The subject invention relates to a roofing system for roof decks that are able to retain mechanical fasteners, and in particular to an insulated roofing system and method of constructing the insulated roofing system that utilizes unique hold-down straps to secure the roof insulation to the roof deck. The invention is especially suited for use in EPDM, PVC, and TPO membrane roofing systems, modified bitumen roofing systems, and built-up roofing systems utilizing multiple layers of bitumen and roofing felts.
Industrial, commercial, and similar buildings typically have low slope roof decks. The two major types of industrial/commercial roofing systems utilized on these roof decks are single ply roofing membrane systems and built-up roofing systems that include multiple layers of bitumen and roofing felts. Normally, these roofing systems include roof insulation boards that are located beneath the membrane or bitumen and felt layers of the roofing system and over the roof deck. The typical roof insulation boards used to insulate these roofing systems are 4×8 foot, 4×4 foot, 3×4 foot and 2×4 foot expanded perlite, fiberglass, wood fiber, and closed or open cell foam insulation boards. An example of 2×4 foot and 4×4 foot, 0.75 to 2.0 inch thick, expanded perlite insulation board that may be used as the insulation board in such systems is an expanded perlite insulation board sold by Johns Manville International, Inc. under the trade designation Fesco® Board Roof Insulation. An example of 4×4 foot and 4×8 foot, 1.0 to 4.0 inch thick closed cell foam insulation board that may be used as the insulation board in such systems is a closed cell polyisocyanurate foam core board sold by Johns Manville International, Inc. under the trade designation UltraGard® ISO 1,2,3™ Roof Insulation. An example of a gypsum insulation board is a gypsum insulation board sold by Georgia-Pacific Corporation under the trade designation Dens-Deck® glass mat gypsum roof board.
Many roof decks, including but not limited to steel, wood, and lightweight concrete roof decks, can accept and retain conventional mechanical fasteners. When insulated single ply roofing membrane systems and insulated built-up roofing systems are being installed over roof decks that can accept and retain conventional mechanical fasteners, the roof insulation boards are normally secured to the roof deck with mechanical fasteners. To conform to industry standards, such as Factory Mutual standards, Underwriters laboratories, Inc. standards and code agency standards for wind-resistant systems (systems that can withstand certain specified wind velocities without uplift of the roof insulation boards or the fasteners pulling-through the roof insulation boards), these 4×8 foot, 3×4 foot, 4×4 foot, and 2×4 foot expanded perlite, fiberglass, wood fiber, and foam roof insulation boards are typically secured to the roof deck with up to 24 conventional mechanical fasteners per roof insulation board. While this system for securing the roof insulation boards to roof decks works well, the system has two drawbacks. The relatively large number of mechanical fasteners required to anchor the roof insulation boards to achieve wind-resistant systems that meet industry standards and the time required to install the roof insulation boards utilizing such a relatively large number of mechanical fasteners are costly to the contractor and building owner. Accordingly, there has been a need for a system to anchor roof insulation boards to a roof deck that can be assembled more quickly with fewer mechanical fasteners while providing equal or greater wind uplift resistance.
The roof insulation board hold-down system of the subject invention provides a system for anchoring roof insulation boards to a roof deck that can be assembled more quickly with fewer mechanical fasteners than the fastening system discussed above. In addition, it is believed that the roof insulation board hold-down system of the subject invention may also be able to provide increased wind uplift resistance by creating greater surface area to resistant mechanical fastener pull-through. The roof insulation board hold-down system of the subject invention includes a layer of roof insulation boards overlaying the roof deck and a plurality of spaced apart hold-down straps overlaying the roof insulation boards. The hold-down straps have pre-formed mechanical fastener openings therethrough on preselected center to center spacings and mechanical fasteners pass down through the mechanical fastener openings in the hold-down straps, through the roof insulation boards, and into the roof deck to secure the roof insulation boards to the roof deck. With their mechanical fastener openings, the hold-down straps also function as templates for accurately placing the mechanical fasteners in the roof insulation boards and for enabling a foreman or building inspector to easily check the installation to assure that the correct number of mechanical fasteners has been used in the installation to meet a particular industry standard.
Preferably, the roof insulation boards each have guidelines on their upper major surfaces for placement of the hold-down straps relative to the roof insulation boards. The guidelines can indicate where the hold-down straps should be installed relative to the roof insulation boards when the roof insulation boards are located along a peripheral edge of the roof deck, at a corner of the roof deck, or in a central portion of the roof deck defined by the inner edges of the roof insulation boards installed along the peripheral edges of the roof deck and at the corners of the roof deck. By following the guidelines, the hold-down straps can be accurately located over the roof insulation boards on a deck along the perimeter of the roof deck, at the corners of the roof deck, and in the central portion of the roof deck to assure that the roof insulation boards are being effectively held in place to resist wind uplift. In a typical roofing system, a single ply roofing membrane system, a modified bitumen roofing system, or a built-up roofing system overlays the layer of roof insulation boards.
Preferably, the roof insulation boards 22 used to insulate the roof decks and secured to the roof decks by the roof insulation board hold-down system 20 are 4×8 foot, 4×4 foot, 3×4 foot and 2×4 foot fiberglass insulation boards, expanded perlite insulation boards, and wood fiber insulation boards about 0.75 inches to about 2.00 inches in thickness or closed or open cell foam insulation boards between 0.75 and 4 inches in thickness. An example of 2×4 foot and 4×4 foot expanded perlite insulation board that may be used as the insulation board in such systems is an expanded perlite insulation board sold by Johns Manville International, Inc. under the trade designation Fesco® Board Roof Insulation. An example of 4×4 foot and 4×8 foot closed cell foam insulation board that may be used as the insulation board in such systems is a closed cell polyisocyanurate foam core board sold by Johns Manville International, Inc. under the trade designation UltraGard® ISO 1, 2, or 3™ Roof Insulation. While these roof insulation boards are preferred, it is contemplated that other roof insulation boards used in roofing systems could be secured to roof decks with the roof insulation board hold-down system 20. An example of such an insulation board is a gypsum insulation board sold by Georgia-Pacific Corporation under the trade designation Dens-Deck® glass mat gypsum roof board.
Preferably, the hold-down straps 26 are between 6 inches and 8 inches in width to provide greater surface area resistance with fewer mechanical fasteners than hold-down systems utilizing only mechanical fasteners and superior wind uplift resistance over hold-down systems utilizing only mechanical fasteners. Preferably, the hold-down straps 26 are shipped, stored and dispensed from rolls containing about 100 to 200 feet of the hold-down strap. The rolls of hold-down strap 26 may be mounted on spools and dispensed from a dispenser (not shown) having an automatic cut off device that cuts the hold-down strap 26 being dispensed when the hold-down strap being dispensed reaches a selected length.
As shown in
The hold-down straps 26 may be made of glass fibers, polyester fibers or other polymeric reinforcement materials and blends of such materials. Where the hold-down straps 26 are to be used in a single ply roofing membrane system where a roofing membrane is bonded by a layer of cement to upper surfaces of the roof insulation boards 22, preferably, the hold-down straps 26 are chemically compatible with the cement and the roofing membrane so that no chemical reaction takes place between the hold-down straps 26 and the cement and roofing membrane that would adversely affect the hold-down straps, the cement or the roofing membrane in any appreciable manner. Where the hold-down straps 26 are to be used in a single ply roofing membrane system where the membrane is secured to the deck with conventional mechanical fasteners used in the roofing industry or held in place with ballast, preferably, the hold-down straps 26 are chemically compatible with the roofing membrane so that no chemical reaction takes place between the hold-down straps 26 and the roofing membrane that would adversely affect the hold-down straps or the roofing membrane in any appreciable manner. Examples of single ply roofing membrane systems are PVC, TPO and EPDM membrane systems.
Where the hold-down straps 26 are to be used in a modified bitumen roofing system or a built-up roofing system (a roofing system where roofing felts or membranes are secured to upper surfaces of the roof insulation boards 22 with a bitumen coating that overlays the roof insulation boards 22 and hold-down straps and is applied to the roof insulation boards and hold-down straps at temperatures typically ranging from 275° F. to 525° F.), the hold-down straps 26 are chemically compatible with the bitumen coating and roofing felts or membranes so that no chemical reaction takes place between the hold-down straps and the bitumen coating and roofing felts or membranes that would adversely affect the hold-down straps, the bitumen coating or the roofing felts or membranes in any appreciable manner. In addition, the hold-down straps 26 can withstand a temperature equal to or exceeding the temperature at which the bitumen layer(s) are applied without adversely affecting the strength of the hold-down straps in any appreciable manner, e.g. temperatures ranging from at least 275° F. to 525° F. Examples of modified bitumen roofing systems are roofing systems using membranes made from nonwoven polyester or glass fiber reinforcements combined with an elastomeric blend of asphalt and styrene-butadiene-styrene rubber or asphalt and atactic polypropylene. An example of a built-up roofing system is a roofing system formed from layers of a waterproofing bitumen alternating with plies of reinforcing felts.
Since the hold-down straps 26 have pre-formed mechanical fastener openings 28 therein on pre-selected center-to-center spacings, e.g. 8 inch center-to-center spacings, the hold-down straps 26 provide a template for the accurate installation of the mechanical fasteners 24 that pass down through the mechanical fastener openings 28 in the hold-down straps, through the roof insulation boards 22, and into the roof deck to secure the roof insulation boards to the roof deck. With their mechanical fastener openings 28, the hold-down straps 26 also enable a foreman or building inspector to easily check the installation to assure that the correct number of mechanical fasteners has been used in the installation to meet a particular industry standard. Depending on the application and the wind uplift standard to be met, mechanical fasteners may be installed through every mechanical fastener opening 28 in a hold-down strap 26 or only through pre-selected mechanical fastener openings 28, e.g. through every second or every third mechanical fastener opening.
To assist the installer with the placement of the mechanical fasteners 24 through a hold-down strap 26, the hold down strap 26 may be marked on its upper surface to indicate the distances between at least some of the mechanical fastener openings 28. As shown in
Preferably, the upper major surfaces 32 of the roof insulation boards 22 each have guidelines thereon for placement of the hold-down straps 26 relative to the roof insulation boards. The guidelines can indicate where the hold-down straps 26 should be installed relative to the roof insulation boards 22 when the roof insulation boards are located along a peripheral edge of the roof deck, at a corner of the roof deck, or in a central portion of the roof deck (a portion of the roof deck defined by the inner edges of the perimeter roof insulation boards installed along the peripheral edges of the roof deck and at the corners of the roof deck). By following the guidelines, the hold-down straps 26 can be accurately located over the roof insulation boards on a deck: a) along the perimeter of the roof deck; b) at the corners of the roof deck; and c) in the central portion of the roof deck to assure that the roof insulation boards 22 are being effectively held in place to resist wind uplift and meet selected wind-uplift resistance standards.
The guidelines on the roof insulation board 22 shown in
Where roof insulation boards 22 with the guidelines are used to locate the hold-down straps 26, the hold-down straps designated 40 in
In describing the invention, certain embodiments have been used to illustrate the invention and the practices thereof. However, the invention is not limited to these specific embodiments as other embodiments and modifications within the spirit of the invention will readily occur to those skilled in the art on reading this specification. Thus, the invention is not intended to be limited to the specific embodiments disclosed, but is to be limited only by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
2187087 | Leary | Jan 1940 | A |
3878658 | Davis et al. | Apr 1975 | A |
4284447 | Dickens et al. | Aug 1981 | A |
4382353 | Kelly | May 1983 | A |
4437283 | Benoit | Mar 1984 | A |
4706432 | Fishburn | Nov 1987 | A |
4718211 | Russell et al. | Jan 1988 | A |
4885887 | Simmons et al. | Dec 1989 | A |
4927696 | Berg | May 1990 | A |
5349804 | Van Erden et al. | Sep 1994 | A |
5469671 | Rathgeber et al. | Nov 1995 | A |
5740647 | Kelly | Apr 1998 | A |
6205730 | Hasan et al. | Mar 2001 | B1 |
6439519 | Takamasa | Aug 2002 | B1 |
Number | Date | Country |
---|---|---|
3422643 | Dec 1985 | DE |
2602810 | Feb 1988 | FR |
Number | Date | Country | |
---|---|---|---|
20040003563 A1 | Jan 2004 | US |