The present invention relates to a roots pump having a plurality of rotary shafts arranged in parallel relation to each other and a rotor arranged on each of the rotary shafts, wherein the rotors on any two adjacent rotary shafts are engaged with each other and a set of engaged rotors are accommodated in a pump chamber which is formed in the roots pump.
In a roots pump, or a kind of vacuum pump, as disclosed in Unexamined Japanese Patent Publication No. 2002-221178, a set of two rotors are rotated in engagement with each other. The rotation of the two engaged rotors transfers gas while simultaneously compressing the same. The roots pump having plural sets of such two rotors has a passage formed in an end wall which partitions any two adjacent pump chambers which are arranged in the axial direction of the rotary shaft for transferring the gas from a large-volume pump chamber to a smaller-volume pump chamber.
The roots pump has a closed space formed between the rotor and a peripheral wall surface of the pump chamber facing the rotor, and such closed space communicates with the other closed space formed between the other rotor and the other peripheral wall surface of the same pump chamber facing the other rotor. The passage in the end wall communicates with this confluent space (a confluent passage in the present invention), and gas in the confluent space flows into the passage in the end wall.
When a roots pump is used as a vacuum pump in a film production process for manufacturing semiconductor, such as process for forming nitriding film, reaction product flows into the roots pump with gas. When this reaction product is accumulated in a pump chamber of the roots pump, operation of the roots pump may become disabled. Therefore, there has been a need for preventing reaction product from being accumulated in a roots pump.
In accordance with the present invention, a roots pump has a housing, a plurality of rotary shafts, a rotor, a confluent passage and a closed space. The housing forms therein a pump chamber. The rotary shafts are supported on the housing in parallel relation to each other. The rotor is mounted on each of the rotary shafts, and the rotors on any adjacent rotary shafts are in engagement with each other. A set of the engaged rotors is accommodated in the pump chamber. The confluent passage is formed along one crossing line of paired imaginary swept peripheral surfaces in one-to-one correspondence with the paired and engaged rotors. The closed space is formed in one-to-one correspondence with each of the paired rotors between the paired rotors and paired peripheral wall surfaces which form the pump chamber. The closed space initially joins the confluent passage from a terminal end of the confluent passage with rotation of the paired rotors.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The features of the present invention that are believed to be novel are set forth with particularity in the appended claims. The invention together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
A first preferred embodiment of a roots pump 10 according to the present invention will now be described with reference to
Referring to
The rotor housing 11 includes a cylinder block 14 forming integrally therewith a plurality of wall elements 141 and a cylinder block 15 forming integrally therewith a plurality of wall elements 151. The wall elements 141, 151 are paired, respectively, and each paired wall elements 141, 151 cooperates to form an end wall 16. A space between the front housing 12 and the end wall 16 and spaces between any two adjacent end walls 16 are defined as pump chambers 17, 18, 19, 20, respectively. A space between the rear housing 13 and the end wall 16 is defined as a pump chamber 21. The pump chambers 17, 18, 19, 20, 21 are formed such that the widths thereof are reduced progressively in this order.
As shown in
The rotary shaft 22 has a plurality of rotors 28, 29, 30, 31, 32 formed integrally therewith. Similarly, the rotary shaft 25 has also a plurality of rotors 33, 34, 35, 36, 37 formed integrally therewith. The number of the rotors formed with the rotary shaft 25 is equal to that with the rotary shaft 22. The rotors 28 through 32 have similar shape and size as seen in the direction of the axis 221 of the rotary shaft 22. Similarly, the rotors 33 through 37 have similar shape and size as seen in the direction of the axis 251 of the rotary shaft 25. The thicknesses of the rotors 28, 29, 30, 31, 32 reduce in this order, and the thicknesses of the rotors 33, 34, 35, 36, 37 also reduce in this order.
The rotors 28, 33 are accommodated in the pump chamber 17 in engagement with each other with a slight clearance formed therebetween. The rotors 29, 34 are accommodated in the pump chamber 18 in similar engagement with each other. Similarly, the rotors 30, 35, the rotors 31, 36, and the rotors 32, 37 are accommodated in the pump chamber 19, 20 and 21, respectively. The volumes of the pump chambers 17 through 21 reduce progressively in this order.
The rotors 28, 33 sweep or pass over the surfaces of inner peripheral walls 59, 60, which form the pump chamber 17, at a slight distance therefrom. The rotors 29, 34; 30, 35; 31, 36; and 32, 37 pass similarly over the surfaces of the inner peripheral walls 61, 62; 63, 64; 65, 66 and 67, 68 which form the pump chambers 18, 19, 20 and 21, respectively.
The roots pump 10 further includes a gear housing 38 assembled to the rear housing 13. The rotary shafts 22, 25 extend through the rear housing 13 and protrude into the gear housing 38. Gears 39, 40 are secured to the protruding ends of the rotary shafts 22, 25, respectively, for engagement with each other. An is electric motor M is assembled to the gear housing 38, and driving power of the electric motor M is transmitted to the rotary shaft 22 through a shaft coupling 47 thereby to rotate the rotary shaft 22 in the direction indicated by the arrow R1 in
A circular arc C1 illustrated in
As shown in
As shown in
The passage surfaces 491, 511, 521, 531 of the respective confluent passages 49, 51, 52, 53 connect with the peripheral wall surfaces 59 through 66, respectively. Side edges 492, 493 of the passage surface 491 are connections between the passage surface 491 of the confluent passage 49 and the peripheral wall surfaces 59, 60, respectively. The planar passage surface 491 declines from the side of the front housing 12 toward the side of the rear housing 13 and is also located higher than the lowest portions 591, 601 of the peripheral wall surfaces 59, 60. Accordingly, the side edges 492, 493 of the passage surface 491 are spaced apart from each other increasingly from the side of the front housing 12 toward is the side of the rear housing 13. In other words, the width of the confluent passage 49, that is, the width of the passage surface 491, is widened progressively from the side of the front housing 12 toward the side of the rear housing 13, and the width of the confluent passage 49 at its terminal end 495 is greater than that at the starting end 494. Similarly, the widths of the confluent passages 51 through 53, that is, the widths of the passage surfaces 511 through 531, are also widened increasingly from the side of the front housing 12 toward the side of the rear housing 13.
As shown in
A closed space P1 is formed between the rotor 28 and the peripheral wall surface 59 which forms the pump chamber 17, and a closed space P2 is formed between the rotor 28 and the peripheral wall surface 60 which forms the pump chamber 17 and the rotor 33. The closed spaces P1, P2 moving from the splitting passage 50 toward the confluent passage 49 with rotation of the rotors 28, 33 meet each other at the confluent passage 49. Likewise, similar closed spaces are formed in the other pump chambers 18 through 21, as indicated by P1, P2 in
As shown in
As shown in
The guide pipe 43 accommodates therein a valve body 45 and a return spring 46. The guide pipe 43 forms therein a tapered valve hole 431, and the valve body 45 is operable to open and close the valve hole 431. The return spring 46 urges the valve body 45 in the direction which causes the valve hole 431 to be closed. The guide pipe 43, the valve body 45 and the return spring 46 cooperatively serve as a means for preventing reverse flow of gas.
As the electric motor M of the roots pump 10 initiates operation, the rotary shafts 22, 25 rotate and, therefore, gas in an external vacuum target region (not shown) is introduced into the pump chamber 17 through the suction port 142. The gas introduced into the splitting passage 50 of the pump chamber 17 through the suction port 142 is taken into the closed spaces P1, P2 and then transferred toward the confluent passage 49 by rotation of the rotors 28, 33. The gas sent to the confluent passage 49 flows from the inlet 481 of the end wall 16 into the exhaust passage 48 and then transferred to the splitting passage 55 of the next (or downstream) pump chamber 18 through the outlet 482. Similarly, the gas is transferred from one pump chamber to another in the order in which the volume of the pump chambers reduce, that is, in the order of the pump chambers 18, 19, 20, 21. In other words, the gas introduced into the pump chamber 17 is transferred therefrom to the pump chambers 18 through 21 one after another while being compressed. The gas transferred into the pump chamber 21 is then exhausted to the exhaust gas treatment device through the exhaust port 152, the flange 41, the muffler 42 and the backflow preventing means.
Each of the confluent passages 49, 51, 52, 53 has a front end on the side of the front housing 12 and a rear end on the side of the rear housing 13, as represented by the starting end 494 and the terminal end 495 of the confluent passage 49 as shown in
According to the first preferred embodiment, the following advantageous effects are obtained. It is noted that the effects will be mentioned with reference to only the confluent passage 49, but similar effects are obtainable from the other confluent passages 49, 51, 52, 53.
If the meeting of the closed spaces P1, P2 takes place simultaneously at both the starting end 494 and the terminal end 495 of the confluent passage 49, the gas in the closed spaces P1, P2 simultaneously flows into the confluent passage 49 from both the starting end 494 and the terminal end 495 of the confluent passage 49. Such inflow tends to cause stagnation of the gas adjacent to the starting end 494 of the confluent passage 49 and, therefore, reaction product tends to be accumulated at the point of stagnation when the roots pump 10 is used as a vacuum pump in film production process for manufacturing semiconductors.
When the closed spaces P1, P2 join the confluent passage 49 from the terminal end 495 toward the opposite starting end 494 of the confluent passage 49, the gas in the closed spaces P1, P2 flows initially at the terminal end 495 and then to the confluent passage 49. As the closed spaces P1, P2 move toward the confluent passage 49 by further rotation of the rotors 28, 33, the communication port between the closed spaces P1, P2 and the confluent passage 49 expands from the terminal end 495 toward the starting end 494. As a result, a gas flow as is indicated by the arrow Q in
Then, according to the first preferred embodiment, the passage surface 491 of the confluent passage 49 located below the splitting passage 50 declines from the starting end 494 of the confluent passage 49 toward the terminal end 495 thereof. Therefore, reaction product tends to be transferred easily by its own weight from the starting end 494 toward the terminal end 495 on the passage surface 491 of the confluent passage 49. The structure wherein the confluent passage 49 having an arrangement for preventing the accumulation of reaction product is located below the splitting passage 50 is effective to eliminate the problem associated with the accumulation of the reaction product in the roots pump 10.
The present invention is not limited to the embodiment described above but may be modified into the following alternative embodiments.
Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein but may be modified within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-141114 | May 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3844695 | Weatherston | Oct 1974 | A |
4652223 | Nissen | Mar 1987 | A |
6176693 | Conti | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
3318519 | Nov 1984 | DE |
1 006 281 | Jun 2000 | EP |
1 150 015 | Oct 2001 | EP |
1 201 927 | May 2002 | EP |
309685 | Apr 1929 | GB |
64-80786 | Mar 1989 | JP |
2-91491 | Mar 1990 | JP |
05018379 | Jan 1993 | JP |
10-184576 | Jul 1998 | JP |
11-315794 | Nov 1999 | JP |
2002-206493 | Jul 2002 | JP |
2002-221178 | Aug 2002 | JP |
2003-90292 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20040241027 A1 | Dec 2004 | US |