This application claims the benefit of European Application No. EP14171383, filed Jun. 5, 2014, incorporated by reference herein in its entirety.
The present invention relates to a root bushing for a wind turbine rotor blade, to a wind turbine rotor blade, to a wind turbine and to a method for manufacturing a wind turbine rotor blade for a wind turbine.
Modern wind turbine rotor blades are built from fiber-reinforced plastics. A rotor blade typically comprises an airfoil having a rounded leading edge and a sharp trailing edge. The rotor blade is connected with its blade root to a hub of the wind turbine. The blade root comprises at least one or a plurality of root bushing. The root bushings can be provided with internal threads. Bolts are engaged with theses threads to connect the blade root to the hub. EP 1 486 415 A1 describes such a root bushing. The root bushings are embedded in the fiber composite material of the rotor blade. A mechanical anchoring between the root bushing and the fiber composite material can be achieved by sandblasting the surface of the root bushing or by providing circumferential grooves, for example.
It is one object of the present invention to provide an improved root bushing for a blade root of a wind turbine rotor blade.
Accordingly, a root bushing for a wind turbine rotor blade is provided. The root bushing has a cylindrical shape with longitudinal grooves.
The root bushing is advantageous in that a bonding area between the root bushing and the fiber composite material is enlarged in comparison to known cylindrical root bushings. Since the grooves are arranged in a longitudinal direction of the root bushing, no bonding zones between the root bushing and the surrounding fiber composite material are exposed to tensile loads perpendicular or close to perpendicular to the bonding surface. The entire surface of the root bushing is used to transmit shear forces from the root bushing to the fiber composite material. No fibers are loaded in the direction of −90° to the fiber direction. Thus, safer blades with less risk of root failure can be manufactured.
According to an embodiment, the grooves are arranged parallel to a middle axis of the root bushing. Preferably, the root bushing is symmetrically to the middle axis. Alternatively, the grooves may run angular to the middle axis.
According to a further embodiment, the root bushing has a circular cross-section. Alternatively, the root bushing may have an oval or rectangular cross-section.
According to a further embodiment, the root bushing has a central bore comprising a thread. A bolt can be engaged with the thread to connect the root bushing to the hub of the wind turbine.
According to a further embodiment, the grooves are evenly distributed on a circumference of the root bushing. Alternatively, the grooves may be distributed unevenly.
According to a further embodiment, the root bushing has a first face and a second face and wherein the first face is flat and the second face is tapered. The second face is preferably pointed to an end. This ensures flexibility of the root bushing.
According to a further embodiment, the grooves have a semicircular cross-section. Alternatively, the grooves may have a rectangular, triangular or any other desired cross-section.
According to a further embodiment, the grooves have a sinusoidal cross-section. The root bushing may have different groove geometries like semicircular and sinusoidal cross-sections at the same time.
According to a further embodiment, the root bushing is wrapable with a unidirectional fiber weave such that roving yarns thereof are placed in the grooves of the root bushing. The unidirectional fiber weave comprises roving yarns that are stitched together by an elastic stitching yarn.
Further, a wind turbine rotor blade is provided, comprising such a root bushing according and a unidirectional fiber weave which is wrapped around the root bushing such that roving yarns thereof are placed in the grooves. The fiber weave can be embedded in a fiber composite material which gives the rotor blade its shape. The unidirectional fiber weave can be an interface between the root bushing and the fiber composite material. The unidirectional fiber weave is part of the fiber composite material.
According to an embodiment, the roving yarns of the unidirectional fiber weave are stitched together with an elastic stitching thread. The elastic stitching thread can be made of special spun thermoplastic polyester, natural rubber or polyurethane, for example.
According to a further embodiment, the unidirectional fiber weave is impregnated with a resin. The resin may be a thermoplastic or thermosetting material.
Further, a wind turbine with such a root bushing and/or such a wind turbine rotor blade is provided.
Further, a method for manufacturing a wind turbine rotor blade for a wind turbine is provided. The method includes a) providing a root bushing, wherein the root bushing has a cylindrical shape with longitudinal grooves, b) providing a unidirectional fiber weave, c) wrapping the unidirectional fiber weave around the root bushing such that roving yarns of the unidirectional fiber weave are placed in the grooves, and d) impregnating the unidirectional fiber weave with a resin.
According to an embodiment, the unidirectional fiber weave is impregnated in a vacuum assisted resin transfer molding (VARTM) process. In the VAARTM process the dry fiber material is evacuated in a mold and then infiltrated with resin. After curing the resin, the component, i.e. the blade can be taken out of the mold.
“Wind turbine” presently refers to an apparatus converting the wind's kinetic energy into rotational energy, which may again be converted to electrical energy by the apparatus.
Further possible implementations or alternative solutions of the invention also encompass combinations—that are not explicitly mentioned herein—of features described above or below with regard to the embodiments. The person skilled in the art may also add individual or isolated aspects and features to the most basic form of the invention.
Further embodiments, features and advantages of the present invention will become apparent from the subsequent description and dependent claims, taken in conjunction with the accompanying drawings, in which:
In the Figures, like reference numerals designate like or functionally equivalent elements, unless otherwise indicated.
The wind turbine 1 comprises a rotor 2 connected to a generator (not shown) arranged inside a nacelle 3. The nacelle 3 is arranged at the upper end of a tower 4 of the wind turbine 1.
The rotor 2 comprises three blades 5. The blades 5 are connected to a hub 6 of the wind turbine 1. Rotors 2 of this kind may have diameters ranging from, for example, 30 to 160 meters. The blades 5 are subjected to high wind loads. At the same time, the blades 5 need to be lightweight. For these reasons, blades 5 in modern wind turbines 1 are manufactured from fiber-reinforced composite materials. Therein, glass fibers are generally preferred over carbon fibers for cost reasons. Oftentimes, glass fibers in the form of unidirectional fiber mats are used.
The blade 5 comprises an aerodynamically designed portion 7, which is shaped for optimum exploitation of the wind energy and a blade root 8 for connecting the blade 5 to the hub 6. The blade 5 may be fixed to the hub 6 by means of bolts.
The blade root 8 comprises a plurality of root bushings 9 for a releasable connection of the blade 5 to the hub 6. The root bushings 9 are embedded in the blade root 8 so that bolts (not shown) can be screwed into an internal thread of the root bushings 9 for a firm but releasable engagement therewith. The number of root bushings 9 is arbitrary. In
In the following,
The root bushing 9 has longitudinal notches or grooves 15. In
In one embodiment, shown in
In one embodiment, shown in
The root bushing 9 is wrapped with a unidirectional roving weave 19. The weave 19 includes roving yarns 20 that are laid down in the grooves 15. During wrapping the weave 19 around the root bushing 9, the roving yarns are placed in the grooves 15. The roving yarns 20 are stitched together by an elastic stitching thread 21. After wrapping the unidirectional weave 19 around the root bushing 9 resin is injected in the weave 19, preferably in a vacuum assisted resin transfer molding technique.
In a step S1 the root bushing 9 is provided, wherein the root bushing 9 has a cylindrical shape with longitudinal grooves. The grooves can be cast or milled into a surface of the root bushing 9. The root bushing 9 preferably is made of “ductile iron”. This material has a high impact and fatigue resistance due to its nodular graphite inclusions. One type of this material is the so-called ADI (austempered ductile iron).
In a step S2 the unidirectional fiber weave 19 is provided. The fiber weave 19 includes the roving yarns 20 that are stitched together by the elastic stitching thread 21.
In a step S3 the unidirectional fiber weave 19 is wrapped around the root bushing 9 such that the roving yarns 20 of the unidirectional fiber weave 19 are placed in the grooves 15.
In a step S4 the unidirectional fiber weave 19 is impregnated with a resin. The resin may be a thermoset or a thermoplastic material. Preferably, the unidirectional fiber weave 19 is impregnated in a vacuum assisted resin transfer molding process. The unidirectional fiber weave 19 can be covered with several layers of composite material to form the blade 5.
The root bushing 9 is advantageous in that the bonding area is enlarged with minimum 57% (semicircular grooves 15) relative to known cylindrical root bushings. Since the grooves 15 are arranged in a longitudinal direction of the root bushing 9 no bonding zones between the root bushing 9 and the surrounding fiber composite material are exposed to tensile loads perpendicular or close to perpendicular to the bonding surface. The entire surface of the root bushing 9 is used to transmit shear forces from the root bushing 9 to the fiber composite material, i.e. the weave 19. No fibers are loaded in the direction of −90° to the fiber direction. Known root bushings are normally tapered. The tapered part has reduced shear force transmission capacity due to the angle of the tapered part. With the root bushing 9 as explained before this disadvantage is overcome due to the longitudinal grooves 15. Since the shear force transmission is more effective with the root bushing 9, less material is used and reduced costs for producing the blades 5 can be expected. Further, safer blades 5 with less risk of root failure can be manufactured.
Although the present invention has been described in accordance with preferred embodiments, it is obvious for the person skilled in the art that modifications are possible in all embodiments.
Number | Date | Country | Kind |
---|---|---|---|
14171383.4 | Jun 2014 | EP | regional |