This invention relates to roofing systems, and, more particularly to a support assembly for retrofitting a roof made of preformed panels in order to improve wind pressure resistance of a new roof.
The typical roof in a high wind weather condition is degraded and eventually destroyed because one or more roofing panels and/or the ridge caps are lifted off of the structure. When this happens, the entire roof is quickly peeled off of the building and the rest of the building is exposed to the weather. Older roofs, especially those constructed according to the earlier building codes, are particularly susceptible to wind pressure because there are not enough points of attachment of the roof panels to the underlying roof support structure, such as a plywood deck, rafters or purlins.
Rapid changes in the roofing systems bring new concepts to the roofing material development. For instance, preformed metal panels are replacing standing seam roof, and single-ply membrane is replacing the old-fashioned built-up roof. Preformed metal panels are often made of galvanized steel with the panel lengths between 6 and 40 feet and panel widths in the order of 26-38″. The preformed metal panels may have different patterns, or profiles, wherein the high ridges of the panel are integrally formed with low-profile drain channels. The panels are typically nailed along the drain channels at spaced intervals according to the manufacturer's specifications.
In the geographic areas where hurricanes happen every year, the nailed-down preformed metal roofs often fail, when high velocity winds rip off the roof from the building. Often times, water and wind enter under the edges of the roof panels and ridge cap thus exposing the building interior to the inclement weather. The purpose of this invention is to provide a roofing system support assembly that would increase the roofs resistance to winds of extreme force. With roofing panels, the present invention will confer resistance to all winds, not depending on thru fasteners or flashing with caulk.
It is, therefore, an object of this invention to provide a retrofitting assembly for retrofitting existing metal roofs with supports for positioning of a new roof.
It is another object of the invention to provide a retrofitting assembly designed to increase wind resistance of the roof.
It is a further object of the invention to provide a retrofitting assembly for reinforcing the roof structure that can be installed on top of the existing roof panels without the need to replace the roof.
It is still a further object of the invention to provide a retrofitting assembly that can be installed on an existing roof and bring the roof into compliance with current building codes without the need to replace the entire roof.
It is another object of the invention to provide a novel bracket support assembly that increases roof's resistance to strong winds.
These and other objects of the invention are achieved through a provision of a roofing system assembly for retrofitting an existing roof formed of preformed roof panels having elevated ridges and drain channels, with new roofing panels, while correcting any uneven planes of the existing roof. The assembly comprises a plurality of support members formed from a corrosion-resistant bendable material, such as for instance galvanized steel, tin, or aluminum. The support assembly comprises a plurality of elongated first bottom members configured to fit into drain channels and be secured to the preformed roof panels of the existing roof to extend about a peripheral line of the roof. Each of the first bottom members has a height at least equal to the height of a ridge of the preformed roof panel so as to support a new roof along an even plane. The assembly also comprises a plurality of elongated first top members configured to extend transversely to the first bottom members and be secured at a level above the elevated ridges of the preformed roof panels and a plurality of bracket support assemblies configured to be positioned in the drain channels and be secured to the preformed roof panels of the existing roof and to the first top members for supporting the first top members at a desired elevation above the elevated ridges of the preformed roof panels.
Elongated strapping members extend transversely to and are configured to be secured to the first top members in substantially parallel relationship to the first bottom members. A second top member is configured for securing along the peripheral edge of the existing roof between the first bottom member and the strapping member. When secured to the existing roof panels, the support assembly forms a framework, to which new roofing panels may be secured.
The invention also provides for a novel bracket support assembly for use in retrofitting and other roofing applications. Each bracket support assembly has a generally L-shaped first bracket support member and a second bracket support member fitted over the horizontal part of the L-shaped first bracket support member. Indentations formed in the horizontal part and the second bracket support member are designed to snap together and affix the second bracket support member in relation to the first bracket support. The second bracket support member has a planar body with upright flanges extending along three sides of the planar body. The novel bracket support assembly is designed to substantially increase resistance of the roofing elements to wind forces.
The new support assembly provides considerable larger number of attachment points for the new roof, particularly along the peripheral roof line. As a result, wind pressure resistance of the building roof is significantly increased.
Reference will now be made to the drawings, wherein like parts are designated by like numerals, and wherein
Turning now to the drawings in more detail, numeral 10 designates an existing roof made of preformed metal panels 18. The roof illustrated in the drawings is a standard R-panel roof, which is typically made of galvanized steel. Another frequently used alternative in roof panels is the so-called standing seam roof. An eave 12 forms the edge of the roof supporting structure and somewhat projects beyond the side of the building.
A plurality of purlins 14 extends in a generally parallel relationship to the roof edge; the purlins 14 support the loads from the roof deck or sheathing 16. The purlins 14 are supported by the principal rafters and/or the building walls (not shown). As can be seen in the drawings, conventional purlins 14 are formed of Z-shaped sections; they can be formed of cold-formed steel. The purlins 14 are spaced from each other by about 4 feet. The roof panels 18 are corrugated, with high ridges 22 alternating with drain channels 24.
A first bottom support member 30 is configured to fit within the channel 24. The first bottom support member 30 has a length sufficient to extend between a peripheral edge 20 of the panel 18 and at least the first purlin 14. A plurality of bottom support members 30 is positioned in the drain channels 24 at pre-determined spaced intervals. Depending on the condition of the old roof, a first bottom member may be positioned in every drain channel 24 or every other drain channel 24, or at any other desired spacing.
Each bottom support member 30 has a pair of sloping sides 32, 34 joined by an elevated flat ridge 36. A flange 31 extends outwardly from a lower end of the side 32, and a mirror-image flange 33 extends outwardly from a lower end of the side 34. The flanges 31 and 33 are configured to be secured to the roof panels 18 by nails or screws 35. The height of the first bottom member, that is the distance by which the flat ridge 36 extends above the flanges 31, 33, is at least equal to, or slightly greater than the distance between the plain of the drain channel 24 and the high ridge 22.
Extending transversely to the longitudinal axis of the first bottom member 30 is an elongated first top member 40. The body of the first top member 40 has a generally Z-shaped configuration in cross-section; it is configured to rest on the first bottom member 30, as shown in
The roofing system uses of at least one, and preferably several first top members 40. A first top member 40a is secured to the first bottom members 30. In one of the preferred embodiments another first top member 40b is secured a pre-determined distance from the first top member 40a, and still another first top member 40c is secured a distance inwardly of the first top member 40b to provide structural support for the strapping member 60. The first top members 40a and 40b are secured to the first bottom members 30 by screws or nails 47.
Additional first top members 40 are installed at eaves, rakes and ridges over previously installed first bottom members 30. The first top members 40 help in converting existing roof structure and obtain higher wind pressure resistance (wind load rating) or to meet new building codes. The first top members 40 can be secured at various points along the vertical part of the Z-shaped body, thus allowing the installer to slightly elevate the elongated first top member 40 to the desired height and achieve an even roof line, as described below.
A second top member 50 is secured along the edge of the roof panels 18 in a covering relationship over the edge of the roof panels 18 and the outer ends of the first bottom members 30. As can be seen in
When the second top member 50 is positioned on the first bottom member 30, it rests on the flat ridge of the first bottom member 30, and the long vertical segment 51 partially covers the eave 12. When the strapping members 60 are positioned on the roof they rest on, and are secured to, the upper horizontal segment 52 of the second top member 50, as shown in
The strapping members 60 span from the second top member 50 toward the field of the roof, preferably to the ridge of the roof 10. The lateral strapping members 60 can be formed from sheet metal about 2 inches wide. As discussed above, the strapping members 60 are attached to the second top members 40 by flat head screws or tapping screws 61.
The strapping members 60 are spaced from each other, with the distance between the strapping members to be determined on site by an engineer or by the requirements of the wind load resistance. The strapping members are made of thin piece of tin or galvanized steel. The strapping members 60 can span from one edge of the roof to another edge to form lateral support for a new roof Alternatively, the strapping members 60 can stop at the ridge of the roof, and another strapping member 60 can start to span to another edge of the roof
The first top member 40c is secured to the roof panels 18 by bracket support assemblies 70, which are spaced from each other as shown in
A pair of apertures 80, 82 is formed in the horizontal part 76 in a spaced-apart relationship. Securing fasteners, such as screws or nails (not shown) extend through the apertures 80, 82 to attach the horizontal part 76 to the roof panels. An indentation 84 is formed in the horizontal part 76 centrally along an inner edge 77 of the horizontal part 76. The indentation 84 extends outwardly and upwardly from the inner edge 77, which serves as a connecting line between the horizontal part 76 and the vertical part 78.
The second bracket member 74 comprises a planar member 86, which has an area at least slightly smaller than the area of the horizontal part 76. When the second bracket member is engaged with the first bracket member 72 as shown in
The planar member 86 is provided with upwardly extending flanges 90, 91, and 92, which extend at a right angle to the top surface of the planar member 86. The inner flange 90 extends along and upwardly from an inner edge 94 of the planar member 86. The side flanges 91 and 92 extend from sides 96 and 98 of the planar member 86. If desired, the side flanges 91 and 92 can be shaped triangular in cross section, gradually decreasing in height from the inner edge 94 to an outer edge 95 of the planar member 86.
A central indentation 99 is formed in the planar member 86 and the inner flange 90. The indentation 99 follows the configuration of the indentation 84 formed in the horizontal part 76. When the second bracket member 74 is engaged with the first bracket member 72 the indentations 99 and 84 are aligned allowing the second bracket member 74 to snap into engagement with the first bracket member 72.
The flanges 90 and 91, 92 do not have to connect at the inner edge 94, as shown in the embodiment of
Turning now to the second embodiment of the bracket support assembly of this invention shown in
Also similarly to the first embodiment, a pair of apertures 120, 122 is formed in the horizontal part 116 in a spaced-apart relationship. Securing fasteners, such as screws or nails (not shown) extend through the apertures 120, 122 to attach the horizontal part 116 to the roof panels 18. A pair of spaced-apart indentations 124, 126 is formed in the horizontal part 116 centrally along an inner edge 117 of the horizontal part 116. The indentations 124, 126 extend outwardly and upwardly from the inner edge 117, which serves as a connecting line between the horizontal part 116 and the vertical part 118.
The second bracket member 114 comprises a generally rectangular planar member 130, which has an area at least slightly smaller than the area of the horizontal part 116. When the second bracket member 114 is engaged with the first bracket member 112, as shown in
The planar member 130 is provided with upwardly extending flanges 136, 137, and 138, which extend at a right angle to the top surface of the planar member 130. The inner flange 136 extends along and upwardly from an inner edge 140 of the planar member 130. The side flanges 137 and 138 extend from sides 141, 142 of the planar member 130. As in the first embodiment, the side flanges 137 and 138 can be shaped triangular in cross section, gradually decreasing in height from the inner edge 140 to an outer edge 143 of the planar member 130.
A pair of indentations 146, 148 is formed in the planar member 130 and the inner flange 136. The indentations 146, 148 follow the configuration of the indentations 124, 126 formed in the horizontal part 116. When the second bracket member 114 is engaged with the first bracket member 112 the indentations 146, 148 are aligned allowing the second bracket member 114 to snap into engagement with the first bracket member 112. As in the first embodiment, the combined thickness of the indentations further resists deformation of the bracket support members and reinforces resistance to wind forces.
The upright flanges 136, 137, and 138 do not have to connect at the inner edge 140, as shown in the embodiment of
As discussed above, with time, the metal roofs 10 may sag, as for instance illustrated in
As schematically illustrated in
The new roof panels 80 are positioned on top of the first top members 40, the second top member 50 and the strapping members 60. A new eave flashing can be placed along the edge of the roof in an overlapping relationship to the second top member 50. The roof panels 80 may be either R-panels or standing seam panels.
The new roof line 80 is relatively straight, eliminates sagging, and has a significantly greater number of attachment points, particularly along the peripheral line of the roof. The system of the present invention can be used to make a more stable connection of the roof portions when a building addition was made resulting in an angle change of the roof. The various size bracket support assemblies 70 are used to lift the supporting structure and eliminate the level disparity between the old roof 10 and the roof of the building addition. As a result, a new continuous roof 80 is positioned over the main building, as well as over the building addition, with the new roof 80 having an even roofline extending along a substantially even plane.
The members of the bracket support assembly are formed from a corrosion-resistant, bendable material, such as tin, aluminum or galvanized steel.
The present invention provides a reinforced attachment of the new roof, particularly along the edge of the roof. It allows installation of a new roof without the need to remove old, sometimes corroded roof panels 18. It eliminates the dangerous task of removing the old panels and solves the landfill problems. The new roof line can be made even, while the gap between the old roof panels and the new roof panels forms an insulation barrier, even if an insulation layer is not placed between the roofs. As a result the R-value of the new roof is significantly increased.
The instant invention allows quick retrofitting of the existing roof without having to rip off the existing roof and expose the contents of the building to rain, wind and dust. The center of the roof usually does not need reinforcement. Therefore the system of the present invention is particularly useful in reinforcing the peripheral edge of the building roof. It is envisioned that the wind load (wind pressure resistance) can be improved from 100 mph to about 130-140 mph.
It is envisioned that the bracket support assemblies 70 and 110 can be sold separately for use in other roofing applications.
Many changes and modifications can be made in the system of the present invention without departing from the spirit thereof. I, therefore, pray that my rights to the present invention be limited only by the scope of the appended claims.
This application is a continuation-in-part of my co-pending application Ser. No. 12/460,638 filed on Jul. 22, 2009 entitled “Retrofit Framing System for Metal Roof,” the full disclosure of which is incorporated by reference herein, and priority of which is hereby claimed.
Number | Date | Country | |
---|---|---|---|
Parent | 12460638 | Jul 2009 | US |
Child | 13373052 | US |