818 | West | Nov 2017 | B2 |
9912284 | Svec | Mar 2018 | B2 |
9923515 | Rodrigues et al. | Mar 2018 | B2 |
9938729 | Coon | Apr 2018 | B2 |
9966898 | Flanigan | May 2018 | B1 |
9991412 | Gonzalez et al. | Jun 2018 | B2 |
9998067 | Kalkanoglu et al. | Jun 2018 | B2 |
10027273 | West et al. | Jul 2018 | B2 |
10115850 | Rodrigues et al. | Oct 2018 | B2 |
10128660 | Apte et al. | Nov 2018 | B1 |
10156075 | McDonough | Dec 2018 | B1 |
10187005 | Rodrigues et al. | Jan 2019 | B2 |
10256765 | Rodrigues et al. | Apr 2019 | B2 |
10284136 | Mayfield et al. | May 2019 | B1 |
10454408 | Livsey et al. | Oct 2019 | B2 |
10530292 | Cropper et al. | Jan 2020 | B1 |
10560048 | Fisher et al. | Feb 2020 | B2 |
10563406 | Kalkanoglu et al. | Feb 2020 | B2 |
D879031 | Lance et al. | Mar 2020 | S |
10579028 | Jacob | Mar 2020 | B1 |
10784813 | Kalkanoglu et al. | Sep 2020 | B2 |
D904289 | Lance et al. | Dec 2020 | S |
11012026 | Kalkanoglu et al. | May 2021 | B2 |
11177639 | Nguyen et al. | Nov 2021 | B1 |
11217715 | Sharenko et al. | Jan 2022 | B2 |
11251744 | Bunea et al. | Feb 2022 | B1 |
11258399 | Kalkanoglu et al. | Feb 2022 | B2 |
11283394 | Perkins et al. | Mar 2022 | B2 |
11309828 | Sirski et al. | Apr 2022 | B2 |
11394344 | Perkins et al. | Jul 2022 | B2 |
11424379 | Sharenko et al. | Aug 2022 | B2 |
11431280 | Liu et al. | Aug 2022 | B2 |
11431281 | Perkins et al. | Aug 2022 | B2 |
11444569 | Clemente et al. | Sep 2022 | B2 |
11454027 | Kuiper et al. | Sep 2022 | B2 |
11459757 | Nguyen et al. | Oct 2022 | B2 |
11486144 | Bunea et al. | Nov 2022 | B2 |
11489482 | Peterson et al. | Nov 2022 | B2 |
11496088 | Sirski et al. | Nov 2022 | B2 |
11508861 | Perkins et al. | Nov 2022 | B1 |
11512480 | Achor et al. | Nov 2022 | B1 |
11527665 | Boitnott | Dec 2022 | B2 |
11545927 | Abra et al. | Jan 2023 | B2 |
11545928 | Perkins et al. | Jan 2023 | B2 |
11658470 | Nguyen et al. | May 2023 | B2 |
11661745 | Bunea et al. | May 2023 | B2 |
11689149 | Clemente et al. | Jun 2023 | B2 |
11702840 | Haynes | Jul 2023 | B2 |
11705531 | Sharenko et al. | Jul 2023 | B2 |
11728759 | Nguyen et al. | Aug 2023 | B2 |
11732490 | Achor et al. | Aug 2023 | B2 |
11811361 | Farhangi et al. | Nov 2023 | B1 |
11824486 | Nguyen et al. | Nov 2023 | B2 |
11824487 | Nguyen et al. | Nov 2023 | B2 |
11843067 | Nguyen et al. | Dec 2023 | B2 |
20020053360 | Kinoshita et al. | May 2002 | A1 |
20020129849 | Heckeroth | Sep 2002 | A1 |
20030101662 | Ullman | Jun 2003 | A1 |
20030132265 | Villela et al. | Jul 2003 | A1 |
20030217768 | Guha | Nov 2003 | A1 |
20030230040 | Shirota | Dec 2003 | A1 |
20040000334 | Ressler | Jan 2004 | A1 |
20040182032 | Koschitzky | Sep 2004 | A1 |
20050030187 | Peress et al. | Feb 2005 | A1 |
20050115603 | Yoshida et al. | Jun 2005 | A1 |
20050144870 | Dinwoodie | Jul 2005 | A1 |
20050178428 | Laaly et al. | Aug 2005 | A1 |
20050193673 | Rodrigues et al. | Sep 2005 | A1 |
20060042683 | Gangemi | Mar 2006 | A1 |
20060046084 | Yang et al. | Mar 2006 | A1 |
20070074757 | Mellott et al. | Apr 2007 | A1 |
20070181174 | Ressler | Aug 2007 | A1 |
20070193618 | Bressler et al. | Aug 2007 | A1 |
20070249194 | Liao | Oct 2007 | A1 |
20070295385 | Sheats et al. | Dec 2007 | A1 |
20080006323 | Kalkanoglu et al. | Jan 2008 | A1 |
20080035140 | Placer et al. | Feb 2008 | A1 |
20080315061 | Placer et al. | Feb 2008 | A1 |
20080078440 | Lim et al. | Apr 2008 | A1 |
20080185748 | Kalkanoglu | Aug 2008 | A1 |
20080271774 | Kalkanoglu et al. | Nov 2008 | A1 |
20080302030 | Stancel et al. | Dec 2008 | A1 |
20090000222 | Kalkanoglu et al. | Jan 2009 | A1 |
20090014057 | Croft et al. | Jan 2009 | A1 |
20090014058 | Croft et al. | Jan 2009 | A1 |
20090019795 | Szacsvay et al. | Jan 2009 | A1 |
20090044850 | Kimberley | Feb 2009 | A1 |
20090114261 | Stancel et al. | May 2009 | A1 |
20090133340 | Shiao et al. | May 2009 | A1 |
20090159118 | Kalkanoglu et al. | Jun 2009 | A1 |
20090178350 | Kalkanoglu et al. | Jul 2009 | A1 |
20090229652 | Mapel et al. | Sep 2009 | A1 |
20090275247 | Richter et al. | Nov 2009 | A1 |
20100019580 | Croft et al. | Jan 2010 | A1 |
20100095618 | Edison et al. | Apr 2010 | A1 |
20100101634 | Frank et al. | Apr 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100131108 | Meyer | May 2010 | A1 |
20100139184 | Williams et al. | Jun 2010 | A1 |
20100146878 | Koch et al. | Jun 2010 | A1 |
20100159221 | Kourtakis et al. | Jun 2010 | A1 |
20100170169 | Railkar et al. | Jul 2010 | A1 |
20100186798 | Tormen et al. | Jul 2010 | A1 |
20100242381 | Jenkins | Sep 2010 | A1 |
20100313499 | Gangemi | Dec 2010 | A1 |
20100325976 | DeGenfelder et al. | Dec 2010 | A1 |
20100326488 | Aue et al. | Dec 2010 | A1 |
20100326501 | Zhao et al. | Dec 2010 | A1 |
20110030761 | Kalkanoglu et al. | Feb 2011 | A1 |
20110036386 | Browder | Feb 2011 | A1 |
20110036389 | Hardikar et al. | Feb 2011 | A1 |
20110048507 | Livsey et al. | Mar 2011 | A1 |
20110058337 | Han et al. | Mar 2011 | A1 |
20110061326 | Jenkins | Mar 2011 | A1 |
20110100436 | Cleereman et al. | May 2011 | A1 |
20110104488 | Muessig et al. | May 2011 | A1 |
20110132427 | Kalkanoglu et al. | Jun 2011 | A1 |
20110168238 | Metin et al. | Jul 2011 | A1 |
20110239555 | Cook et al. | Oct 2011 | A1 |
20110302859 | Crasnianski | Dec 2011 | A1 |
20110314753 | Farmer et al. | Dec 2011 | A1 |
20120034799 | Hunt | Feb 2012 | A1 |
20120060434 | Jacobs | Mar 2012 | A1 |
20120060902 | Drake | Mar 2012 | A1 |
20120085392 | Albert et al. | Apr 2012 | A1 |
20120137600 | Jenkins | Jun 2012 | A1 |
20120176077 | Oh et al. | Jul 2012 | A1 |
20120212065 | Cheng et al. | Aug 2012 | A1 |
20120233940 | Perkins et al. | Sep 2012 | A1 |
20120240490 | Gangemi | Sep 2012 | A1 |
20120260977 | Stancel | Oct 2012 | A1 |
20120266942 | Komatsu et al. | Oct 2012 | A1 |
20120279150 | Pislkak et al. | Nov 2012 | A1 |
20120282437 | Clark et al. | Nov 2012 | A1 |
20120291848 | Sherman et al. | Nov 2012 | A1 |
20120310821 | Abramowitz | Dec 2012 | A1 |
20130008499 | Verger et al. | Jan 2013 | A1 |
20130014455 | Grieco | Jan 2013 | A1 |
20130118558 | Sherman | May 2013 | A1 |
20130193769 | Mehta et al. | Aug 2013 | A1 |
20130247988 | Reese et al. | Sep 2013 | A1 |
20130284267 | Plug et al. | Oct 2013 | A1 |
20130306137 | Ko | Nov 2013 | A1 |
20140090697 | Rodrigues et al. | Apr 2014 | A1 |
20140150843 | Pearce et al. | Jun 2014 | A1 |
20140173997 | Jenkins | Jun 2014 | A1 |
20140179220 | Railkar et al. | Jun 2014 | A1 |
20140182222 | Kalkanoglu et al. | Jul 2014 | A1 |
20140208675 | Beerer et al. | Jul 2014 | A1 |
20140254776 | O'Connor et al. | Sep 2014 | A1 |
20140266289 | Della Sera et al. | Sep 2014 | A1 |
20140311556 | Feng et al. | Oct 2014 | A1 |
20140352760 | Haynes et al. | Dec 2014 | A1 |
20140366464 | Rodrigues et al. | Dec 2014 | A1 |
20150089895 | Leitch | Apr 2015 | A1 |
20150162459 | Lu et al. | Jun 2015 | A1 |
20150340516 | Kim et al. | Nov 2015 | A1 |
20150349173 | Morad et al. | Dec 2015 | A1 |
20160105144 | Haynes et al. | Apr 2016 | A1 |
20160142008 | Lopez et al. | May 2016 | A1 |
20160254776 | Rodrigues et al. | Sep 2016 | A1 |
20160276508 | Huang et al. | Sep 2016 | A1 |
20160359451 | Mao et al. | Dec 2016 | A1 |
20170159292 | Chihlas et al. | Jun 2017 | A1 |
20170179319 | Yamashita et al. | Jun 2017 | A1 |
20170179726 | Garrity et al. | Jun 2017 | A1 |
20170237390 | Hudson et al. | Aug 2017 | A1 |
20170331415 | Koppi et al. | Nov 2017 | A1 |
20180094438 | Wu et al. | Apr 2018 | A1 |
20180097472 | Anderson et al. | Apr 2018 | A1 |
20180115275 | Flanigan et al. | Apr 2018 | A1 |
20180254738 | Yang et al. | Sep 2018 | A1 |
20180294765 | Friedrich et al. | Oct 2018 | A1 |
20180351502 | Almy et al. | Dec 2018 | A1 |
20180367089 | Stutterheim et al. | Dec 2018 | A1 |
20190030867 | Sun et al. | Jan 2019 | A1 |
20190081436 | Onodi et al. | Mar 2019 | A1 |
20190097069 | Kim | Mar 2019 | A1 |
20190123679 | Rodrigues et al. | Apr 2019 | A1 |
20190253022 | Hardar et al. | Aug 2019 | A1 |
20190305717 | Allen et al. | Oct 2019 | A1 |
20190393836 | Ackermann | Dec 2019 | A1 |
20200109320 | Jiang | Apr 2020 | A1 |
20200144958 | Rodrigues et al. | May 2020 | A1 |
20200220819 | Vu et al. | Jul 2020 | A1 |
20200224419 | Boss et al. | Jul 2020 | A1 |
20200343397 | Hem-Jensen | Oct 2020 | A1 |
20210083619 | Hegedus | Mar 2021 | A1 |
20210115223 | Bonekamp et al. | Apr 2021 | A1 |
20210159353 | Li et al. | May 2021 | A1 |
20210301536 | Baggs et al. | Sep 2021 | A1 |
20210343886 | Sharenko et al. | Nov 2021 | A1 |
20220149213 | Mensink et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2829440 | May 2019 | CA |
700095 | Jun 2010 | CH |
202797032 | Mar 2013 | CN |
217150978 | Aug 2022 | CN |
1958248 | Nov 1971 | DE |
1039361 | Sep 2000 | EP |
1837162 | Sep 2007 | EP |
1774372 | Jul 2011 | EP |
2446481 | May 2012 | EP |
2784241 | Oct 2014 | EP |
3772175 | Feb 2021 | EP |
10046767 | Feb 1998 | JP |
2001098703 | Apr 2001 | JP |
2002-106151 | Apr 2002 | JP |
2017-027735 | Feb 2017 | JP |
2018053707 | Apr 2018 | JP |
20090084060 | Aug 2009 | KR |
20100132595 | Dec 2010 | KR |
10-1348283 | Jan 2014 | KR |
10-2019-0000367 | Jan 2019 | KR |
10-2253483 | May 2021 | KR |
2026856 | Jun 2022 | NL |
2010151777 | Dec 2010 | WO |
2011049944 | Apr 2011 | WO |
2015133632 | Sep 2015 | WO |
2018000589 | Jan 2018 | WO |
2019201416 | Oct 2019 | WO |
2020-159358 | Aug 2020 | WO |
2021-168126 | Aug 2021 | WO |
2021-247098 | Dec 2021 | WO |
Entry |
---|
Sunflare, Procducts: “Sunflare Develops Prototype For New Residential Solar Shingles”; 2019 <<sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021. |
RGS Energy, 3.5kW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021. |
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021. |
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021. |
Number | Date | Country | |
---|---|---|---|
20230265658 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
63313024 | Feb 2022 | US |