The present invention relates generally to a real-time location system (RTLS) having active tags, bridges, and one or more room-level event sensors, that pass sufficient sensor data to a location engine in a central server, to locate tags at room-level within a building like an outpatient-healthcare clinic.
RTLS systems estimate locations for moving tags or moving personnel badges within a floor plan of interior rooms, in buildings such as hospitals and clinics. Many RTLS systems based on radio-frequency signals such as Wi-Fi or Bluetooth Low Energy (BLE), are designed to have moving tags that transmit a radio signal, within a field of receiving devices called bridges, gateways, sensors, or Access Points. The tag transmission initiates a process whereby a network of bridges measure and use received signal strength of transmissions from the tag, as a proxy for estimating the distance between the tag and each bridge, and then use multi-lateration or proximity algorithms to estimate the locations of tags. Those approaches with tags whose transmissions initiate the location algorithms are standard in the industry, and provide location estimates that are acceptable for many use cases in industrial and manufacturing environments. They may even be accurate enough to locate tagged assets and tagged people with accuracy within 1-meter or less. But the tag-transmission-initiated approaches common in the industry fail to provide an efficient location system for determining the entry of patients and staff into specific clinical rooms in outpatient clinics.
Outpatient clinics are typically comprised of a series of small rooms where patients receive individual care from one or more caregivers. The goal of the RTLS system will be to determine precisely which patient is in which room with which caregiver(s), and provide that information to the caregivers, and clinic managers, for optimal patient care and patient experience.
RTLS systems that are in common use in healthcare, fail to determine reliably which room the tag resides in. For example, where two exam rooms share a common wall, the RTLS systems in common use struggle to determine which side of the wall a tag resides on. Primarily, this lack of accuracy is the result of the tag's radio-transmission passing a radio signal through the wall. The tag initiates the location process by sending a radio signal. A sensor in an adjacent room may hear the tag signal more strongly than a sensor in the proper room, and the system will mis-report the tag in the incorrect, adjacent room. A better location system is required that can reliably determine which side of a wall a tag resides on, so the hospital can determine which room a patient is in, and which caregivers are in the room with the patient.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of method steps and apparatus components related to an RTLS having active tags, room-level event sensors, and bridges that pass location updates to a location engine in a central server. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
It will be appreciated that embodiments of the invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of RTLS having tags, bridges, and bay-level event sensors. The non-processor circuits may include, but are not limited to, a radio receiver, a radio transmitter, signal drivers, clock circuits, power source circuits, and user input devices. As such, these functions may be interpreted as steps of a method to perform tag functions, bridge functions, and bay-level event sensor functions. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The current invention proposes a room-level-event-sensor-initiated RTLS. Room-level event sensors determine which rooms have likely had a tag-wearing patient or staff member enter or leave a room. But the room-level event sensor by itself may not have any capability to determine which tag has entered or left the room. Nor does the radio tag, communicating to bridges, provide the location engine with enough information to determine, by itself, which tag has entered or left any room. But the combination of the room-level event sensors initiating a location process, which then considers the radio-signal-strength information from the tags and bridges, can determine which tag has entered or left a room. The room-level event sensors may include door-position sensors, microphones, motion sensors, voice-recognition sensors, speech-recognition sensors, thermographic cameras, infrared cameras, or visible-light cameras.
Those skilled in the art will recognize that a location engine is an algorithm coded in software that processes sensor inputs including sensed events about transmitting tags as they move within a building, and produces an estimate of the location of those tags within a building. A sensor which detects an event occurring in a specific room but not an adjacent room is defined as a “room-level event sensor.” The event that each room-level event sensor detects, occurring in a specific room but not an adjacent room, is generally defined as a “motion event”. A door-position sensor may detect a door moving in a specific room. A room-level microphone may detect an increase in ambient noise or speech in a specific room as people move into the room. A camera may detect a person entering or leaving a room. A room-level-event-sensor initiated RTLS is defined as a system of tags, sensors, and a real-time location engine, which employs room-level event sensors and their perceived motion events to initiate a location-determination process for a set of tags. Estimating the location of a tag with a precision of determining which room a tag resides in is often named “room-level accuracy”.
As is already typical in the industry, the location engine may employ trilateration algorithms on the signal strength reports or ultrawideband reports it receives from multiple bridges to form one estimate of the location of the tag. With the current invention, when a room-level event sensor determines that it is likely that a tag (on a person) has entered or left a room, the location engine looks at the set of tags estimated to be near that room, and reports whether one or more of those tags has likely entered or left the room, using a set of signal strength readings, tag-accelerometer readings, and room-event-sensor readings. The output of the location engine is a location estimate, which is an estimate of the room-level-location of the tag.
Thus, the system in FIG.1 includes a novel feature not taught in the prior art namely; a system of tags, bridges, room-level-event-sensors and a location engine, which first uses room-level event sensors to determine that a motion event e.g. a room entry or room exit, has occurred, then uses the location engine to determine which tag or tags have entered or left the room.
Those skilled in the art will recognize that an attribute of the current invention is the use of room-level event sensors to initiate the location process, to improve the location estimate to room-level. Radio frequency signals can suffer fades, absorption and reflection, all of which decrease its signal strength. As a result, the location engine that relies solely on radio frequency signal strength(s) to determine location will make location-estimate errors and erroneously place an asset or person in the wrong room. For some RTLS applications and use cases, determining which room an asset is in, is of the utmost importance. Therefore, an RTLS system that uses room-level event sensors to improve the estimate with greater accuracy is a novel improvement.
Typically, in a RTLS, radio signals sent by a tag or tags to the multiple bridges will suffer from a variety of polarity fades, i.e., mismatches between the polarity of the transmitting antenna on the tag and the receive antenna on the bridge. These polarity fades work to dispel the general assumption that the RSSI of the advertisement from the tag to the bridge is directly correlated to the distance between the tag and the bridge. Therefore, this adds error to the location estimate, mis-estimating which room a tag is placed. In addition, some of the tags will be blocked (by metal objects or other assets) from a clear line of sight to the one or more bridges, further breaking the correlation of signal strength to distance. Some of the tags will have their radio energy absorbed by human bodies or bottles of water, further breaking the relationship of signal strength to distance. The tag may stop in a location where it happens to suffer from a persistent multipath fade relative to a specific bridge, so that bridge will mis-estimate its distance to the tag. Finally, all of these radio fading effects are time-varying, as people and metal objects move through the hospital's rooms, so using radio signal strength alone to estimate the location of an asset tag will make a stationary asset appear to move from time to time.
All of these radio-fading effects make it very difficult to estimate which room each of the patients-with-tags and caregivers-with-tags have arrived in, producing erred room-location estimates. Room 1 may be less than 1 meter from the adjacent Room 2. If the RTLS location algorithm has 1-meter accuracy 90% of the time, then the algorithm will fail to estimate the correct room-level location of all assets and people 10% of the time. Hence, those skilled in the art will reach the conclusion that radio signal strength alone is insufficient for determining which room a patient or caregiver resides in, even if it is 1-meter accurate or half-meter accurate. Signal-strength measurements are degraded by too many radio fading effects.
Hence, the present invention uses room-level event sensors to help determine which room a tag is located. Room-level event sensors have a relative advantage in that they perceive the motion or sound changes inside a room, but they are unaware of any sound or motion in any adjacent room because those movements are in a different room shielded from the sensor by a wall. In using the system and methods of present invention, the room-level event sensor in room 1 sees objects moving, or producing sound in room 1. The room-level event sensor in room 2 senses objects moving or producing sound in room 2. Neither room-level event sensor can sense any motion on the opposite side of the wall in the adjacent room.
With the present invention, each room-level event sensor in each room sends a periodic transmission of motion events. In one embodiment of the present invention, a room-level event sensor such as a door position switch, sensing no opening of its door, includes that no-motion status indication in its transmission. When that door-position switch senses an opening of the door, it transmits an indication of the open door. In an alternate embodiment of the present invention, a room-level event sensor such as a microphone senses a transition from room-silence to room-with-sound, and that motion-event is transmitted to the location engine. In yet other embodiments of the present invention, the room-level event sensor may be a passive infrared motion sensor, a voice detector, or a speech recognition sensor. Since motion-status event changes in one room are likely to be non-coincident with motion-status event changes in an adjacent room, each room will have a unique “motion-event fingerprint” for its last few minutes of observed time. A “motion-event fingerprint” is a record of a room's motion-change events over a recent few second's time. The location engine can store these “motion-event fingerprints” for each room, for use in the location estimate. As an example, a combination of a door opening, then a transition from silence to speech, then a sensation of human walking motion into a room, followed by a door closing, is a strong indicator of the likelihood that a patient or caregiver or both have entered a room. When a location engine compiles a candidate list of tags that may have entered the room, the location engine consults additional information to get a room-level location fix: It will compare the patterns of the motion statuses of the candidate tags as reported in the tag's transmissions, to the “motion fingerprints” of the room. The location engine will match tag(s) to a room location based on a match between the tags' reported motion statuses and the room's motion-event fingerprint.
As an illustration of the unique benefit of the current invention, consider the challenge of locating a tag-wearing staff member, or patient. Radio signals are absorbed by the human body. The location engine that uses only radio signal-strength will struggle to determine where a staff member or patient is actually located, and may report an adjacent (incorrect) room as the location of the staff tag. In one embodiment of the current invention, the room-level event sensor may report (in each transmission) the current motion status in the room as measured at the room-level event sensor, plus the motion status at predetermined time periods (e.g. six seconds ago and 12 seconds ago). As an example, a room-level event sensor in room 2 can report in one or more transmissions that there was no motion-event in a room 12 seconds ago, a walking-motion-event (consistent with a human at walking speed) six seconds ago, and motion now that is consistent a person who has stopped walking. Two staff tags or patient tags that are perceived equally likely to be near room 2 based on signal strength, report the motion status of their accelerometers. Patient tag P may report a motion pattern similar to a patient sitting in a room for the last 12 seconds. Patient tag Q reports that it has been walking for the last 12 seconds but just now that walking has slowed, as if the tag wearer just stopped walking and entered a room. The location engine can determine that the tag P is unlikely to be in the room with the room-level event sensor. However, tag Q is very likely to be in the room with the room-level event sensor. The location engine is therefore more accurate than a system based on signal strength alone.
Hence, the RTLS in the current invention uses at least three algorithmic methods and/or processes to estimate the room-level location of a tag. These processes include:
In one embodiment of the invention, the radio-signal-strength estimate is determined in the location engine, using reports of received signal strength at the bridges. In an alternate embodiment of the invention, the radio-signal-strength estimate is determined in the tag, which listens for the radio transmissions from multiple room-level event sensors, and estimates its own location, based on the relative signal strengths of the sensors in several rooms.
Thus, the current invention proposes a novel use of a room-level event sensor to initiate the location process whenever it is likely that a person has entered or left the room. A room-level event sensor is defined as an electronic sensing device that can determine whether an event occurs in one room, independently of what is happening in any adjacent room. In one embodiment of the invention, a room-level event sensor may be a door-position sensor, and the room-level event it senses is the opening or closing of a door. It is very likely that a patient or caregiver can enter or leave a room only when the door-position sensor perceives an open door. In another embodiment, a room-level event sensor may be a microphone. The sensed room-level event is the transition from a room being silent to a room being occupied by people speaking. It is very likely that a patient or caregiver starts speaking or creating ambient noise when a patient or caregiver enters a room, and very unlikely that there is ambient noise or human speech in a room after all occupants have left. The room-level ambient noise or human-speech sensor can determine whether a person is likely occupying or leaving its monitored room, without being misled by people occupying or leaving any adjacent room.
A unique aspect of the invention, is that the room-level sensors are specified to initiate the locating process whenever it is likely that a patient or caregiver has changed rooms, executing the location process to determine which patient or staff member has entered that room. This is in marked contrast to historical RTLS systems which initiated the process at the tag, then executed the location process to attempt to determine which room the tag resides in, often choosing a mistaken or adjacent room.
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Number | Date | Country | |
---|---|---|---|
62993743 | Mar 2020 | US |