Roofing shingle and method of manufacturing same

Information

  • Patent Grant
  • 12209414
  • Patent Number
    12,209,414
  • Date Filed
    Wednesday, February 22, 2023
    a year ago
  • Date Issued
    Tuesday, January 28, 2025
    3 days ago
Abstract
A system includes a plurality of roofing shingles having a core layer and a cap layer, with first and second ends of the cap layer offset from respective first and second ends of the core layer. The cap layer includes a first surface and a pattern on the first surface. A side lap extends from the second end of the cap layer to the second end of the core layer and an extended portion is located at the first end of the cap layer. The extended portion of a first one of the roofing shingles overlays the side lap of a second one of the roofing shingles. The system further includes a plurality of photovoltaic modules, each of the plurality of photovoltaic modules include at least one solar cell.
Description
FIELD OF THE INVENTION

The present invention relates to roofing shingles and methods of manufacturing same.


BACKGROUND OF THE INVENTION

Photovoltaic systems having solar shingles are commonly installed on roofing of structures.


SUMMARY OF THE INVENTION

In some embodiments, a system includes a plurality of roofing shingles installed on a roof deck, each of the roofing shingles includes a core layer having a first end and a second end opposite the first end, and a cap layer overlaying the core layer, wherein the cap layer includes a first end and a second end opposite the first end of the cap layer, wherein the second end of the cap layer is offset from the second end of the core layer, wherein the first end of the cap layer is offset from the first end of the core layer, wherein the cap layer includes a first surface and a pattern on the first surface, a side lap extending from the second end of the cap layer to the second end of the core layer, an extended portion at the first end of the cap layer, wherein the extended portion of a first one of the roofing shingles overlays the side lap of a second one of the roofing shingles; and a plurality of photovoltaic modules, each of the plurality of photovoltaic modules include at least one solar cell.


In some embodiments, the second end of the cap layer is offset from the second end of the core layer by 1 inch to 10 inches. In some embodiments, each of the core layer and the cap layer is composed of a polymeric material. In some embodiments, the polymeric material is thermoplastic polyolefin (TPO). In some embodiments, the cap layer is welded to the core layer. In some embodiments, the cap layer is adhered to the core layer by an adhesive. In some embodiments, the pattern includes a plurality of indentations. In some embodiments, the pattern includes a depiction of a plurality of solar cells.


In some embodiments, a roofing shingle includes a core layer having a first end and a second end opposite the first end; a cap layer overlaying the core layer; wherein the cap layer includes a first end and a second end opposite the first end of the cap layer, wherein the second end of the cap layer is offset from the second end of the core layer, wherein the first end of the cap layer is offset from the first end of the core layer, wherein the cap layer includes a first surface and a pattern on the first surface, a side lap extending from the second end of the cap layer to the second end of the core layer; and an extended portion at the first end of the cap layer, wherein the extended portion of the roofing shingle is configured to overlay a side lap of another one of the roofing shingles, and wherein the roofing shingle is configured to be installed on a roof deck.


In some embodiments, the second end of the cap layer is offset from the second end of the core layer by 1 inch to 10 inches. In some embodiments, each of the core layer and the cap layer is composed of a polymeric material. In some embodiments, the polymeric material is thermoplastic polyolefin (TPO). In some embodiments, the cap layer is welded to the core layer. In some embodiments, the cap layer is adhered to the core layer by an adhesive. In some embodiments, the pattern includes a plurality of indentations. In some embodiments, the pattern includes a depiction of a plurality of solar cells.


In some embodiments, a method includes the steps of obtaining a plurality of roofing shingles, each of the roofing shingles includes a core layer having a first end and a second end opposite the first end, a cap layer overlaying the core layer, wherein the cap layer includes a first end and a second end opposite the first end of the cap layer, wherein the second end of the cap layer is offset from the second end of the core layer, wherein the first end of the cap layer is offset from the first end of the core layer, wherein the cap layer includes a first surface and a pattern on the first surface, a side lap extending from the second end of the cap layer to the second end of the core layer, and an extended portion at the first end of the cap layer; obtaining a plurality of photovoltaic modules, each of the plurality of photovoltaic modules includes at least one solar cell, installing the plurality of photovoltaic modules on a roof deck; installing the plurality of roofing modules on the roof deck proximate to the plurality of photovoltaic modules, and wherein the extended portion of a first roofing shingle of the plurality of roofing shingles overlays the side lap of a second roofing shingle of the plurality of roofing shingles.


In some embodiments, a method includes the steps of obtaining a core layer of a first material, wherein the core layer includes a first end and a second end opposite the first end; obtaining a cap layer of a second material, wherein the cap layer includes a first end and a second end opposite the first end of the cap layer; positioning the second end of the cap layer offset from the second end of the core layer and positioning the first end of the cap layer offset from the first end of the core layer; overlaying the cap layer over the core layer; and attaching the cap layer to the core layer to form at least one roofing shingle, wherein the at least one roofing shingle includes a side lap extending from the second end of the cap layer to the second end of the core layer, and wherein the at least one roofing shingle includes an extended portion at the first end of the cap layer, wherein the extended portion of a first roofing shingle of the at least one roofing shingle is configured to overlay the side lap of a second roofing shingle of the at least one roofing shingle. In some embodiments, the method further includes the step of creating a pattern on a surface of the cap layer. In some embodiments, the overlaying step includes rolling the core layer by a first infeed roller and rolling the cap layer by a second infeed roller, wherein the first infeed roller is offset from the second infeed roller.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top plan view of some embodiments of a roofing shingle;



FIG. 2 is a side elevational view of some embodiments the roofing shingle shown in FIG. 1;



FIG. 2A is a side elevational view of some embodiments of a roofing shingle;



FIG. 3 is a side elevational view of some embodiments of a roofing shingle;



FIG. 4 is a side elevational view of some embodiments of a plurality of the roofing shingles shown in FIG. 1;



FIG. 5 is a side elevational view of embodiments of a roofing shingle;



FIG. 6 illustrates some embodiments of a method of manufacturing the roofing shingle shown in FIG. 1;



FIGS. 7A and 7B illustrate some embodiments of a pattern roller;



FIG. 8 illustrates some embodiments of the roofing shingle shown in FIG. 1 including a pattern;



FIG. 9 illustrates some embodiments of a method of manufacturing a roofing shingle;



FIG. 10 illustrates some embodiments of the roofing shingle including a pattern;



FIG. 11 illustrates some embodiments of a method of manufacturing a roofing shingle; and



FIG. 12 illustrates some embodiments of a photovoltaic module.





DETAILED DESCRIPTION

Referring to FIGS. 1 and 2, in some embodiments, a roofing shingle 10 includes a core layer 12 and a cap layer 14. In some embodiments, the cap layer 14 overlays the core layer 12. In some embodiments, the core layer 12 includes a first end 16, a second end 18 opposite the first end 16, a first edge 20 extending from the first end 16 to the second end 18, and a second edge 22 opposite the first edge 20 and extending from the first end 16 to the second end 18. In some embodiments, the cap layer 14 includes a first end 24, a second end 26 opposite the first end 24, a first edge 28 extending from the first end 24 to the second end 26, and a second edge 30 opposite the first edge 28 and extending from the first end 24 to the second end 26. In some embodiments, the second end 18 of the core layer 12 is offset from the second end 26 of the cap layer 14. In some embodiments, the second end 18 of the core layer 12 is offset from the second end 26 of the cap layer 14 by a length L1.


In some embodiments, the length L1 is 1 inch to 10 inches. In some embodiments, the length L1 is 1 inch to 9 inches. In some embodiments, the length L1 is 1 inch to 8 inches. In some embodiments, the length L1 is 1 inch to 7 inches. In some embodiments, the length L1 is 1 inch to 6 inches. In some embodiments, the length L1 is 1 inch to 5 inches. In some embodiments, the length L1 is 1 inch to 4 inches. In some embodiments, the length L1 is 1 inch to 3 inches. In some embodiments, the length L1 is 1 inch to 2 inches. In some embodiments, the length L1 is 2 inches to 10 inches. In some embodiments, the length L1 is 2 inches to 9 inches. In some embodiments, the length L1 is 2 inches to 8 inches. In some embodiments, the length L1 is 2 inches to 7 inches. In some embodiments, the length L1 is 2 inches to 6 inches. In some embodiments, the length L1 is 2 inches to 5 inches. In some embodiments, the length L1 is 2 inches to 4 inches. In some embodiments, the length L1 is 2 inches to 3 inches. In some embodiments, the length L1 is 3 inches to 10 inches. In some embodiments, the length L1 is 3 inches to 9 inches. In some embodiments, the length L1 is 3 inches to 8 inches. In some embodiments, the length L1 is 3 inches to 7 inches. In some embodiments, the length L1 is 3 inches to 6 inches. In some embodiments, the length L1 is 3 inches to 5 inches. In some embodiments, the length L1 is 3 inches to 4 inches. In some embodiments, the length L1 is 4 inches to 10 inches. In some embodiments, the length L1 is 4 inches to 9 inches. In some embodiments, the length L1 is 4 inches to 8 inches. In some embodiments, the length L1 is 4 inches to 7 inches. In some embodiments, the length L1 is 4 inches to 6 inches. In some embodiments, the length L1 is 4 inches to 5 inches.


In some embodiments, the length L1 is 5 inches to 10 inches. In some embodiments, the length L1 is 5 inches to 9 inches. In some embodiments, the length L1 is 5 inches to 8 inches. In some embodiments, the length L1 is 5 inches to 7 inches. In some embodiments, the length L1 is 5 inches to 6 inches. In some embodiments, the length L1 is 6 inches to 10 inches. In some embodiments, the length L1 is 6 inches to 9 inches. In some embodiments, the length L1 is 6 inches to 8 inches. In some embodiments, the length L1 is 6 inches to 7 inches. In some embodiments, the length L1 is 7 inches to 10 inches. In some embodiments, the length L1 is 7 inches to 9 inches. In some embodiments, the length L1 is 7 inches to 8 inches. In some embodiments, the length L1 is 8 inches to 10 inches. In some embodiments, the length L1 is 8 inches to 9 inches. In some embodiments, the length L1 is 9 inches to 10 inches.


In some embodiments, the length L1 is 1 inch. In some embodiments, the length L1 is 2 inches. In some embodiments, the length L1 is 3 inches. In some embodiments, the length L1 is 4 inches. In some embodiments, the length L1 is 5 inches. In some embodiments, the length L1 is 6 inches. In some embodiments, the length L1 is 7 inches. In some embodiments, the length L1 is 8 inches. In some embodiments, the length L1 is 9 inches. In some embodiments, the length L1 is 10 inches.


In some embodiments, the offset of the core layer 12 from the cap layer 14 forms a side lap 32. In some embodiments, the first end 16 of the core layer 12 is offset from the first end 24 of the cap layer 14. In some embodiments, the first end 16 of the core layer 12 is offset from the first end 24 of the cap layer 14 by a length L2.


In some embodiments, the length L2 is 1 inch to 10 inches. In some embodiments, the length L2 is 1 inch to 9 inches. In some embodiments, the length L2 is 1 inch to 8 inches. In some embodiments, the length L2 is 1 inch to 7 inches. In some embodiments, the length L2 is 1 inch to 6 inches. In some embodiments, the length L2 is 1 inch to 5 inches. In some embodiments, the length L2 is 1 inch to 4 inches. In some embodiments, the length L2 is 1 inch to 3 inches. In some embodiments, the length L2 is 1 inch to 2 inches. In some embodiments, the length L2 is 2 inches to 10 inches. In some embodiments, the length L2 is 2 inches to 9 inches. In some embodiments, the length L2 is 2 inches to 8 inches. In some embodiments, the length L2 is 2 inches to 7 inches. In some embodiments, the length L2 is 2 inches to 6 inches. In some embodiments, the length L2 is 2 inches to 5 inches. In some embodiments, the length L2 is 2 inches to 4 inches. In some embodiments, the length L2 is 2 inches to 3 inches. In some embodiments, the length L2 is 3 inches to 10 inches. In some embodiments, the length L2 is 3 inches to 9 inches. In some embodiments, the length L2 is 3 inches to 8 inches. In some embodiments, the length L2 is 3 inches to 7 inches. In some embodiments, the length L2 is 3 inches to 6 inches. In some embodiments, the length L2 is 3 inches to 5 inches. In some embodiments, the length L2 is 3 inches to 4 inches. In some embodiments, the length L2 is 4 inches to 10 inches. In some embodiments, the length L2 is 4 inches to 9 inches. In some embodiments, the length L2 is 4 inches to 8 inches. In some embodiments, the length L2 is 4 inches to 7 inches. In some embodiments, the length L2 is 4 inches to 6 inches. In some embodiments, the length L2 is 4 inches to 5 inches.


In some embodiments, the length L2 is 5 inches to 10 inches. In some embodiments, the length L2 is 5 inches to 9 inches. In some embodiments, the length L2 is 5 inches to 8 inches. In some embodiments, the length L2 is 5 inches to 7 inches. In some embodiments, the length L2 is 5 inches to 6 inches. In some embodiments, the length L2 is 6 inches to 10 inches. In some embodiments, the length L2 is 6 inches to 9 inches. In some embodiments, the length L2 is 6 inches to 8 inches. In some embodiments, the length L2 is 6 inches to 7 inches. In some embodiments, the length L2 is 7 inches to 10 inches. In some embodiments, the length L2 is 7 inches to 9 inches. In some embodiments, the length L2 is 7 inches to 8 inches. In some embodiments, the length L2 is 8 inches to 10 inches. In some embodiments, the length L2 is 8 inches to 9 inches. In some embodiments, the length L2 is 9 inches to 10 inches.


In some embodiments, the length L2 is 1 inch. In some embodiments, the length L2 is 2 inches. In some embodiments, the length L2 is 3 inches. In some embodiments, the length L2 is 4 inches. In some embodiments, the length L2 is 5 inches. In some embodiments, the length L2 is 6 inches. In some embodiments, the length L2 is 7 inches. In some embodiments, the length L2 is 8 inches. In some embodiments, the length L2 is 9 inches. In some embodiments, the length L2 is 10 inches.


In some embodiments, the length L1 is equal to the length L2. In some embodiments, the length L1 is different from the length L2. In some embodiments, the offset of the core layer 12 from the cap layer 14 forms an extended portion 35.


In some embodiments, the core layer 12 has a length L3. In some embodiments, the length L3 is 30 inches to 60 inches. In some embodiments, the length L3 is 30 inches to 50 inches. In some embodiments, the length L3 is 30 inches to 40 inches. In some embodiments, the length L3 is 40 inches to 60 inches. In some embodiments, the length L3 is 40 inches to 50 inches. In some embodiments, the length L3 is 50 inches to 60 inches. In some embodiments, the length L3 is 30 inches. In some embodiments, the length L3 is 40 inches. In some embodiments, the length L3 is 50 inches. In some embodiments, the length L3 is 60 inches.


In some embodiments, the cap layer 14 has a length L4. In some embodiments, the length L4 is 30 inches to 60 inches. In some embodiments, the length L4 is 30 inches to 50 inches. In some embodiments, the length L4 is 30 inches to 40 inches. In some embodiments, the length L4 is 40 inches to 60 inches. In some embodiments, the length L4 is 40 inches to 50 inches. In some embodiments, the length L4 is 50 inches to 60 inches. In some embodiments, the length L4 is 30 inches. In some embodiments, the length L4 is 40 inches. In some embodiments, the length L4 is 50 inches. In some embodiments, the length L4 is 60 inches. In some embodiments, the roofing shingle 10 has a total length L5. In some embodiments, the length L5 is 32 inches to 66 inches.


In some embodiments, the roofing shingle 10 includes a head lap portion 34 extending from the first end 24 to the second end 26 of the cap layer 14, and from the first edge 28 to a location 36 between the first edge 28 to second edge 30 of the cap layer 14. In some embodiments, the roofing shingle 10 includes a reveal portion 38 extending from the first end 24 to the second end 26 of the cap layer 14, and from the second edge 30 to the location 36.


In some embodiments, the head lap portion 34 has a width W1. In some embodiments, the width W1 is 1 inch to 16 inches. In some embodiments, the width W1 is 1 inch to 15 inches. In some embodiments, the width W1 is 1 inch to 10 inches. In some embodiments, the width W1 is 1 inch to 5 inches. In some embodiments, the width W1 is 5 inches to 16 inches. In some embodiments, the width W1 is 5 inches to 15 inches. In some embodiments, the width W1 is 5 inches to 10 inches. In some embodiments, the width W1 is 10 inches to 16 inches. In some embodiments, the width W1 is 10 inches to 15 inches. In some embodiments, the width W1 is 15 inches to 16 inches. In some embodiments, the width W1 is 1 inch. In some embodiments, the width W1 is 5 inches. In some embodiments, the width W1 is 10 inches. In some embodiments, the width W1 is 15 inches. In some embodiments, the width W1 is 16 inches.


In some embodiments, the reveal portion 38 has a width W2. In some embodiments, the width W2 is 5 inches to 12 inches. In some embodiments, the width W2 is 5 inches to 10 inches. In some embodiments, the width W2 is 10 inches to 12 inches. In some embodiments, the width W2 is 5 inches. In some embodiments, the width W2 is 10 inches. In some embodiments, the width W2 is 12 inches.


In some embodiments, the core layer 12 is composed of a polymeric material. In some embodiments, the core layer 12 is composed of a thermoplastic polymer. In some embodiments, the core layer 12 is composed of polyethylene terephthalate (“PET”). In another embodiment, the core layer 12 is composed of ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the core layer 12 is composed of an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the core layer 12 is composed of thermoplastic polyolefin (TPO). In some embodiments, the core layer 12 is composed of a single ply TPO roofing membrane. In other embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In another embodiment, the core layer 12 includes polyvinyl chloride. In some embodiments, the core layer 12 is composed of ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the core layer 12 is composed of a natural rubber. In some embodiments, the core layer 12 is composed of high density polyethylene (HDPE). In some embodiments, the core layer 12 is composed of polypropylene (PP). In some embodiments, the core layer 12 is composed of a polyolefin elastomer (POE). In some embodiments, the core layer 12 is composed of polyvinyl chloride (PVC). In some embodiments, the core layer 12 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof.


In some embodiments, the core layer 12 includes a composite material. In some embodiments, the core layer 12 is composed of a composite material that incorporates fiberglass into a polymer matrix of a PP, asphalt or TPO. In some embodiments, the composite materials may have a solar reflectance that is at least 20% greater than conventional composite materials. In some embodiments, the composite materials may be used as a roof attachment and a water shedding layer. In some embodiments, the composite materials, when used as roofing materials for photovoltaic modules, may increase power for such photovoltaic modules by 1% to 2%. In some embodiments, the composite materials may have a relative temperature index (RTI) of greater than 90° C. In some embodiments, the composite material may be a black thermoplastic polyolefin membrane.


As used herein, the term “building material” may include, without limitation, at least one of a roofing material, a siding, a flooring, or any combination thereof. As used herein, the term “roofing material” may include any material of a roof and may include, for example and without limitation, at least one of shingles (e.g., such as photovoltaic modules), roofing membranes (e.g., such as waterproofing membranes), underlayments, tiles, any component thereof, or any combination thereof In some embodiments, the roofing material may comprise, consist of, or consist essentially of a component of a photovoltaic module. For example, in some embodiments, the roofing material may comprise, consist of, or consist essentially of a backsheet or a portion of a backsheet (e.g., a bottom flap, a head lap, etc.). Further examples of roofing materials include, without limitation, at least one of rolled roofing, flexible rolled roofing, or any combination thereof.


In some embodiments, the composite material is a roofing composite material. In some embodiments, the roofing composite material may comprise, consist of, or consist essentially of one or more layers. For example, in some embodiments, the roofing composite material may comprise, consist of, or consist essentially of at least one of a substrate, a cap, a core, or any combination thereof In some embodiments, the substrate may have a first surface and a second surface opposite the first surface. In some embodiments, the cap may be on the first surface of the substrate. In some embodiments, the cap may be in contact with the first surface of the substrate. In some embodiments, the core may be on the second surface of the substrate. In some embodiments, the core may be in contact with the second surface of the substrate. In some embodiments, one or more layers may be located between the cap and the substrate. In some embodiments, one or more layers may be located between the core and the substrate.


In some embodiments, the core layer 12 has a thickness of 0.1 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 3 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 2 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm to 1 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 3 mm. In some embodiments, the core layer 12 has a thickness of 1 mm to 2 mm. In some embodiments, the core layer 12 has a thickness of 2 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 2 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 2 mm to 3 mm. In some embodiments, the core layer 12 has a thickness of 3 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 3 mm to 4 mm. In some embodiments, the core layer 12 has a thickness of 4 mm to 5 mm. In some embodiments, the core layer 12 has a thickness of 0.1 mm. In some embodiments, the core layer 12 has a thickness of 1 mm. In some embodiments, the core layer 12 has a thickness of 2 mm. In some embodiments, the core layer 12 has a thickness of 3 mm. In some embodiments, the core layer 12 has a thickness of 4 mm. In some embodiments, the core layer 12 has a thickness of 5 mm.


In some embodiments, the cap layer 14 includes a polymeric material. In some embodiments, the cap layer 14 includes polyethylene terephthalate (“PET”). In another embodiment, the cap layer 14 includes ethylene tetrafluoroethylene (“ETFE”). In some embodiments, the cap layer 14 includes an acrylic such as polymethyl methacrylate (“PMMA”). In some embodiments, the cap layer 14 includes thermoplastic polyolefin (TPO). In some embodiments, the cap layer 14 includes a single ply TPO roofing membrane. In other embodiments, non-limiting examples of TPO membranes are disclosed in U.S. Pat. No. 9,359,014 to Yang et al., which is incorporated by reference herein in its entirety. In another embodiment, the cap layer 14 includes polyvinyl chloride. In some embodiments, the cap layer 14 includes ethylene propylene diene monomer (EPDM) rubber. In some embodiments, the cap layer 14 is composed of a natural rubber. In some embodiments, the cap layer 14 is composed of high density polyethylene (HDPE). In some embodiments, the cap layer 14 is composed of polypropylene (PP). In some embodiments, the cap layer 14 is composed of a polyolefin elastomer (POE). In some embodiments, the cap layer 14 is composed of polyvinyl chloride (PVC). In some embodiments, the cap layer 14 includes a flame retardant additive. In some embodiments, the flame retardant additive may be clays, nanoclays, silicas, carbon black, metal hydroxides such as aluminum hydroxide, metal foils, graphite, and combinations thereof. In some embodiments, the cap layer 14 includes a composite material. In some embodiments, the cap layer 14 is composed of a composite material that incorporates fiberglass into a polymer matrix of a PP, asphalt or TPO. In some embodiments, the cap layer 14 is composed of a composite material as described above with respect to the core layer 12.


In some embodiments, the core layer 12 includes magnesium oxide (MgO). In some embodiments, the core layer 12 includes 35% to 50% by weight of MgO. In some embodiments, the core layer 12 includes 35% to 45% by weight of MgO. In some embodiments, the core layer 12 includes 35% to 40% by weight of MgO. In some embodiments, the core layer 12 includes 40% to 50% by weight of MgO. In some embodiments, the core layer 12 includes 40% to 45% by weight of MgO. In some embodiments, the core layer 12 includes 45% to 50% by weight of MgO. In some embodiments, the core layer 12 includes 35% by weight of MgO. In some embodiments, the core layer 12 includes 40% by weight of MgO. In some embodiments, the core layer 12 includes 45% by weight of MgO. In some embodiments, the core layer 12 includes 50% by weight of MgO.


In some embodiments, the core layer 12 includes ketone ethylene ester (KEE). In some embodiments, the core layer 12 includes a PVC-KEE hybrid membrane. In some embodiments, the roofing shingle 10 is adapted to be a component of a photovoltaic system that includes a fire resistance that conforms to standards under UL 790/ASTM E 108 test standards. In some embodiments, the roofing shingle 10 includes a Class A rating when tested in accordance with UL 790/ASTM E 108.


In some embodiments, the core layer 12 and the cap layer 14 are welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are ultrasonically welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are heat welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are thermally bonded to one another.


In some embodiments, the core layer 12 and the cap layer 14 are adhered to one another by an adhesive layer 15 (see FIG. 2A). In some embodiments, the adhesive layer 15 includes an adhesive. In some embodiments, the adhesive layer 15 may include butyl, polyvinyl butyrate, acrylic, silicone, or polycarbonate. In some embodiments, the first adhesive layer 15 may include pressure sensitive adhesives.


In some embodiments, the core layer 12 and the cap layer 14 are laminated. In some embodiments, the core layer 12 and the cap layer 14 are co-extruded. In some embodiments, the core layer 12 and the cap layer 14 are mechanically attached to one another. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by at least one fastener. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by a plurality of fasteners. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by deforming one of the core layer 12 and the cap layer 14 into the other one of the core layer 12 and the cap layer 14. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by deforming a portion of one of the core layer 12 and the cap layer 14 into the other one of the core layer 12 and the cap layer 14. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by forming at least one hole in one or both of the core layer 12 and the cap layer 14 and dispensing molten material into the at least one hole to connect the core layer 12 and the cap layer 14. In some embodiments, non-limiting examples of fasteners, fastening means and methods for fastening, connecting and attaching the core layer 12 to the cap layer 14 are disclosed in U.S. Pat. No. 7,833,371 to Binkley et al, U.S. Pat. No. 8,006,457 to Binkley et al, U.S. Pat. No. 8,127,514 to Binkley et al, and U.S. Pat. No. 8,316,608 to Binkley et al, each of which is incorporated by reference herein in its entirety.


In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 3 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 2 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm to 1 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 3 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm to 2 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm to 3 mm. In some embodiments, the cap layer 14 has a thickness of 3 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 3 mm to 4 mm. In some embodiments, the cap layer 14 has a thickness of 4 mm to 5 mm. In some embodiments, the cap layer 14 has a thickness of 0.1 mm. In some embodiments, the cap layer 14 has a thickness of 1 mm. In some embodiments, the cap layer 14 has a thickness of 2 mm. In some embodiments, the cap layer 14 has a thickness of 3 mm. In some embodiments, the cap layer 14 has a thickness of 4 mm. In some embodiments, the cap layer 14 has a thickness of 5 mm.


In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 2 mm. In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm to 1 mm.


In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm to 2 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm to 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm to 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm to 5 mm.


In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm to 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm to 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm to 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 8 mm to 10 mm. In some embodiments, the roofing shingle 10 has a thickness of 8 mm to 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 9 mm to 10 mm.


In some embodiments, the roofing shingle 10 has a thickness of 0.2 mm. In some embodiments, the roofing shingle 10 has a thickness of 1 mm. In some embodiments, the roofing shingle 10 has a thickness of 2 mm. In some embodiments, the roofing shingle 10 has a thickness of 3 mm. In some embodiments, the roofing shingle 10 has a thickness of 4 mm. In some embodiments, the roofing shingle 10 has a thickness of 5 mm. In some embodiments, the roofing shingle 10 has a thickness of 6 mm. In some embodiments, the roofing shingle 10 has a thickness of 7 mm. In some embodiments, the roofing shingle 10 has a thickness of 8 mm. In some embodiments, the roofing shingle 10 has a thickness of 9 mm. In some embodiments, the roofing shingle 10 has a thickness of 10 mm.


In some embodiments, the roofing shingle 10 includes a structure, composition, components, and/or function similar to those of one or more embodiments of the photovoltaic modules disclosed in U.S. Patent Application Publication No. 2022/0393637, published Dec. 8, 2022, entitled “Roofing Module System,” owned by GAF Energy LLC, the contents of which are incorporated by reference herein in its entirety.


Referring to FIG. 3, in some embodiments, the roofing shingle 10 includes a first core layer 12a and a second core layer 12b. In some embodiments, the first core layer 12a is juxtaposed with the cap layer 14. In some embodiments, the second core layer 12b is juxtaposed with the first core layer 12a. In some embodiments, the first core layer 12a and the second core layer 12b are welded to one another. In some embodiments, the first core layer 12a and the second core layer 12b are ultrasonically welded to one another. In some embodiments, the first core layer 12a and the second core layer 12b are heat welded to one another. In some embodiments, the first core layer 12a and the second core layer 12b are thermally bonded to one another. In some embodiments, the first core layer 12a and the second core layer 12b are adhered to one another by an adhesive. In some embodiments, the first core layer 12a and the second core layer 12b are laminated. In some embodiments, the first core layer 12a and the second core layer 12b are co-extruded. In some embodiments, the first core layer 12a and the second core layer 12b are mechanically attached to one another. In some embodiments, the first core layer 12a and the second core layer 12b are attached to one another by at least one fastener. In some embodiments, the first core layer 12a and the second core layer 12b are attached to one another by a plurality of fasteners. In some embodiments, the first core layer 12a and the second core layer 12b are attached to one another by deforming one of the first core layer 12a and the second core layer 12b into the other one of the first core layer 12a and the second core layer 12b. In some embodiments, the first core layer 12a and the second core layer 12b are attached to one another by deforming a portion of one of the first core layer 12a and the second core layer 12b into the other one of the first core layer 12a and the second core layer 12b. In some embodiments, the first core layer 12a and the second core layer 12b are attached to one another by forming at least one hole in one or both of the first core layer 12a and the second core layer 12b and dispensing molten material into the at least one hole to connect the first core layer 12a and the second core layer 12b. In some embodiments, non-limiting examples of fasteners, fastening means and methods for fastening, connecting and attaching the first core layer 12a to the second core layer 12b are disclosed in U.S. Pat. No. 7,833,371 to Binkley et al, U.S. Pat. No. 8,006,457 to Binkley et al, U.S. Pat. No. 8,127,514 to Binkley et al, and U.S. Pat. No. 8,316,608 to Binkley et al, each of which is incorporated by reference herein in its entirety.


Referring to FIG. 4, in some embodiments, a plurality of the roofing shingles 10 is installed on a roof deck 50. In some embodiments, the extended portion 35 of a first one 10a of the roofing shingles 10 overlays the side lap 32 of a second one 10b of the roofing shingles 10. In some embodiments, the first end 16 of the core layer 12 of the first roofing shingle 10a is juxtaposed with the second end 18 of the core layer 12 of the second roofing shingle 10b. In some embodiments, the first end 24 of the cap layer 14 of the first roofing shingle 10a is juxtaposed with the second end 26 of the cap layer 14 of the second roofing shingle 10b. In some embodiments, a seam 43 is located between the first end 24 of the cap layer 14 of the first roofing shingle 10a and the second end 26 of the cap layer 14 of the second roofing shingle 10b. In some embodiments, the seam 43 is sealed. In some embodiments, the seam 43 is sealed with a sealant. In some embodiments, the seam 43 is sealed with an adhesive sealant. In some embodiments, the seam 43 is sealed with tape. In some embodiments, the tape is butyl tape.


Referring to FIG. 5, in some embodiments, an offset of the core layer 12 from the cap layer 14 forms the side lap 32 and a side lap 33. In some embodiments, the first end 16 of the core layer 12 is offset from the first end 24 of the cap layer 14. In some embodiments, the first end 16 of the core layer 12 extends outwardly relative to the first end 24 of the cap layer 14. In some embodiments, the second end 18 of the core layer 12 is offset from the second end 26 of the cap layer 14. In some embodiments, the second end 18 of the core layer 12 extends outwardly relative to the second end 26 of the cap layer 14. In some embodiments, the first end 16 of the core layer 12 is offset from the first end 24 of the cap layer 14 by a length L6. In some embodiments, the second end 18 of the core layer 12 is offset from the second end 26 of the cap layer 14 by a length L7. In some embodiments, the length L6 is 1 inch to 10 inches. In some embodiments, the length L7 is 1 inch to 10 inches. In some embodiments, the length L6 and the length L7 may each be in the same ranges as described above for the length L2.



FIG. 6 illustrates some embodiments of manufacturing the roofing shingle 10. In some embodiments, the roofing shingle 10 is processed by a roll-to-roll (R2R) process. In some embodiments, the core layer 12 is driven by a first roller 52 and the cap layer 14 is driven by a second roller 54. In some embodiments, a longitudinal axis of the first roller 52 is parallel with a longitudinal axis of the second roller 54. In some embodiments, a longitudinal axis of the first roller 52 is substantially parallel with a longitudinal axis of the second roller 54. In some embodiments, the first roller 52 is offset from the second roller 54. In some embodiments, the first roller 52 is offset from the second roller 54 by the length L1. In some embodiments, the core layer 12 and the cap layer 14 are simultaneously and continuously driven in a machine direction by the respective first and second rolls 52, 54. In some embodiments, the cap layer 14 is attached to the core layer 14 in an area A. In some embodiments, the core layer 12 and the cap layer 14 are welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are ultrasonically welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are heat welded to one another. In some embodiments, the core layer 12 and the cap layer 14 are thermally bonded to one another. In some embodiments, the core layer 12 and the cap layer 14 are adhered to one another by an adhesive. In some embodiments, the core layer 12 and the cap layer 14 are laminated. In some embodiments, the core layer 12 and the cap layer 14 are mechanically attached to one another. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by at least one fastener. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by a plurality of fasteners. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by deforming one of the core layer 12 and the cap layer 14 into the other one of the core layer 12 and the cap layer 14. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by deforming a portion of one of the core layer 12 and the cap layer 14 into the other one of the core layer 12 and the cap layer 14. In some embodiments, the core layer 12 and the cap layer 14 are attached to one another by forming at least one hole in one or both of the core layer 12 and the cap layer 14 and dispensing molten material into the at least one hole to connect the core layer 12 and the cap layer 14. In some embodiments, non-limiting examples of fasteners, fastening means and methods for fastening, connecting and attaching the core layer 12 and the cap layer 14 are disclosed in U.S. Pat. No. 7,833,371 to Binkley et al, U.S. Pat. No. 8,006,457 to Binkley et al, U.S. Pat. No. 8,127,514 to Binkley et al, and U.S. Pat. No. 8,316,608 to Binkley et al, each of which is incorporated by reference herein in its entirety.


Referring to FIGS. 7A, 7B and 8, in some embodiments, a pattern 40 is formed on a first surface 42 of the cap layer 14. In some embodiments, the pattern 40 is formed on the first surface 42 of reveal portion 38 of the cap layer 14. In some embodiments, when the roofing shingle 10 is installed on the roof deck 50 of a structure, the pattern 40 is viewable from the vantage point of an individual located at a ground level of the structure.


In some embodiments, the first surface 42 of the roofing shingle 10 is textured. In some embodiments, the first surface 42 of the roofing shingle 10 is textured to impart an appearance of a traditional asphalt roofing shingle. In some embodiments, the first surface 42 of the roofing shingle 10 is textured to impart an appearance of and aesthetically match a photovoltaic module 100 (see FIG. 12). In some embodiments, the photovoltaic module 100 includes at least one solar cell 102. In some embodiments, the photovoltaic module 100 includes a plurality of the solar cells 102. In some embodiments, the photovoltaic module 100 includes a structure, composition, components, and/or function similar to those of one or more embodiments of the photovoltaic modules disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled “Building Integrated Photovoltaic System,” owned by GAF Energy LLC, the contents of which are incorporated by reference herein in its entirety.


In some embodiments, the first surface 42 is an embossed surface. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of indentations. In some embodiment, each of the plurality of indentations has a circular shape. In some embodiment, each of the plurality of indentations has a rectangular shape. In some embodiments, each of the plurality of indentations has a square shape. In some embodiments, each of the plurality of indentations has a triangular shape. In some embodiments, each of the plurality of indentations has an elliptical shape. In some embodiments, each of the plurality of indentations has an oval shape. In some embodiments, each of the plurality of indentations has a rhombus shape. In some embodiments, each of the plurality of indentations has a hexagonal shape. In some embodiments, each of the plurality of indentations includes a pentagonal shape. In some embodiments, each of the plurality of indentations has a polygonal shape. In some embodiments, each of the plurality of indentations has a non-polygonal shape. In some embodiments, each of the plurality of indentations has a geometric shape. In some embodiments, each of the plurality of indentations has a non-geometric shape. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of dimples. In some embodiments, the indentations are created by embossing a portion of the first surface 42. In some embodiments, the texture includes a surface roughness (Ra). In some embodiments, the surface roughness (Ra) is 1 micron to 200 microns. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of lines. In some embodiments, the pattern 40 on the first surface 42 includes a plurality of grooves. In some embodiments, the pattern 40 on the first surface 42 includes cross-hatches.


In some embodiments, a pattern roller 44 forms the pattern 40 on the first surface 42 of the cap layer 14. In some embodiments, the pattern roller 44 includes a circumferential face 46. In some embodiments, the face 46 includes at least one pattern. In some embodiments, the at least one pattern includes a plurality of patterns. In some embodiments, the plurality of patterns are strips 45 along a length of the roller 44 in a longitudinal direction. In some embodiments, the plurality of patterns includes at least two patterns. In some embodiments, the plurality of patterns includes at least three patterns. In some embodiments, the plurality of patterns includes at least four patterns. In some embodiments, the plurality of patterns includes at least five patterns. In some embodiments, the plurality of patterns includes at least six patterns. In some embodiments, each of the plurality of patterns is identical to one another. In some embodiments, each of the plurality of patterns is different from one another. In some embodiments, at least one of the plurality of patterns is different from at least another one of the patterns. In some embodiments, at least one of the plurality of patterns is similar to at least another one of the patterns. In some embodiments, the pattern roller 44 has a circumference of 68.5 inches and a diameter of 21.8 inches. In some embodiments, the pattern roller 44 includes four patterns. In some embodiments, each of the patterns extends for 17-⅛ inches along the circumference of the pattern roller 44. In some embodiments, the pattern roller 44 has a greater or lower circumference than 68.5 inches and a corresponding lower or greater diameter.


In some embodiments, the pattern 40 is formed simultaneously with the processing of the core layer 12 and the cap layer 14 of the roofing shingle 10. In some embodiments, the pattern 40 processed during a roll-to-roll (R2R) process of the core layer 12 and the cap layer 14.


In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14. In some embodiments, a pattern or depiction of solar cells is printed on the first surface 42 of the cap layer 14. In some embodiments, each of the depicted solar cells has a width of 5 inches to 8 inches. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by ink jet printing. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by laser printing. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by lithography. In some embodiments, the pattern is printed on the first surface 42 of the cap layer 14 by flexography. In another embodiment, the cap layer 14 is painted. In another embodiment, the cap layer 14 is a colored layer. In another embodiment, the cap layer 14 includes a black color. In some embodiments, the color of the cap layer 14 includes a mixture of colors. In some embodiments, the cap layer 14 includes an infrared reflective pigment. In some embodiments, the infrared reflective pigment includes graphene. In some embodiments, the roofing shingle 10 meets standards of California Building Energy Efficiency Standards of Residential and Nonresidential Buildings, Title 24, Part 6.


In some embodiments, the cap layer 14 includes magnesium oxide (MgO). In some embodiments, the cap layer 14 includes 35% to 50% by weight of MgO. In some embodiments, the cap layer 14 includes 35% to 45% by weight of MgO. In some embodiments, the cap layer 14 includes 35% to 40% by weight of MgO. In some embodiments, the cap layer 14 includes 40% to 50% by weight of MgO. In some embodiments, the cap layer 14 includes 40% to 45% by weight of MgO. In some embodiments, the cap layer 14 includes 45% to 50% by weight of MgO. In some embodiments, the cap layer 14 includes 35% by weight of MgO. In some embodiments, the cap layer 14 includes 40% by weight of MgO. In some embodiments, the cap layer 14 includes 45% by weight of MgO. In some embodiments, the cap layer 14 includes 50% by weight of MgO.


In some embodiments, the cap layer 14 includes ketone ethylene ester (KEE) In some embodiments, the cap layer 14 includes a PVC-KEE hybrid membrane. In some embodiments, the roofing shingle 10 is adapted to be a component of a photovoltaic system that includes a fire resistance that conforms to standards under UL 790/ASTM E 108 test standards. In some embodiments, the roofing shingle 10 includes a Class A rating when tested in accordance with UL 790/ASTM E 108.



FIG. 9 illustrates some embodiments of manufacturing the roofing shingle 10. In some embodiments, the core layer 12 is driven by a bottom infeed roller 152 and the cap layer 14 is driven by a top infeed roller 154. In some embodiments, a longitudinal axis of the bottom infeed roller 152 is parallel with a longitudinal axis of the top infeed roller 154. In some embodiments, a longitudinal axis of the bottom infeed roller 152 is substantially parallel with a longitudinal axis of the top infeed roller 154. In some embodiments, the bottom infeed roller 152 is offset from the top infeed roller 154. In some embodiments, the top infeed roller 154 is offset from the bottom infeed roller 152 by the length L1 in a direction along the longitudinal axis of the bottom infeed roller 152. In some embodiments, the core layer 12 and the cap layer 14 are simultaneously and continuously driven in a machine direction by the respective one of the bottom infeed roller 152 and the top infeed roller 154. In some embodiments, a pattern roller 144 is located proximate to the bottom infeed roller 152. In some embodiments, the pattern 40 is formed simultaneously with the processing of the core layer 12 and the cap layer 14 of the roofing shingle 10.


Referring to FIG. 10, in some embodiments, the pattern 40 includes at least one row R of a depiction of a plurality of solar cells 48. In some embodiments, the at least one row R includes a plurality of the rows R. In some embodiments, each of the rows R extends from the first end 24 to the second end 26 of the cap layer 14. In some embodiments, the depiction of the solar cells 48 includes at least one first cell A and at least one second cell B. In some embodiments, the at least one first cell A includes a plurality of the first cells A. In some embodiments, the at least one second cell B includes a plurality of the second cells B. In some embodiments, each of the cells A has a first color. In some embodiments, each of the cells B has a second color. In some embodiments, the second color is darker than the first color. In some embodiments, the second color is lighter than the first color. In some embodiments, each of the rows R has a repeating pattern of a pair of the first cells A and a pair of the second cells B (e.g., AABBAABB . . . ). In some embodiments, each of the rows R has a repeating pattern of a first cell A and a second cell B (e.g., ABABAB . . . ). In some embodiments, each of the rows R has a repeating pattern of three of the first cell A and three of the second cell B (e.g., AAABBBAAABBB . . . ). In some embodiments, each of the rows R has a repeating pattern of more than three of the first cell A and more than three of the second cell B (e.g., AAAABBBBAAAABBBB . . . ; AAAAABBBBBAAAAABBBBB . . . etc.). In some embodiments, each of the rows R are spaced apart from one another. In some embodiments, at least one smooth portion 49 is located between a corresponding pair of the rows R. In some embodiments, the at least one smooth portion 49 includes a plurality of the smooth portions 49. In some embodiments, the at least one smooth portion 49 extends from the first end 24 to the second end 26 of the cap layer 14.



FIG. 11 illustrates some embodiments of manufacturing the roofing shingle 10. In some embodiments, the core layer 12 is driven by a first infeed roller 252 and the cap layer 14 is driven by a second infeed roller 254. In some embodiments, a longitudinal axis of the first infeed roller 252 is parallel with a longitudinal axis of the second infeed roller 254. In some embodiments, a longitudinal axis of the first infeed roller 252 is substantially parallel with a longitudinal axis of the second infeed roller 254. In some embodiments, the first infeed roller 252 is offset from the second infeed roller 254. In some embodiments, the first infeed roller 252 is offset from the second infeed roller 254 by the length L1 in a direction along the longitudinal axis of the second infeed roller 254. In some embodiments, the core layer 12 and the cap layer 14 are simultaneously and continuously driven in a machine direction by the respective one of the first infeed roller 252 and the second infeed roller 254. In some embodiments, the pattern 40 is formed simultaneously with the processing of the core layer 12 and the cap layer 14 of the roofing shingle 10. In some embodiments, the pattern 40 is formed by a press die 255. In some embodiments, the press die 255 is located downstream from the rollers 252, 254. In some embodiments, the pattern 40 is stamped within the cap layer 14 by the press die 255. In some embodiments, the pattern 40 is stamped on the cap layer 14 by the press die 255.


In some embodiments, a roofing system includes at least one of the roofing shingle 10 and at least one photovoltaic module 100. In some embodiments, the at least one of the roofing shingle 10 includes a plurality of roofing shingles 10. In some embodiments, the at least one photovoltaic module 100 includes a plurality of photovoltaic modules 100. In some embodiments, the at least one photovoltaic module 100 is electrically active. In some embodiments, the system includes at least one roofing shingle 10 and at least one electrically active photovoltaic module 100. In some embodiments, the system includes at least one roofing shingle 10, at least one electrically active photovoltaic module 100, and at least one nonactive photovoltaic module 100. In some embodiments, the at least one roofing shingle 10 and the at least one photovoltaic module 100 are installed on a roof deck. In some embodiments, the appearance of the at least one roofing shingle 10 aesthetically matches the appearance of the at least one photovoltaic module 100. As used herein, the term “aesthetically matches” means having a similar overall visual appearance, texture, gloss, and/or color, and with respect to an embodiment of the roofing shingle 10, the roofing shingle 10 includes a visual appearance, texture, gloss, and/or color that is similar to those of the photovoltaic module 100. In some embodiments, the color is measured under a CIELAB color space system. In some embodiments, the gloss can be quantified in accordance with the ASTM E430 Standard Test Methods for Measurement of Gloss of High-Gloss Surfaces by Abridged Goniophotometry. In some embodiments, the appearance of each of the roofing shingle 10 and the photovoltaic module 100 are visually perceptible by and subjective to a human.


In some embodiments, the roofing shingle 10 is cuttable. In some embodiments, the roofing shingle 10 is cuttable to a desired size and shape. As used herein, the term “cuttable” means capable of being cut or penetrated with or as if with by an edged instrument, and with respect to certain embodiments of the roofing shingle 10, the roofing shingle 10 is capable of being cut or penetrated by am edged instrument such as a cutting knife, scissors, razor, or other suitable roofing module cutting instruments and tools. In some embodiments, the roofing shingle 10 is configured to be installed on the roof deck 50. In some embodiments, the roofing shingle 10 is configured to be installed on non-solar roof planes of the roof deck 50. In some embodiments, the roofing shingle 10 is configured to be installed either partially or fully around an array of the photovoltaic modules 100. In some embodiments, the roofing shingle 10 is cuttable to a size and shape for positioning around obstacles, such as vents, chimneys, antennas, and other roofing structures. In some embodiments, the roofing shingle 10 cuttable to a size and shape to extend to roofing eaves and ridges.


In some embodiments, a method includes the steps of:

    • obtaining a plurality of the roofing shingles 10;
    • obtaining a plurality of photovoltaic modules 100, each of the plurality of photovoltaic modules 100 includes at least one solar cell;
    • installing the plurality of photovoltaic modules 100 on the roof deck 50;
    • installing the plurality of roofing shingles 10 on the roof deck 50 proximate to the plurality of photovoltaic modules 100, such that the extended portion 35 of the first roofing shingle 10a of the plurality of roofing shingles 10 overlays the side lap 32 of the second roofing shingle 10b of the plurality of roofing shingles 10, each of the roofing shingles 10a, 10b aesthetically matches the photovoltaic modules 100.


In some embodiments, a method includes the steps of:

    • obtaining the core layer 12 of a first material;
    • obtaining the cap layer 14 of a second material;
    • positioning the second end 26 of the cap layer 14 offset from the second end 18 of the core layer 12 and positioning the first end 24 of the cap layer 14 offset from the first end 16 of the core layer 12;
    • overlaying the cap layer 14 over the core layer 12; and
    • attaching the cap layer 14 to the core layer 12 to form at least one of the roofing shingle 10.

Claims
  • 1. A system, comprising: a plurality of roofing shingles installed on a roof deck, each of the roofing shingles includes a core layer having a first end, a second end opposite the first end, and an upper edge extending from the first end to the second end,wherein the core layer is composed of a polymeric material, and a cap layer overlaying the core layer, wherein the cap layer is composed of the polymeric material,wherein the cap layer includes a first end, a second end opposite the first end of the cap layer, and an upper edge extending from the first end of the cap layer to the second end of the cap layer,wherein the upper edge of the cap layer is substantially aligned with the upper edge of the core layer,wherein the second end of the cap layer is offset from the second end of the core layer,wherein the first end of the cap layer is offset from the first end of the core layer,wherein the cap layer includes a first surface and a pattern on the first surface, wherein the pattern includes a depiction of a plurality of solar cells,a side lap extending from the second end of the cap layer to the second end of the core layer,an extended portion at the first end of the cap layer,wherein the extended portion of a first one of the roofing shingles overlays the side lap of a second one of the roofing shingles; anda plurality of photovoltaic modules, each of the plurality of photovoltaic modules include at least one solar cell.
  • 2. The system of claim 1, wherein the second end of the cap layer is offset from the second end of the core layer by 1 inch to 10 inches.
  • 3. The system of claim 1, wherein the polymeric material is thermoplastic polyolefin (TPO).
  • 4. The system of claim 1, wherein the cap layer is welded to the core layer.
  • 5. The system of claim 1, wherein the cap layer is adhered to the core layer by an adhesive.
  • 6. The system of claim 1, wherein the depiction of a plurality of solar cells includes at least one row of the depiction of a plurality of solar cells, wherein the depiction of a plurality of solar cells in a first row of the at least one row includesa first plurality of solar cells, wherein each of the first plurality of solar cells has a first color, anda second plurality of solar cells, wherein each of the second plurality of solar cells has a second color, wherein the first color is different from the second color.
  • 7. The system of claim 6, wherein the pattern includes at least two consecutive solar cells of the first plurality of solar cells and at least two consecutive solar cells of the second plurality of solar cells.
  • 8. The system of claim 7, wherein the pattern includes at least three consecutive solar cells of the first plurality of solar cells and at least three consecutive solar cells of the second plurality of solar cells.
  • 9. The system of claim 8, wherein the pattern includes at least four consecutive solar cells of the first plurality of solar cells and at least four consecutive solar cells of the second plurality of solar cells.
  • 10. The system of claim 6, wherein the at least one row includes a plurality of rows, wherein the depiction of a plurality of solar cells in a second row of the plurality of rows includes a third plurality of solar cells, wherein each of the third plurality of solar cells has a third color, and a fourth plurality of solar cells, wherein each if the fourth plurality of solar cells has a fourth color, wherein the third color is different from the fourth color.
  • 11. The system of claim 10, wherein the third color is the same as the first color, and wherein the fourth color is the same as the second color.
  • 12. The system of claim 11, wherein the first row extends from the first end of the cap to the second end of the cap, and wherein the second row extends from the first end of the cap to the second end of the cap, wherein the first row of the first one of the roofing shingles is substantially aligned with the first row of the second one of roofing shingles, and wherein the second row of the first one of the roofing shingles is substantially aligned with the second row of the second one of roofing shingles.
  • 13. A roofing shingle, comprising: a core layer having a first end, a second end opposite the first end, and an upper edge extending from the first end to the second end, wherein the core layer is composed of a polymeric material;a cap layer overlaying the core layer, wherein the cap layer is composed of the polymeric material,wherein the cap layer includes a first end, a second end opposite the first end of the cap layer, and an upper edge extending from the first end of the cap layer to the second end of the cap layer,wherein the upper edge of the cap layer is substantially aligned with the upper edge of the core layer,wherein the second end of the cap layer is offset from the second end of the core layer,wherein the first end of the cap layer is offset from the first end of the core layer,wherein the cap layer includes a first surface and a pattern on the first surface, wherein the pattern includes a depiction of a plurality of solar cells,a side lap extending from the second end of the cap layer to the second end of the core layer; andan extended portion at the first end of the cap layer,wherein the extended portion of the roofing shingle is configured to overlay a side lap of another one of the roofing shingles, andwherein the roofing shingle is configured to be installed on a roof deck.
  • 14. The roofing shingle of claim 13, wherein the second end of the cap layer is offset from the second end of the core layer by 1 inch to 10 inches.
  • 15. The roofing shingle of claim 13, wherein the polymeric material is thermoplastic polyolefin (TPO).
  • 16. The roofing shingle of claim 13, wherein the cap layer is welded to the core layer.
  • 17. The roofing shingle of claim 13, wherein the cap layer is adhered to the core layer by an adhesive.
  • 18. A method, comprising the steps of: obtaining a plurality of roofing shingles, each of the roofing shingles includes a core layer having a first end, and a second end opposite the first end, and an upper edge extending from the first end to the second end, wherein the core layer is composed of a polymeric material,a cap layer overlaying the core layer,wherein the cap layer is composed of the polymeric material,wherein the cap layer includes a first end, a second end opposite the first end of the cap layer, and an upper edge extending from the first end of the cap layer to the second end of the cap layer,wherein the upper edge of the cap layer substantially aligned with the upper edge of the core layer,wherein the second end of the cap layer is offset from the second end of the core layer,wherein the first end of the cap layer is offset from the first end of the core layer,wherein the cap layer includes a first surface and a pattern on the first surface, wherein the pattern includes a depiction of a plurality of solar cells,a side lap extending from the second end of the cap layer to the second end of the core layer, andan extended portion at the first end of the cap layer;obtaining a plurality of photovoltaic modules, each of the plurality of photovoltaic modules includes at least one solar cell,installing the plurality of photovoltaic modules on a roof deck;installing the plurality of roofing modules on the roof deck proximate to the plurality of photovoltaic modules, andwherein the extended portion of a first roofing shingle of the plurality of roofing shingles overlays the side lap of a second roofing shingle of the plurality of roofing shingles.
  • 19. A method, comprising the steps of: obtaining a core layer of a first material, wherein the first material includes a polymeric material,wherein the core layer includes a first end, a second end opposite the first end, and an upper edge extending from the first end to the second end;obtaining a cap layer of a second material,wherein the second material includes the polymeric material,wherein the cap layer includes a first end, a second end opposite the first end of the cap layer, and an upper edge extending from the first end of the cap layer to the second end of the cap layer,wherein the upper edge of the cap layer substantially aligned with the upper edge of the core layer;positioning the second end of the cap layer offset from the second end of the core layer and positioning the first end of the cap layer offset from the first end of the core layer;overlaying the cap layer over the core layer;attaching the cap layer to the core layer to form at least one roofing shingle, wherein the at least one roofing shingle includes a side lap extending from the second end of the cap layer to the second end of the core layer, andwherein the at least one roofing shingle includes an extended portion at the first end of the cap layer,wherein the extended portion of a first roofing shingle of the at least one roofing shingle is configured to overlay the side lap of a second roofing shingle of the at least one roofing shingle; andcreating a pattern on a surface of the cap layer simultaneous with the attaching the cap layer to the core layer, wherein the pattern includes a depiction of a plurality of solar cells.
  • 20. The method of claim 19, wherein the overlaying step includes rolling the core layer by a first infeed roller and rolling the cap layer by a second infeed roller, wherein the first infeed roller is offset from the second infeed roller.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Section 111(a) application relating to and claiming the benefit of commonly-owned, co-pending U.S. Provisional Patent Application Ser. No. 63/313,024, filed Feb. 23, 2022, entitled “ROOFING SHINGLE AND METHOD OF MANUFACTURING SAME,” the contents of each of which are incorporated herein by reference in its entirety.

US Referenced Citations (306)
Number Name Date Kind
1981467 Radtke Nov 1934 A
3156497 Lessard Nov 1964 A
3581779 Gilbert, Jr. Jun 1971 A
3894376 Shearer Jul 1975 A
3973887 Breckenfelder Aug 1976 A
4258948 Hoffmann Mar 1981 A
4349220 Carroll et al. Sep 1982 A
4499702 Turner Feb 1985 A
4636577 Peterpaul Jan 1987 A
4848057 MacDonald Jul 1989 A
5167579 Rotter Dec 1992 A
5305569 Malmquist Apr 1994 A
5437735 Younan et al. Aug 1995 A
5590495 Bressler et al. Jan 1997 A
5642596 Waddington Jul 1997 A
6008450 Ohtsuka et al. Dec 1999 A
6033270 Stuart Mar 2000 A
6046399 Kapner Apr 2000 A
6201180 Meyer et al. Mar 2001 B1
6220329 King et al. Apr 2001 B1
6308482 Strait Oct 2001 B1
6319456 Gilbert Nov 2001 B1
6320114 Kuechler Nov 2001 B1
6320115 Kataoka et al. Nov 2001 B1
6336304 Mimura et al. Jan 2002 B1
6338230 Davey Jan 2002 B1
6341454 Koleoglou Jan 2002 B1
6407329 Iino et al. Jun 2002 B1
6576830 Nagao et al. Jun 2003 B2
6928781 Desbois et al. Aug 2005 B2
6972367 Federspiel et al. Dec 2005 B2
7138578 Komamine Nov 2006 B2
7155870 Almy Jan 2007 B2
7178295 Dinwoodie Feb 2007 B2
7487771 Eiffert et al. Feb 2009 B1
7587864 McCaskill et al. Sep 2009 B2
7678990 McCaskill et al. Mar 2010 B2
7678991 McCaskill et al. Mar 2010 B2
7726086 Kalkanoglu Jun 2010 B2
7748191 Podirsky Jul 2010 B2
7819114 Augenbraun et al. Oct 2010 B2
7824191 Podirsky Nov 2010 B1
7832176 McCaskill et al. Nov 2010 B2
8118109 Hacker Feb 2012 B1
8168880 Jacobs et al. May 2012 B2
8173889 Kalkanoglu et al. May 2012 B2
8210570 Railkar et al. Jul 2012 B1
8276329 Lenox Oct 2012 B2
8312693 Cappelli Nov 2012 B2
8319093 Kalkanoglu et al. Nov 2012 B2
8333040 Shiao et al. Dec 2012 B2
8371076 Jones et al. Feb 2013 B2
8375653 Shiao et al. Feb 2013 B2
8404967 Kalkanoglu et al. Mar 2013 B2
8410349 Kalkanoglu et al. Apr 2013 B2
8418415 Shiao et al. Apr 2013 B2
8438796 Shiao et al. May 2013 B2
8468754 Railkar et al. Jun 2013 B2
8468757 Krause et al. Jun 2013 B2
8505249 Geary Aug 2013 B2
8512866 Taylor Aug 2013 B2
8513517 Kalkanoglu et al. Aug 2013 B2
8586856 Kalkanoglu et al. Nov 2013 B2
8601754 Jenkins et al. Dec 2013 B2
8629578 Kurs et al. Jan 2014 B2
8646228 Jenkins Feb 2014 B2
8656657 Livsey et al. Feb 2014 B2
8671630 Lena et al. Mar 2014 B2
8677702 Jenkins Mar 2014 B2
8695289 Koch et al. Apr 2014 B2
8713858 Xie May 2014 B1
8713860 Railkar et al. May 2014 B2
8733038 Kalkanoglu et al. May 2014 B2
8776455 Azoulay Jul 2014 B2
8789321 Ishida Jul 2014 B2
8793940 Kalkanoglu et al. Aug 2014 B2
8793941 Bosler et al. Aug 2014 B2
8826607 Shiao et al. Sep 2014 B2
8835751 Kalkanoglu et al. Sep 2014 B2
8863451 Jenkins et al. Oct 2014 B2
8898963 Amatruda Dec 2014 B1
8898970 Jenkins et al. Dec 2014 B2
8898987 Amatruda Dec 2014 B1
8925262 Railkar et al. Jan 2015 B2
8925272 Amatruda Jan 2015 B1
8943766 Gombarick et al. Feb 2015 B2
8946544 Jabos et al. Feb 2015 B2
8950128 Kalkanoglu et al. Feb 2015 B2
8959848 Jenkins et al. Feb 2015 B2
8966838 Jenkins Mar 2015 B2
8966850 Jenkins et al. Mar 2015 B2
8994224 Mehta et al. Mar 2015 B2
9032672 Livsey et al. May 2015 B2
9153950 Yamanaka et al. Oct 2015 B2
9166087 Chihlas et al. Oct 2015 B2
9169646 Rodrigues et al. Oct 2015 B2
9170034 Bosler et al. Oct 2015 B2
9178465 Shiao et al. Nov 2015 B2
9202955 Livsey et al. Dec 2015 B2
9212832 Jenkins Dec 2015 B2
9217584 Kalkanoglu et al. Dec 2015 B2
9270221 Zhao Feb 2016 B2
9273885 Rordigues et al. Mar 2016 B2
9276141 Kalkanoglu et al. Mar 2016 B2
9331224 Koch et al. May 2016 B2
9356174 Duarte et al. May 2016 B2
9359014 Yang et al. Jun 2016 B1
9412890 Meyers Aug 2016 B1
9528270 Jenkins et al. Dec 2016 B2
9605432 Robbins Mar 2017 B1
9711672 Wang Jul 2017 B2
9755573 Livsey et al. Sep 2017 B2
9786802 Shiao et al. Oct 2017 B2
9831818 West Nov 2017 B2
9912284 Svec Mar 2018 B2
9923515 Rodrigues et al. Mar 2018 B2
9938729 Coon Apr 2018 B2
9966898 Flanigan May 2018 B1
9991412 Gonzalez et al. Jun 2018 B2
9998067 Kalkanoglu et al. Jun 2018 B2
10027273 West et al. Jul 2018 B2
10115850 Rodrigues et al. Oct 2018 B2
10128660 Apte et al. Nov 2018 B1
10156075 McDonough Dec 2018 B1
10187005 Rodrigues et al. Jan 2019 B2
10256765 Rodrigues et al. Apr 2019 B2
10284136 Mayfield et al. May 2019 B1
10454408 Livsey et al. Oct 2019 B2
10530292 Cropper et al. Jan 2020 B1
10560048 Fisher et al. Feb 2020 B2
10563406 Kalkanoglu et al. Feb 2020 B2
D879031 Lance et al. Mar 2020 S
10579028 Jacob Mar 2020 B1
10784813 Kalkanoglu et al. Sep 2020 B2
D904289 Lance et al. Dec 2020 S
11012026 Kalkanoglu et al. May 2021 B2
11177639 Nguyen et al. Nov 2021 B1
11217715 Sharenko et al. Jan 2022 B2
11251744 Bunea et al. Feb 2022 B1
11258399 Kalkanoglu et al. Feb 2022 B2
11283394 Perkins et al. Mar 2022 B2
11309828 Sirski et al. Apr 2022 B2
11394344 Perkins et al. Jul 2022 B2
11424379 Sharenko et al. Aug 2022 B2
11431280 Liu et al. Aug 2022 B2
11431281 Perkins et al. Aug 2022 B2
11444569 Clemente et al. Sep 2022 B2
11454027 Kuiper et al. Sep 2022 B2
11459757 Nguyen et al. Oct 2022 B2
11486144 Bunea et al. Nov 2022 B2
11489482 Peterson et al. Nov 2022 B2
11496088 Sirski et al. Nov 2022 B2
11508861 Perkins et al. Nov 2022 B1
11512480 Achor et al. Nov 2022 B1
11527665 Boitnott Dec 2022 B2
11545927 Abra et al. Jan 2023 B2
11545928 Perkins et al. Jan 2023 B2
11658470 Nguyen et al. May 2023 B2
11661745 Bunea et al. May 2023 B2
11689149 Clemente et al. Jun 2023 B2
11702840 Haynes Jul 2023 B2
11705531 Sharenko et al. Jul 2023 B2
11728759 Nguyen et al. Aug 2023 B2
11732490 Achor et al. Aug 2023 B2
11811361 Farhangi et al. Nov 2023 B1
11824486 Nguyen et al. Nov 2023 B2
11824487 Nguyen et al. Nov 2023 B2
11843067 Nguyen et al. Dec 2023 B2
20020053360 Kinoshita et al. May 2002 A1
20020129849 Heckeroth Sep 2002 A1
20030101662 Ullman Jun 2003 A1
20030132265 Villela et al. Jul 2003 A1
20030217768 Guha Nov 2003 A1
20030230040 Shirota Dec 2003 A1
20040000334 Ressler Jan 2004 A1
20040182032 Koschitzky Sep 2004 A1
20050030187 Peress et al. Feb 2005 A1
20050115603 Yoshida et al. Jun 2005 A1
20050144870 Dinwoodie Jul 2005 A1
20050178428 Laaly et al. Aug 2005 A1
20050193673 Rodrigues et al. Sep 2005 A1
20060042683 Gangemi Mar 2006 A1
20060046084 Yang et al. Mar 2006 A1
20070074757 Mellott et al. Apr 2007 A1
20070181174 Ressler Aug 2007 A1
20070193618 Bressler et al. Aug 2007 A1
20070249194 Liao Oct 2007 A1
20070295385 Sheats et al. Dec 2007 A1
20080006323 Kalkanoglu et al. Jan 2008 A1
20080035140 Placer et al. Feb 2008 A1
20080315061 Placer et al. Feb 2008 A1
20080078440 Lim et al. Apr 2008 A1
20080185748 Kalkanoglu Aug 2008 A1
20080271774 Kalkanoglu et al. Nov 2008 A1
20080302030 Stancel et al. Dec 2008 A1
20090000222 Kalkanoglu et al. Jan 2009 A1
20090014057 Croft et al. Jan 2009 A1
20090014058 Croft et al. Jan 2009 A1
20090019795 Szacsvay et al. Jan 2009 A1
20090044850 Kimberley Feb 2009 A1
20090114261 Stancel et al. May 2009 A1
20090133340 Shiao et al. May 2009 A1
20090159118 Kalkanoglu et al. Jun 2009 A1
20090178350 Kalkanoglu et al. Jul 2009 A1
20090229652 Mapel et al. Sep 2009 A1
20090275247 Richter et al. Nov 2009 A1
20100019580 Croft et al. Jan 2010 A1
20100095618 Edison et al. Apr 2010 A1
20100101634 Frank et al. Apr 2010 A1
20100116325 Nikoonahad May 2010 A1
20100131108 Meyer May 2010 A1
20100139184 Williams et al. Jun 2010 A1
20100146878 Koch et al. Jun 2010 A1
20100159221 Kourtakis et al. Jun 2010 A1
20100170169 Railkar et al. Jul 2010 A1
20100186798 Tormen et al. Jul 2010 A1
20100242381 Jenkins Sep 2010 A1
20100313499 Gangemi Dec 2010 A1
20100325976 DeGenfelder et al. Dec 2010 A1
20100326488 Aue et al. Dec 2010 A1
20100326501 Zhao et al. Dec 2010 A1
20110030761 Kalkanoglu et al. Feb 2011 A1
20110036386 Browder Feb 2011 A1
20110036389 Hardikar et al. Feb 2011 A1
20110048507 Livsey et al. Mar 2011 A1
20110058337 Han et al. Mar 2011 A1
20110061326 Jenkins Mar 2011 A1
20110100436 Cleereman et al. May 2011 A1
20110104488 Muessig et al. May 2011 A1
20110132427 Kalkanoglu et al. Jun 2011 A1
20110168238 Metin et al. Jul 2011 A1
20110239555 Cook et al. Oct 2011 A1
20110302859 Crasnianski Dec 2011 A1
20110314753 Farmer et al. Dec 2011 A1
20120034799 Hunt Feb 2012 A1
20120060434 Jacobs Mar 2012 A1
20120060902 Drake Mar 2012 A1
20120085392 Albert et al. Apr 2012 A1
20120137600 Jenkins Jun 2012 A1
20120176077 Oh et al. Jul 2012 A1
20120212065 Cheng et al. Aug 2012 A1
20120233940 Perkins et al. Sep 2012 A1
20120240490 Gangemi Sep 2012 A1
20120260977 Stancel Oct 2012 A1
20120266942 Komatsu et al. Oct 2012 A1
20120279150 Pislkak et al. Nov 2012 A1
20120282437 Clark et al. Nov 2012 A1
20120291848 Sherman et al. Nov 2012 A1
20120310821 Abramowitz Dec 2012 A1
20130008499 Verger et al. Jan 2013 A1
20130014455 Grieco Jan 2013 A1
20130118558 Sherman May 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130247988 Reese et al. Sep 2013 A1
20130284267 Plug et al. Oct 2013 A1
20130306137 Ko Nov 2013 A1
20140090697 Rodrigues et al. Apr 2014 A1
20140150843 Pearce et al. Jun 2014 A1
20140173997 Jenkins Jun 2014 A1
20140179220 Railkar et al. Jun 2014 A1
20140182222 Kalkanoglu et al. Jul 2014 A1
20140208675 Beerer et al. Jul 2014 A1
20140254776 O'Connor et al. Sep 2014 A1
20140266289 Della Sera et al. Sep 2014 A1
20140311556 Feng et al. Oct 2014 A1
20140352760 Haynes et al. Dec 2014 A1
20140366464 Rodrigues et al. Dec 2014 A1
20150089895 Leitch Apr 2015 A1
20150162459 Lu et al. Jun 2015 A1
20150340516 Kim et al. Nov 2015 A1
20150349173 Morad et al. Dec 2015 A1
20160105144 Haynes et al. Apr 2016 A1
20160142008 Lopez et al. May 2016 A1
20160254776 Rodrigues et al. Sep 2016 A1
20160276508 Huang et al. Sep 2016 A1
20160359451 Mao et al. Dec 2016 A1
20170159292 Chihlas et al. Jun 2017 A1
20170179319 Yamashita et al. Jun 2017 A1
20170179726 Garrity et al. Jun 2017 A1
20170237390 Hudson et al. Aug 2017 A1
20170331415 Koppi et al. Nov 2017 A1
20180094438 Wu et al. Apr 2018 A1
20180097472 Anderson et al. Apr 2018 A1
20180115275 Flanigan et al. Apr 2018 A1
20180254738 Yang et al. Sep 2018 A1
20180294765 Friedrich et al. Oct 2018 A1
20180351502 Almy et al. Dec 2018 A1
20180367089 Stutterheim et al. Dec 2018 A1
20190030867 Sun et al. Jan 2019 A1
20190081436 Onodi et al. Mar 2019 A1
20190097069 Kim Mar 2019 A1
20190123679 Rodrigues et al. Apr 2019 A1
20190253022 Hardar et al. Aug 2019 A1
20190305717 Allen et al. Oct 2019 A1
20190393836 Ackermann Dec 2019 A1
20200109320 Jiang Apr 2020 A1
20200144958 Rodrigues et al. May 2020 A1
20200220819 Vu et al. Jul 2020 A1
20200224419 Boss et al. Jul 2020 A1
20200343397 Hem-Jensen Oct 2020 A1
20210083619 Hegedus Mar 2021 A1
20210115223 Bonekamp et al. Apr 2021 A1
20210159353 Li et al. May 2021 A1
20210301536 Baggs et al. Sep 2021 A1
20210343886 Sharenko et al. Nov 2021 A1
20220149213 Mensink et al. May 2022 A1
Foreign Referenced Citations (30)
Number Date Country
2829440 May 2019 CA
700095 Jun 2010 CH
202797032 Mar 2013 CN
217150978 Aug 2022 CN
1958248 Nov 1971 DE
1039361 Sep 2000 EP
1837162 Sep 2007 EP
1774372 Jul 2011 EP
2446481 May 2012 EP
2784241 Oct 2014 EP
3772175 Feb 2021 EP
10046767 Feb 1998 JP
2001098703 Apr 2001 JP
2002-106151 Apr 2002 JP
2017-027735 Feb 2017 JP
2018053707 Apr 2018 JP
20090084060 Aug 2009 KR
20100132595 Dec 2010 KR
10-1348283 Jan 2014 KR
10-2019-0000367 Jan 2019 KR
10-2253483 May 2021 KR
2026856 Jun 2022 NL
2010151777 Dec 2010 WO
2011049944 Apr 2011 WO
2015133632 Sep 2015 WO
2018000589 Jan 2018 WO
2019201416 Oct 2019 WO
2020-159358 Aug 2020 WO
2021-168126 Aug 2021 WO
2021-247098 Dec 2021 WO
Non-Patent Literature Citations (4)
Entry
Sunflare, Procducts: “Sunflare Develops Prototype For New Residential Solar Shingles”; 2019 <<sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021.
RGS Energy, 3.5kW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021.
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021.
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021.
Related Publications (1)
Number Date Country
20230265658 A1 Aug 2023 US
Provisional Applications (1)
Number Date Country
63313024 Feb 2022 US