The invention relates to a rooftop antenna, in particular a motor vehicle rooftop antenna comprising an associated plug-type connection device in accordance with the preamble of claim 1.
Nowadays, in particular in the field of motor vehicles, motor vehicle rooftop antennae are often used which are adapted for example for operation in a mobile communications field on the one hand and for receiving radio programmes on the other hand. Furthermore, receiving systems for determining the position of the vehicle are generally also accommodated in these motor vehicle rooftop antennae, and in accordance with the current standard consist of what are known as GPS receivers.
Motor vehicle antennae of this type are conventionally accommodated in an antenna housing, which can be mounted on the motor vehicle and comprises an antenna hood which is mounted on a corresponding pedestal. On the pedestal, generally parallel thereto, a printed circuit board is accommodated on which the individual antenna elements are subsequently positioned and electrically connected.
The motor vehicle antenna can generally be mounted and anchored at a suitable point by way of adapted holding elements which can be installed mechanically from below, that is to say from the interior of the vehicle. In this context, it is further conventional to pass a corresponding cable loop through a provided opening and to connect it in the region of the printed circuit board. In this context, at least one cable, preferably a coaxial cable, is generally provided for each antenna.
So as to reduce the complexity of mounting and anchoring, motor vehicle rooftop antennae have also been disclosed in which the antenna housing is equipped with a corresponding number of coaxial plug-type connectors, it being possible to connect a corresponding number of further plug-type connectors, which are provided on the end of a cable loop, on the interface which is formed in this manner.
To this extent, corresponding rooftop antennae having a comparable construction have also been disclosed for example in DE 43 36 191 A1, DE 295 00 961 U1, DE 2 032 619 and also DE 10 2004 046 979.
An antenna comprising an associated fastening means is also known from WO 2006/087225 A1. A chassis of the motor vehicle rooftop antenna comprises a fastening part which is introduced into the interior of the motor vehicle through an opening in the motor vehicle roof and is biased for example by means of a biasing means.
In this context, for passing through the roof, a plurality of HF plug-type connections are provided, which consist of at least one plug rigidly arranged on the foot part. A coupler which is attached to a cable loop can be plugged onto these.
However, the construction of the arrangement as a whole is relatively tall, and this is often a problem since in particular the construction space located below the motor vehicle roof generally only turns out very low.
A highly integrated multi-band fin antenna for a motor vehicle, which comprises a printed circuit board parallel above a pedestal part, is known from the subsequently published document DE 10 2009 051 605 A1.
In each case, plug-type contacts, onto which plug-type connectors can be plugged from the interior of the motor vehicle, that is to say from below, are provided on the printed circuit board, centrally on the leading side and positioned offset towards the side regions on the trailing side.
Three further separate wire lines, which are fixed to the printed circuit board, project perpendicularly away therefrom and lead to a rectangular plug housing, are provided on the trailing side between two of the adjacently arranged plug-type connectors.
A vehicle and a method for manufacturing a vehicle antenna are also known from DE 10 2007 050 109 A1. The antenna comprises a pedestal and a printed circuit board which is provided on the upper side of the pedestal, at least one coaxial line of which the external conductor is preferably connected to the pedestal part in a material fit and has shared electric conductivity, projecting downwards from the pedestal. An internal conductor, separated by a dielectric, is guided in this coaxial external conductor. In an alternative embodiment, the external conductor, which per se is preferably connected to the pedestal part in a material fit, can only initially be connected to the external conductor in a manner conditional on the manufacture, and be mechanically separated therefrom and thus insulated after production is complete.
The internal conductor is connected to the printed circuit board located above the pedestal, just like the external conductor, which is galvanically connected to the printed circuit board by means of a spring contact.
The at least one downwardly projecting aforementioned coaxial external conductor is ultimately protected and encased by a plug housing, which can be provided around the external conductor in a further production step by spraying. It is also possible for the plug housing to be manufactured separately and to be placed on the external conductor.
A generic rooftop antenna for a vehicle is known from WO 2006/108624 A1, which describes an antenna comprising a pedestal and a printed circuit board located on the pedestal, on which printed circuit board one or more antennae are provided. One or more coaxial conductors can be led away on the underside of the printed circuit board. The external conductor of the coaxial conductors comprises an external-conductor cylinder, which is preferably electrically connected and mechanically anchored on the printed-circuit-board side, preferably to the underside of the printed circuit board. By contrast, the internal conductor of the coaxial conductors is electrically conductively connected to the printed circuit board, the pedestal consisting of an electrically conductive material or being coated with an electrically conductive material.
A plug arrangement for an HF signal path is additionally known from DE 20 2004 015 503 U1. This prior publication describes and discloses a component comprising a pedestal or a pedestal-like plate construction, which is penetrated by one or more coaxial conductors. In this context, in each case the external conductor is rigid and preferably connected to the wall of the component in a material fit.
As a result of this material-fit connection between the pedestal and the external conductor, a passage is created for an internal conductor, which extends inside the external conductor and in accordance with this prior publication is split in two, the two parts being interconnected via a flat spiral spring. Aside from the external conductor which is rigidly connected to the pedestal, no further additional pedestal part is provided.
A comparatively improved motor vehicle antenna comprising an associated HF plug-type connection device is also known from EP 1 801 932 B1 or DE 20 2005 020 107 U1.
In accordance with this generic prior publication, the plug-type connector unit is connected to the printed circuit board in a mechanically favourable manner in that at least some coaxial plug-type connectors are provided with projections extending in the plugging direction or with a corresponding electrically conductive accessory comprising corresponding projections, these projections projecting for example into holes in the printed circuit board. These holes may preferably also be through-connected. The ends of these projections are electrically soldered to the printed circuit board, that is to say generally to the large-area potential plane or earth plane which is formed there, resulting in shielding being achieved. Thus, not only an electrical earth connection is ensured, but also a rigid mechanical connection between the plug-type connector unit and the integrated coaxial plug-type connectors with the printed circuit board.
Since the HF internal conductors no longer project as far as the upper side of the printed circuit board through holes which are formed in the printed circuit board, or project beyond this upper side of the printed circuit board, but instead are reflow-soldered bluntly to the underside of the printed circuit board, in accordance with this embodiment it is even possible for example to position a standard ceramic patch antenna above the plug-type connector unit, that is to say in a region in which the ends of the internal conductor of the plug-type connector would come to be positioned and soldered on the opposite side of the printed circuit board.
In addition, it should also further be noted that in accordance with DE 20 2005 004 658 U1 it has also already been proposed for a corresponding number of what are known as first coaxial plug-type connectors to be fixed in what is known as a plug interface on the antenna housing, and for second coaxial plug-type connectors further to be provided, which are held on a further plug-type connector part in such a way that the two plug-type connectors can be plugged into one another so as to produce an electric connection of all of the coaxial lines.
Since the naturally expected tolerance problems occur, and plugging together two or more coaxial plug-type connectors would always lead to problems in this case, it has been proposed in accordance with DE 20 2005 004 658 U1 to install and position plug-type connectors, which are held and positioned on what is known as the plug interface, in a resiliently springy manner, specifically with the assistance of resilient spring elements. These are arranged and formed in such a way that the second coaxial plug-type connectors can be pre-positioned at the respective predetermined position, aside from deviations due to tolerances, and can be deflected from this point in a resiliently springy manner in the plane perpendicular to the plugging direction.
In this context, DE 20 2004 004 658 U1 further describes that a plug-type connector, the interfaces of which extend transverse to the installation direction of the motor vehicle antenna and thus generally parallel to the motor vehicle roof, is provided within the interior of the vehicle. In this context, the coaxial plug-type connectors comprise signal conductor elements in the form of strip lines, which proceed from the cable terminals extending parallel to the roof and which lead to further coaxial plug connectors, arranged perpendicular thereto, via which a coaxial plug connection to the antennae provided on the motor vehicle roof can be produced.
Finally, reference should also be made to EP 1 903 632 B1, EP 1 863 119 B1 and DE 10 2006 025 176 A1. From these prior publications, antenna constructions are known which comprise an antenna means outside the sheet metal of the vehicle body and a further component inside the sheet metal of the vehicle body, optionally also in the form of a second antenna means.
By contrast, the object of the present invention is to provide a further improved rooftop antenna, in particular a motor vehicle rooftop antenna, which is of a high mechanical stability on the one hand and has good electrical attachment and connection options on the other hand, and which at the same time, as far as possible, only requires a small or extremely small installation space below a roof, in particular a motor vehicle roof. This object is achieved according to the invention by way of the features specified in claim 1. Advantageous embodiments of the invention are specified in the dependent claims.
In the context of the invention, as a result of the configuration primarily of the HF plug connection, a highly favourable connection can be provided between a rooftop antenna and an internal unit, optionally comprising a further printed circuit board, which is provided under the roof. In this context, the external unit can be implemented as an antenna comprising coaxial and HF lines proceeding therefrom (which unlike in the prior art no longer have to be laid separately) whilst the required mounting hole and the joining space below the vehicle outer shell are simultaneously minimised. As an auxiliary function of this direct plugging, very long (and thus expensive) coaxial lines to the other internal units in the motor vehicle, which are configured as stand-alone solutions and are generally installed anywhere in the vehicle, are no longer required.
In this context, it may also be emphasised that in the context of the invention optimised HF properties can be implemented as regards the provided coaxial lines, specifically in such a way that incorrect couplings are reliably prevented even when particular tolerance errors occur.
Above all, as stated above, the solution according to the invention has the further advantage that electronic internal units (which for example serve to process the electric signals or the HF signals) no longer have to be accommodated remotely from the antenna in the motor vehicle (with the result that correspondingly long lines are thus required), but these electric and electronic components can instead be positioned and connected under the vehicle outer skin, directly in the region of the foot part, which penetrates the roof opening, of a motor vehicle rooftop antenna.
The vertical part of the HF plug-type connection unit according to the invention, which part is electrically connected and mechanically rigidly connected to a printed circuit board (the printed circuit board usually being provided on a chassis on the side of the antenna chassis opposite the motor vehicle roof), comprises coaxial lines, which in a known manner comprise an internal conductor, a dielectric surrounding the internal conductor, and an external conductor, the external conductor preferably being soldered to the printed circuit board via foot points in the form of small pins, resulting in the mechanical connection also being implemented.
In the context of the invention, improved mechanical fastening and electric shielding are achieved in that the chassis of the antenna means is used as shielding for the external conductor. For this purpose, part of the chassis is extended downwards through the motor vehicle mounting hole, and thus serves simultaneously as a support and fastening means for the plug sockets. In this context, the plug sockets consist of the aforementioned external conductor, the internal conductor and the dielectric, these plug sockets being pressed into corresponding (vertical) ducts in the chassis which extend in the plugging or joining direction, in such a way that these external conductors are thus mechanically rigidly anchored and held, and the extended portion of the chassis thus serves as shielding and/or as an external conductor by way of the galvanic contact.
In a particularly preferred development of the invention, it is also possible for an interface to be provided at the lower end of the coaxial lines in each case, so as to provide a 90° transition to the plug-type connectors at this point, via which for example a motor vehicle internal unit can be attached by way of a plugging movement more or less parallel to the motor vehicle outer skin (that is to say generally the motor vehicle roof). In this case too, the foot part of the chassis, which part extends through the mounting opening in the motor vehicle roof, forms the above-disclosed shielding.
In this context, during the joining step, it is possible in the context of the invention for the external conductor proceeding from the printed circuit board to be pressed—as stated—into the foot part of the chassis, that is to say into correspondingly vertically extending ducts in the foot part of the chassis, so as to produce a galvanic connection to the chassis. The contact of the internal conductor to the following internal conductor portions (which extend radially and thus preferably perpendicularly with respect to the first internal conductor portions, specifically more or less parallel to the outer skin, provided with the mounting opening, of the motor vehicle) is produced in that the leading tip of the respective internal conductor is pressed into a slotted (perforated) part, leading in the joining direction, of the following internal conductor, which as stated is preferably orientated perpendicular to the first internal conductor portion. In this context, air is provided as the dielectric in the connection region between the two internal conductors, which are generally orientated mutually perpendicular.
Similarly, by way of a plurality of pins which extend mutually parallel and have an elbow at the bottom, a data bus can be produced, that is to say a connection for example in the form of a plurality of data lines of which the pins are likewise orientated horizontally, that is to say perpendicular to the vertical portion which leads to the printed circuit board of the motor vehicle antenna.
In an elbowed end of this type, extending through 90°, of the coaxial line and of the data bus, it is subsequently possible without difficulty to connect a shallow housing, in which further electronic assemblies which process the HF signals are accommodated, through a horizontal plugging path, for example directly on the inside of the motor vehicle outer skin.
The invention thus relates to a rooftop antenna comprising an electric or high frequency contact option, in particular comprising a motor vehicle internal unit for processing the electric signals and the high-frequency signals. This connection should preferably be possible via direct plugging, while taking into account the prevailing construction space conditions. In the context of the invention, this should be possible even with a minimal mounting opening in the vehicle outer skin, specifically even if only a minimum possible construction space is available between the vehicle outer skin and a corresponding vehicle ceiling.
In this context, in a preferred embodiment, a 90° line transition is provided, which makes it possible for corresponding cables and preferably the aforementioned internal unit which provides further data and high frequency processing to be connected via a joining path to the terminals for the motor vehicle antenna, which preferably extends perpendicular to the mounting direction in which a downwardly projecting foot part of the motor vehicle antenna is introduced into the mounting opening of a motor vehicle outer skin.
Finally, in the context of the invention, it is possible to combine the individual plugs with a plug block, which serves to minimise the tolerances of the individual components.
In the following, the invention is explained in greater detail by way of drawings, in which, in detail:
a is a partially perspective view of a plug housing for the data connection, which is integrated into a chassis;
b is a schematic drawing of a corresponding socket plug for coupling to the plug housing of the data connection;
a is a schematic drawing of the construction according to the invention comprising an antenna means and a motor vehicle internal unit in a schematic cross-sectional drawing;
b is a cross-sectional view along the line XIb-XIb in
a is a drawing modified from
b is a cross-sectional view along the line XIIb-XIIb in
The antenna 1 usually comprises an antenna housing 5, which in the embodiment shown comprises an antenna hood 5a which is permeable to electromagnetic waves.
The antenna hood 5a is generally mounted on, or rigidly connected to, a pedestal or chassis 7, the chassis 7 consisting of or comprising metal or another conductive material in the embodiment shown. In the embodiment shown, the pedestal or chassis 7 preferably consists of a cast metal part. A milled part or conductive injection-moulded plastics material part is also possible.
In this context,
It can thus be seen that a printed circuit board 9 is arranged parallel to the pedestal or chassis 7 on the upper side 7a formed thereby of the pedestal or chassis 7, and in a plan view has an external contour 9a (see also
One or more antenna means for different services may be provided on the aforementioned upper side 9b of the printed circuit board 9.
In the present case, a first antenna or antenna arrangement 13a, for example in the form of a further printed circuit board 13′a positioned perpendicular to the printed circuit board 9, is provided on the metal-coated faces so as to form a first antenna, which for example provides reception and transmission in the context of mobile communications.
In addition, a second antenna 13b may be provided, which is likewise arranged for example perpendicular to the printed circuit board 9, and in this context may likewise in turn consist of a further printed circuit board 13′b—which by contrast with the first antenna 13a is instead positioned in a rear region, that is to say usually trailing in the direction of travel, with respect to the antenna 13a which is upstream, that is to say leading, in the direction of travel the antenna formed thereon potentially being suitable for providing other services.
Furthermore, a third antenna 13c is provided between the first and second antennae 13a and 13b, and serves for example for receiving satellite programmes which are broadcast via satellite, that is to say in particular for receiving radio programmes which are broadcast via satellite.
In the embodiment shown, a fourth antenna 13d is also provided, namely a GPS antenna 13d, which in the embodiment shown is of an approximately square external shape in a plan view, and is positioned on and connected to the printed circuit board 9 which extends parallel to the pedestal 7, below a recess 13″ in the region of the first printed circuit board 13′a of the first antenna 13a.
Since the pedestal of the chassis 7 usually comprises a peripheral pedestal rim 7c which is raised above a particular height on the upper side 7a of the pedestal with respect to the base or floor 7b of the pedestal, electric and electronic components can be accommodated between the pedestal floor 7b and the underside 9c of the printed circuit board 9 (see
Simply by looking at the drawing of
During the final mounting in the motor vehicle, the foot part and anchoring part 17 of the antenna formed in this manner is placed on a roof of a motor vehicle, the foot part or anchoring part 17 which projects downwards past the pedestal floor subsequently penetrating through a mounting opening 15 shown in
From the drawings of
Each of these coaxial conductors 21 comprises an internal conductor 23, a dielectric 25 which encloses the internal conductor and in the embodiment shown is stepped in the longitudinal direction, and an external conductor 27 which accommodates the dielectric 25.
In the embodiment shown, the respective external conductor 27 is provided on the side thereof facing the printed circuit board 9 with four feet or pins 27a, which are mutually offset in the circumferential direction of the cylindrical external conductor, project counter to the plugging and joining direction (Z) (that is to say perpendicular to the printed circuit board), and engage in and are soldered in corresponding holes at a connection point on the printed circuit board 9.
The internal conductor 23 generally also penetrates a corresponding hole in the printed circuit board, or the internal conductor end face thereof is positioned directly on the printed circuit board underside 9c, where said conductor is soldered to a corresponding contact point.
In this way, the internal conductor 23 and the external conductor 27 of the respective coaxial conductor 21 are thus galvanically connected to the printed circuit board. As a result of this connection, the respective coaxial line 21 is electrically contacted and mechanically held, primarily because the external conductor 27 is configured as a metal cylinder or metal tube and is not only galvanically connected, but also mechanically fixed, to the printed circuit board in a rigid and stable manner as a result of the plurality of anchoring feet or pins 27a thereof positioned offset in the circumferential direction, and thus holds the entire coaxial conductor 21 orientated comparatively stably on the printed circuit board 9.
Furthermore, in the embodiment shown, a further bus connection 29, that is to say for example a bus 29 in the form of a plurality of data lines 29a, is also provided, and in the embodiment shown consists of six individual wires or individual lines 29b held at a distance from one another, as is shown for example by way of
In practice, the aforementioned data lines 29a, 29b of the bus 29 serve to transmit signal or current, and the aforementioned coaxial lines 21, in particular the internal conductor 23, serve to transmit the high-frequency signals (HF signals), specifically for transmitting the various services.
In the following, reference is further made in particular to
As can thus be seen from the drawings, the individual coaxial lines 21, that is to say the external conductors 27 of the coaxial lines 21, are additionally held and adjusted adjacent to the printed circuit board by a holding block 33, this holding block preferably consisting of a plastics material part, that is to say of an electrically non-conductive insulator. On the side remote from the printed circuit board 9, this holding block 33 comprises a row of projecting feet, pins or ribs etc. 33a, which can likewise engage in corresponding holes in the printed circuit board 9, and thus secure the block 33 against displacement or twisting. This is also how the coaxial lines 21, which penetrate corresponding holes 33b in the holding block 33, are additionally secured and held against lateral displacement or deformation or twisting with respect to one another, but also against displacement or deformation or twisting of the entire arrangement thereof as a whole.
The printed circuit board which is prepared and equipped in this manner, comprising the downwardly projecting coaxial lines 21, the bus connection 29 and the holding block 33, is subsequently placed on the chassis or pedestal 7 until the holding block 33 engages in a corresponding depression 133 in the pedestal floor 7b, this depression 133 in the pedestal floor 7b having a longitudinal extent, transverse extent and shaping which at least largely correspond to the longitudinal extent, transverse extent and shaping of the holding block 33, in such a way that, in other words, part of the peripheral contour of the holding block engages in and is held undisplaceably and untwistably in the corresponding depression 133 in the pedestal floor 7.
During this plugging and joining process in the Z direction, in this context the coaxial lines 21 which project past the holding block 33 in the joining direction Z and the holding block extension 33c which likewise projects past the holding block 33 (and which comprises in the interior a longitudinal duct which is penetrated by the bus connection 29, resulting in the bus connection additionally being protected, as is discussed further below) are inserted into correspondingly vertically extending and mutually shielded ducts 117 and 117′ in the foot part 17. Thus, in other words, the coaxial lines 21 and the data connections 29 project through corresponding openings or holes in the pedestal floor 7b, that is to say project into ducts 117 and 117′ which proceed in the region of the depression 133 in the pedestal floor 7b and which penetrate the pedestal floor and the floor part and/or anchoring part 17.
In this context, the projecting ducts 117 which extend from top to bottom in the foot part could be configured tapering downwards at least slightly (in particular even if the pedestal is produced together with the foot part as a cast part), the sizing being such that the contacting portion 27b of the external conductor 27 of the coaxial conductor 21 (which portion can even be made slightly wider than the remainder of the external diameter) runs up the inner wall of the duct 117, which tapers in the insertion direction, in the foot part 17 and at the end of the insertion movement ensures a galvanic connection, implemented while creating sufficient contact forces, between the external conductor 27 and the foot part 17 which consists of metal, and thus the pedestal 7 as a whole. A corresponding cross-sectional drawing through a coaxial conductor 21 comprising the associated internal conductor, the dielectric and the external conductor, when still arranged in a corresponding duct 117 in the foot part 17 before mounting, can be seen in
In the embodiment shown, the coaxial line 21 is fixed and the external conductor 27 is galvanically connected by way of mechanical and galvanic contact through the leading end portion of the contact rim 27b (see
By way of this arrangement, a high mechanical strength and reliability are ensured as regards the fixing and holding of the respective coaxial conductor 21 in an associated duct 117 in the foot part 17 of a pedestal 7. In addition, this results in an optimal galvanic contact being produced between the respective external conductor 27 of a coaxial conductor 21 and the foot part 17 consisting of metal and thus the pedestal or chassis 7 as a whole, the mutually separated ducts 117, in which the external conductors 27 of the coaxial lines 21 are positioned pressed in, additionally providing optimal shielding between the individual coaxial lines and with respect to the duct 117′ accommodating the bus 29.
If tolerance errors also occur during production, that is to say during the positioning and production of a soldered connection between the internal conductor 23 and the printed circuit board 9 or the external conductor 27 and the printed circuit board 9, the insertion and joining movement of the external conductor 27 into the corresponding ducts 117 in the foot part 17 of the pedestal 7 also ensures a corresponding compensation of any tolerance errors which are present, ensuring high-precision overall production and positioning of the lower free ends of the internal conductors 23 of the individual coaxial lines 21.
In the embodiment shown which has been discussed thus far, the rooftop antenna 1 is to be configured in such a way that an optimally configured direct connection by plugging is made possible between the rooftop antenna 1 and the internal unit 3 in the form of the aforementioned electronic component 3, specifically while simultaneously minimising the required mounting hole and the joining space below the vehicle outer skin (that is to say generally the roof).
In this way, in the context of the aforementioned electronic component 3, the internal unit 3 may generally likewise comprise a further printed circuit board 109 (see
In the context of the invention, a planar construction is made possible primarily if the internal unit 3 can be connected to the corresponding terminals of the coaxial cable and the data bus not in the plugging and joining direction Z, that is to say perpendicular to the printed circuit boards 9, 109, but in a plugging, joining or displacement direction S extending transverse or especially perpendicular thereto. In this context, this plugging, joining or displacement direction S preferably extends perpendicularly or radially with respect to the coaxial longitudinal extent of the coaxial conductors 21 and thus of the foot part 17 or of the ducts 117, that is to say generally parallel to the aforementioned printed circuit boards 9 and 109. Of course, if required, particular small angular deviations from this can be implemented, if desired.
In this context, simply from the drawings of
For reasons of concentricity, that is to say the coaxial arrangement between the internal and external conductors of the coaxial conductor 21, it is not possible to insert a single-piece or continuous internal conductor having a 90° bend into a similarly single-piece or continuous external conductor. Therefore, in the context of the invention, the internal and external conductor and the dielectric are separated into mutually transversely extending components, that is to say in particular mutually perpendicularly extending components, the coaxial lines generally extending more or less vertically when mounted and therefore being referred to in the following as “vertical components” for short, the components which can be connected to the internal unit being referred to in the following as “horizontal components” for short, even though the aforementioned components are not, or need not, be orientated exactly vertically or horizontally or even necessarily be orientated mutually perpendicular when mounted, but may instead be orientated deviating from this by a slight angle. As stated above, the components may also be orientated at an angle other than 90° if required, for example at an angle of 85° to 95° etc. There are basically no restrictions in this regard.
A special construction is therefore proposed here, and is also clarified in particular in the sectional drawing of
From this drawing, it can be seen that below the aforementioned coaxial conductor 21 the dielectric 25, which generally consists of a plastics material (and thus not of air), stops directly before the 90° angular connection 51 in each case, where an internal conductor 37a starts in each case and in the embodiment shown extends perpendicularly or radially with respect to the coaxial conductor 21 and is preferably part of the coupler 37. In this context, in the embodiment shown, the diameter of the associated internal conductor 37a is configured with a larger diameter, at least in the attachment and/or connection region 37′a of the internal conductor 37a, than the diameter of the internal conductor 23 of the respective coaxial conductor 21. Therefore, in the attachment and connection region 37′a thereof, the internal conductor 37a can be provided with a hole or slot 39 or the like, which in the embodiment shown is radial and thus extends perpendicular to the axial extension of the internal conductor 37a, and into which a respectively associated internal conductor 23 of a coaxial conductor 21 engages when mounted, penetrating this hole 39 and thus ensuring a good galvanic connection between the internal conductor 23 of the coaxial conductor 21 and the internal conductors 37a associated with the coupler 27.
Instead of the aforementioned holes 39, any suitable opening is possible, for example including in the form of a slot which is formed in the relevant internal conductor 37a and preferably penetrates the entire thickness thereof.
Since, as stated, the coaxial internal conductor 21 is orientated and held very precisely positioned (even if tolerance errors are originally present in relation to the connector of the coaxial conductor 21 to the printed circuit board 9) primarily by positioning in the aforementioned ducts 117 which penetrate the foot part 17, this method makes it possible for the external conductors 37c of the aforementioned couplers 37 initially preferably to be pressed into corresponding transverse holes 40, 41 at the lower end of the foot part 17, the internal conductors of these couplers 37 subsequently being orientated in such a way that the hole 39 (or a corresponding slot or the like), which is provided in the connection region 37′a and penetrates the internal conductor 37a, comes to be positioned in a direct axial direction with respect to the internal conductor 23 of the coaxial lines 21. By sinking or joining the printed circuit board 9 comprising the coaxial line 21 connected to and held on the printed circuit board underside 9c, on the one hand the aforementioned galvanic connection between the external conductor 27 of the respective coaxial conductor 21 and the internal surface of the associated duct 117 in the foot part 17 is ensured, and on the other hand the respectively associated internal conductor 23 is galvanically connected to the associated internal conductor 37a of the coupler 37 through the hole 39.
So as to carry out the mounting and the mechanical and galvanic connection between the internal conductors 23 and 37a, the foot and anchoring part 17 comprises, in the axial extension of the ducts 117, an elongate hole 17b, which penetrates the floor 17a of the foot and anchoring part 17 and which makes open access possible there for also producing the connection between the internal conductors during the production process (joining movement). Subsequently, this hole 117 can be sealed using a corresponding cap 17c, which can either be pressed in or screwed in if there is a thread. This cap 17c should likewise again consist of electrically conductive material, preferably metal or metal alloy, or at least of an electrically conductive plastics material, or at least be provided with a correspondingly conductive outer layer which provides shielding and which thus also simultaneously forms part of the external conductor as a whole, as a result of the galvanic contact with the remainder of the foot and anchoring part 17.
It can also be seen from the cross-sectional drawing of
Even throughout the entire region of the coupler 37, the external conductor and thus the shielding are also formed by the foot part 17, consisting of metal, of the pedestal 7.
As stated above, the transverse holes 40, 41 provided at the lower end of the foot part 17 for accommodating the coupler are made stepped, a correspondingly stepped shoulder of the external conductor 37c engaging here. As stated, in this context the external conductors of the couplers 37 are preferably pressed into the corresponding transverse hole 40, 41 which is stepped here, ensuring a good mechanical connection on the one hand and optimal galvanic contact on the other hand. This also leads to the possibility of orientating the coupler in such a way that the hole 39, formed before the insertion into the foot part 17, in the internal conductor 37a in the connection region 37′a is orientated exactly in such a way that the central axis of this hole is flush with the central axis of the internal conductor 23 of the coaxial line 21, which is to engage in this hole 39 during the joining process. In this context, the aforementioned axial orientation of the stepped hole 40, 41 in the foot part 17 is provided in such a way that the central axis of this transverse hole 40, 41 is orientated radially and preferably perpendicularly with respect to the relevant coaxial conductors 21 and thus with respect to the relevant plugging and receiving ducts 117 in the foot part 17.
In principle, it is noted that the couplers could also be provided with an external thread which engages in a corresponding internal thread in the stepped hole 40, 41. However, additional measures would also be required so as to ensure that the hole 29 at the end of the associated internal conductor 37a is exactly orientated in this case, so as to be penetrated by the internal conductor 23 of the coaxial line 21 during the joining process.
The bus connection 29, comprising the six individual lines 29b in the embodiment shown, has already been described by way of
Each of these individual lines 29b comprises terminal ends 29c on the printed circuit board side, which are bent through 90° in such a way that these terminal ends 29c respectively form parallel elbowed portions, positioned side by side, which are orientated extending away from one another with respect to the two rows in which the individual lines 29a are arranged.
At these terminal ends 29c, the individual lines can be soldered at corresponding soldering points so as to be galvanically separated from one another at the relevant connection points on the underside 9c of the printed circuit board 9.
In the vicinity of the elbowed terminal ends 29c, the holding block 33, preferably consisting of plastics material, may further be provided with a transverse bridge 233 (see
In addition, at least one holding and fixing block 43 is provided, which in the embodiment shown comprises six holes, which are penetrated by the individual lines 29a. In the embodiment shown, this fixing and holding block 43—which consists of an insulator, preferably of plastics material—is arranged after a 90° elbow 45 of the individual wires 29b in such a way that the terminal ends 29d, which extend parallel to the printed circuit boards 9, 109 and are positioned in the interior of the vehicle, are held at a non-touching distance from one another.
Reference has already been made to the holding block 33, which holds the coaxial lines 21 rigidly in corresponding holes 33b. On one transverse side thereof, this holding block 33 comprises a holding block potion 33c, which extends over a greater length or height in the plugging and joining direction Z and which is provided with an internal duct 33′c, which is preferably approximately rectangular in cross-section and which serves to accommodate the bus connection 29 comprising the six individual lines 29a in the embodiment shown.
If a prepared printed circuit board 9, comprising the coaxial conductors 21, the bus connection 29 and the holding block 33 which fixes the aforementioned lines, is placed on the pedestal 9 in such a way that the coaxial lines 21, which project past the holding block, and the holding block extension 33c comprising the bus connection 29 penetrate the ducts 117, 117′ in the foot part 17, which are formed in the pedestal 7 and the associated foot part 17, in a shielded manner in the plugging and joining direction Z (the internal conductors 23 of the coaxial conductors 21 thus being galvanically contacted with the internal conductors 37a of the couplers 37), a construction is obtained comprising for example three coaxial couplers 37 positioned side by side and a bus terminal structure 137 in the form of a multiple line coupler 137, which are all orientated in a direction parallel to the printed circuit boards 9 and 109. This thus provides the possibility of the aforementioned internal part 3, which is formed in the manner of an electronic component, being able to be connected directly, in a plugging or displacement direction S extending parallel to the printed circuit boards 9, 109, to the interfaces of the motor vehicle antenna which are thus formed.
For this purpose, as can be seen from the drawings, the internal component 3 likewise comprises couplers 47 which are arranged at a corresponding point at the same axial distance from one another as the couplers 37 in the foot part 17, in such a way that the internal part 3 can be plugged onto the corresponding interfaces of the antenna in accordance with the plugging, joining or displacement direction S and subsequently be dielectrically connected. Similarly, a corresponding bus interface 147 is provided in the internal module 3, that is to say a further coupler 147, for example comprising socket-shaped plug recesses into which the terminal ends 29d, extending parallel to the printed circuit board 109 and thus parallel to the plugging, joining or displacement direction S, of the bus connection 29 can be introduced and electrically contacted and thus connected.
In this context, for completeness, reference is also further made to
In this context, the internal module 3 may comprise further interfaces for example in the form of further couplers 53, which can be seen for example in the drawings of
In the embodiment shown, the foot part 17 which can be plugged through the mounting opening 15 in the motor vehicle outer skin 16 (that is to say the body sheet metal of a motor vehicle) comprises guide elements 17d (
It can thus be seen from the description of a preferred embodiment of the invention that the central idea is to produce a plug-type connection directly between two printed circuit boards, which are arranged with a vertical offset V and can be assembled with a parallel joining direction S. In this context, one printed circuit board is accommodated in the antenna arrangement on the outside of the motor vehicle, it being possible for the second printed circuit board to be provided in the internal part 3 accommodated on the inside of the vehicle. In this context, the described connection elements required for this purpose are elbowed through 90° proceeding from the antennae. The resulting transitions from the horizontal into the vertical orientation and from a coaxial structure to a microstrip structure which may potentially be provided (in the region of the printed circuit board accommodated in the internal part 3) can be adapted by optimising the construction inside the coaxial structure and in the region of the transition from the internal conductors to the conductor path on the printed circuit board, specifically for example for a frequency range up to 6 GHz, for example at an impedance of 50 ohms.
For this purpose, as stated, the dielectric can be replaced with air entirely or in part in the coaxial region, it being possible for the diameter of the internal conductor to be adapted here too. In this context, the transition region to the printed circuit board can be optimised accordingly by way of the configuration of the external conductor and the construction of the layout.
What is known as the “vertical region” comprises the printed circuit board 9 in the antenna housing 5 comprising the internal conductors 21 proceeding from the printed circuit board 9 (even though they need not necessarily extend vertically, but are merely referred to as the “vertical part” for short for simplicity) and the printed circuit board equipment, the aforementioned block or plastics material carrier 33 and the SMD-capable internal conductors 23, which are positioned vertically on the printed circuit board 9 of the antenna module and are enclosed by the dielectric 25 and the external conductor 27. In this context, the external conductor 27 has the aforementioned foot points or pins 27a, which are soldered to the printed circuit board 9.
What is known as the “horizontal region”, in the form of the connection structure which is orientated more or less horizontally and thus radially with respect to the vertical region, using the couplers 37, is distinguished inter alia in that in this context the chassis is used with the foot part as shielding and as an external conductor. For this purpose, as stated, part of the chassis in the form of what is known as the foot part 17 is extended downwards by way of the mounting hole 15 in the motor vehicle outer skin 16 and projects into the interior 116 of the motor vehicle. In this context, this downwardly extended part of the chassis 7 in the form of the foot part 17 simultaneously serves as a carrier for the plug sockets of the coupler 37. In this context, the plug sockets in turn consist of an external conductor 37b and an internal conductor 37a, the couplers prepared in this manner subsequently being pressed into a corresponding stepped hole 39 in the chassis and thus producing the desired contact for the shielding.
The connection between the vertical and horizontal regions is produced when the equipped printed circuit board (including the plug block) is connected to the chassis, the leading end of the internal conductor 23 (that is to say of what is known as the vertical region) penetrating into and through the corresponding internal conductor hole 39 in the coupler 37 (that is to say in the horizontal region) in this joining step.
The embodiment explained by way of
In this context, the vertical and horizontal regions of the means belonging to the antenna are shown, and ultimately form a first plug half A on the antenna module side, which can be mechanically and electrically connected to a plug half B in the joining direction S, with the 90° elbowing.
During the aforementioned joining step along the joining direction Z, the external conductors 27 of what is known as the vertical region are pressed into the ducts 117 of the chassis 7 and thus of the foot part 17, and thus form a galvanic connection. The contact of the internal conductor is produced in that the tapered part of the respectively leading end of the internal conductor 23 is pressed into the slotted part of the other internal conductors, which lead to or belong to the coupler 37. There is air in the region of the connection of the internal conductor as a dielectric.
The foot part 17, extended downwards through the mounting hole 15, of the antenna chassis 7 additionally has features which on the one hand guide the components during the joining process and on the other hand mechanically relieve the electric components such as the printed circuit board 9 when they are fully guided through.
Via the foot part comprising the chassis 7, a mechanically stable connection is produced between the inner and outer units, that is to say between the electric assembly provided as an inner unit 3 and the outer unit in the form of the motor vehicle antenna 1.
By way of the embodiments so far, a variant has been disclosed in which, with a minimal construction height, a radial and in particular parallel connection possibility is implemented parallel to the pedestal or to the printed circuit board, mounted on the pedestal 7, of an antenna mounted on the outside of a motor vehicle, in such a way that an internal part, located in the interior 17 of the motor vehicle and comprising further electronic components, can be connected in an extremely simple manner in a displacement direction S extending parallel to the printed circuit boards 9, 109.
By contrast, in different applications, the described 90° angle connection can be dispensed with, in such a way that a coaxial or bus connection variant is provided which extends counter to the plugging or joining direction Z in the interior of the motor vehicle.
This is shown purely schematically by way of
Likewise, a bus coupler which can be plugged on counter to the plugging and joining direction Z may be connectable, the bus connection 29 in this embodiment merely comprising individual wires 29b which end extending straight proceeding from the printed circuit board 9, without any curvature 45, that is to say in the plugging and joining direction Z.
In this case too, the individual wires 29b would be fixed mechanically at a distance from one another by way of a block 33, which consists of a non-conductive material, preferably plastics material (dielectric), reference finally also further being made to
Number | Date | Country | Kind |
---|---|---|---|
10 2011 016 294.1 | Apr 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP12/01164 | 3/15/2012 | WO | 00 | 10/7/2013 |