Regulations typically require workers who work at heights to don a safety harness that is coupled to a support structure so that if a fall event occurs, the fall is limited, therein reducing the chances of injuries to the worker. Systems that protect workers during fall events that can occur while climbing or descending on structures such as ladders and the like can be a challenge because of the varying vertical locations of the worker in relation to a support structure.
For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an effective and efficient rope grab system that includes a rope grab and a generally vertically placed elongated member that is used as a support structure.
The above-mentioned problems of current systems are addressed by embodiments of the present invention and will be understood by reading and studying the following specification. The following summary is made by way of example and not by way of limitation. It is merely provided to aid the reader in understanding some of the aspects of the invention.
In one embodiment, a rope grab is provided. The rope grab includes a housing, a locking cam, a cam biasing member and a locking arm. The housing has an elongated member guide forming an elongated member passage. The elongated member passage is configured and arranged to receive an elongated member. The locking cam is pivotally coupled to the housing. The locking cam is configured and arranged to selectively engage an elongated member received in the elongated member passage. The cam biasing member positioned to provide a relatively slight biasing force on the locking cam towards an elongated member received in the elongated member passage. The locking arm is pivotally coupled to the housing. The locking arm has a first end that is configured and arranged to be coupled to a safety harness of a user and a second end that is configured and arranged to selectively engage the locking cam to lock the locking cam on an elongated member in the elongated member passage during a fall event.
In another embodiment, another rope grab is provided. The rope grab of this embodiment includes a housing, a locking cam and a locking arm. The housing has an elongated member guide that forms an elongated member passage. The elongated member passage is configured and arranged to receive an elongated member. The locking cam is pivotally coupled to the housing. The locking cam is configured and arranged to selectively engage an elongated member received in the elongated member passage. The locking cam has a radial edge that is configured and arranged to engage the elongated member. The radial edge having a curvature that varies in relation to a pivot connection to the housing so that the radial edge engages each elongated member at a contact angle that is the same even when different diameter elongated members are received in the elongated member passage of the housing. The locking arm is pivotally coupled to the housing. The locking arm has a first end that is configured and arranged to be coupled to a safety harness of a user and a second end that is configured and arranged to selectively engage the locking cam to lock the locking cam on an elongated member during a fall event.
In another embodiment, yet another rope grab system is provided. The rope grab system includes at least one bypass bracket and a rope grab. The at least one bypass bracket is configured and arranged to couple an elongated member to a support structure. The rope grab includes a housing, a locking cam, and a cam spring. The housing has an elongated member guide that forms an elongated member passage. The elongated member passage is configured and arranged to pass an elongated member and a portion of the at least one bypass bracket there through. The locking cam is pivotally coupled to the housing. The locking cam is configured and arranged to selectively engage one of the elongated member and the portion of the at least one bypass bracket. The cam spring is coupled between the housing and the locking cam to provide a relatively slight biasing force on the locking cam towards the elongated member and the portion of the at least one bracket received in the elongated member passage. The relatively slight biasing force is countered by gravity during normal operations of the rope grab.
In still further another embodiment, a method of manipulating a rope grab is provided. The method includes rotating a lever rotationally coupled to a housing to release a rotating side plate with a hand of a user; pulling back on an end of the rotating side plate to pivot a portion of the rotating side plate away from a side opening to an elongated member passage formed in the housing with the hand of the user; positioning the rope grab to receive an elongated member within the elongated member passage of the housing with the hand of the user; and releasing the rotating side plate to allow the rotating side plate to at least partially cover the side opening to the elongated member passage of the housing to retain the elongated member with the elongated member passage.
The present invention can be more easily understood and further advantages and uses thereof will be more readily apparent, when considered in view of the detailed description and the following figures in which:
In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize specific features relevant to the present invention. Reference characters denote like elements throughout Figures and text.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the inventions may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims and equivalents thereof.
Embodiments of the present invention provide a rope grab (cable grab) used for fall protection that can be easily manipulated with one hand to attach and detach the rope grab from an elongated member such as a rope, cable or the like used as a support structure. Embodiments of the rope grabs 100, 1000 and 2000 described herein are designed to be coupled to a safety harness donned by a user and to lock onto an elongated member during a fall event to limit the fall of the user. An embodiment of the rope grab 100 is illustrated in the side perspective view of
The housing 200 of the rope grab 100 is further illustrated in
A lever passage 212 passes through the body 202 of the housing 200 proximate the second side edge 202d and towards the lower end 202b of the body 202. The lever passage 212 is further positioned proximate the central post 204. The lever passage 212 includes a circular portion 212a and an extending portion 212b that extends from the circular portion 212a towards the lower end 202b of the body 202 of the housing 200. Proximate the lever passage 212 is a side wall portion 214 that extends generally perpendicular from the first side 303a of the body 202 of the housing 200. The side wall portion 214 is further generally positioned between the central post 204 and the lever passage 212. Proximate the side wall portion 214 is a mid-wall portion 216 that also generally extends perpendicular from the first side 303a of the body 202 of the housing 200. The mid wall portion 216 is also positioned proximate the lever passage 212. Further, a raised portion 215 extends from the first side 303a of the body 202 of the housing 200. The raised portion 215 extends from the first side 303a of the body 202 around the lever passage 212. The height of the raised portion 215 is less than a height of the side wall portion 214 and a height of the mid wall portion 216. The housing 200 further includes a lower post 208 that is positioned proximate the lower end 202b of the body 202 of the housing 200. The lower post 208 extends from the first side 303a of the body 202 and includes a central lower post passage 210. In particular, the lower post 208 includes a first lower post portion 208a that extends from the first side 303a of the body 202 and a second lower post portion 208b that extends from the first lower post portion 208a. The second lower post portion 208b has a diameter that is less than a diameter of the first lower post portion 208a. The housing 200 also has an upper post 221 that extends from the first side 303a of the body 202. The upper post 221 is positioned proximate the upper end 202a of the body 202 and includes an upper post passage 220. As illustrated in
The fixed side plate 600 is illustrated in
Referring to
Illustrations of the locking arm 400 are provided at least in
Referring to
The engaging portion 302b of the locking cam 300 further includes a first side edge 320 and a second side edge 321 that respectively extend from the connection portion 302a to the radial edge 302c. The second side edge 321 extends generally in a straight line from the connection portion 302a to the radial edge 302c. The first side edge 320 has a plurality of first side edge portions 320a, 320b and 320c. The first side edge portion 320a extends from the connection portion 302a in generally a perpendicular fashion. The second side edge portion 320b extends from the first side edge portion 320a in generally a curved configuration. The third side edge portions 320c extends from the second side edge portion 320b in generally a straight line to the radial edge 302c. The locking cam 300 further includes a hub portion 303 that extends around the cam passage 304 of the connection portion 302a of the cam body 302. The hub 303 extends out from the second side 301b of the cam body 302. The engaging portion 302b of the locking cam 300 further includes a third edge 330 that defines the engaging portion 302b from the connection portion 302a. The third edge 330 includes a locking arm engaging surface 332. The extending portion 408 of the locking arm 400 engages the locking arm engaging surface 332 of the locking cam 300 during a fall event as the locking arm 400 as further discussed below.
The construction of the rope grab 100 is further described in view of
A second bearing 126 is positioned in the main locking arm passage 412 of the locking arm 400. The main locking passage 412 of the locking arm is then positioned around the second post portion 204b of the central post 204 of the housing 200. The spring spacer 112 is then positioned around the third post portion 204c of the central post 204. The coiled portion 110a of the arm spring 110 is positioned around the spring spacer 112 while the first end portion 110b of the arm spring 110 is received in the spring holding slot 112b of the spring spacer 112. The first end portion 110b of the arm spring 110 is further received in the cut out section 203 of the third post portion 204c of the post 204 of the housing 200. This arrangement holds the first end portion 110b of the arm spring 110 in a static position in relation to the housing 200. The second end portion 110c of the arm spring 110 is received in the arm spring groove 409 of the locking arm 400 to assert a biasing force on the locking arm 400 in a locked position. A fastener, such as rivet 142 passing through the central post passage 206 of the central post 204 of the housing 200 and the third connector passage 604 of the fixed side plate 600 couples the housing 200 to the fixed side plate 600.
A lever spring 138 is positioned over the stem 702 of the first lever 700. The stem 702 of the first lever 700 is in turn passed through the lever passage 212 of the housing 200. A first end portion 138a of the lever spring 138 is received in a spring holding bore 705 in the first lever 700. A second end portion 138b of the lever spring 138 is positioned in a gap in the second side edge 214 of the housing 200 so that a biasing force is exerted on the stem 702 of the first lever 700 in a desired direction. The extending portion 212b of the lever passage 212 allows the engaging tab 710 (shown in
A first fastener 140 (first rivet) passing through the upper post passage 220 of the upper post 221 of the housing 200 and through the first connection passage 606 in the fixed side plate 600 and a second fastener 144 (second rivet) passing through the lower post passage 210 of the lower post 208 of the housing 200 and through the second connection passage 608 in the fixed side plate 600 further couples the housing 200 to the fixed side plate 600. The second fastener 144 further passes through the pivot connection passage 512 of the rotating side plate 500 to provide a pivot connection for the rotating side plate 500. The rope grab 100 further includes an upper roller 114 and a lower roller 134 to guide the elongated member through the cable guide channel 230 of the housing 200. The upper roller 114 is rotationally coupled to the rotating side plate 500 via upper roller rivet 116. The lower roller 134 is rotationally coupled to the housing 200 adjacent the cable guide 231 of the housing 200 via lower rivet 136.
A lifeline swivel connector 122 is coupled to the energy absorbing portion 404 of the locking arm 400 via swivel pivot connector 118. In particular, the swivel lifeline connector 122 includes a base 121c with a connection passage 121 and a pair of spaced arms 122a and 122b with aligned passages 123a and 123b. A pair of spaced arms 118a and 118b of a swivel pivot connection 118 is passed through the connection passage 121 of the swivel lifeline connector 122. A head portion 118c of the swivel pivot connection 118 has a diameter larger than the diameter of the connection passage 121 of the swivel lifeline connector 122. The pair of spaced arms 118a and 118b have aligned swivel pivot connection passages 117. A rivet 120 passes through the aligned swivel pivot connection passages 117 and the connection passage 406 of the locking arm 400 to couple the swivel lifeline connector 122 to the locking arm 400. A rivet 124 passed through the aligned passages 123a and 123b of the swivel lifeline connector 122 is used to couple a lifeline to the rope grab 100. As discussed above, the lifeline would be coupled to a safety harness (not shown) donned by a user.
Referring to the partial views of the rope grab 100 in
The partial cross-sectional side views of the rope grab 100 of
The partial cross-sectional views in
During a fall event, a user's frontal attachment to the user's harness that is coupled to the swivel connector 122 (which is in turn coupled to the locking arm 400) will pull the locking arm 400 down, therein rotating locking arm 400 about the central post 204. This movement causes the extending portion 408 of the locking arm 400 to engage the locking arm engaging surface 332 of the locking cam 300 therein pivoting the locking cam 300 also about the central post 204 of the housing 200. This movement of the locking cam 300 forces the radial edge 302c of the locking cam 300 to forcefully pinch a portion of the elongated member 702 or 714 between the radial edge 302c of the locking cam 300 and the cable guide 231 of the housing 200 therein locking movement of the rope grab 100 in relation to the elongated member 702 or 714. If the force is great enough during the fall event, the energy absorber portion 404 of the locking arm 400 will straighten out to absorb energy and prevent injury to the user. The rope grab 100 will remain locked onto the elongated member 702 or 714 until the downward force of the fallen user is removed. As discussed above, also during a fall event, the gravitation forces on the cam lock 300 are overcome by the light biasing force of the cam spring 132 as well as by inertial forces, to also cause the cam lock 300 to lock onto the elongated members 702 or 714.
Referring to
Embodiments of the present invention further includes a bypass bracket 800 that is designed to be coupled to a support structure and to hold an elongated member that the rope grab 100 is engaging in a generally static position. An example of a bypass bracket 800 is illustrated in
The bypass bracket 800 further includes a sleeve clip 820. The sleeve clip 820 includes a first portion 820a that has first and second connection apertures 823 (only one connection aperture 823 is shown in
A sleeve 830 is used in conjunction with the bypass bracket 800. The sleeve 830 has a tubular configuration with a central passage 832. An elongated member (such as elongated member 920 shown in
The bypass bracket 800 is designed to hold the elongated member 920 stationary while not interfering with the function of the rope grab 100. Referring to
Another embodiment of a rope grab 1000 is illustrated in the
The housing 1200 of rope grab 1000 includes rear slot 1207 best shown in
Proximate the lower end of the housing 1200 and cable guide 1231 is positioned lower roller rivet passages 1240 that pass through the housing 1200. A rivet 1142 passing through the lower roller rivet passages 1240 rotationally couples a lower roller 1134 to the housing 1200. A central post 1204 extends generally perpendicular from the first side of the housing 1200. The central post 1204 is generally located at a mid-portion between an upper end and a lower end of the housing 1200 towards a second side edge of the housing 1200 similar to central post 204 of rope grab 100 discussed above. Also similar to rope grab 100, the cam passage 1340 of the locking cam 1300 as well as passages in the cam spring 1132, the first bearing 1128, washer 1119, second bearing 1117, the spring spacer 1112, the arm spring 1110 are all received around the central post 1204 of the housing 1200. The central post 1204 includes an end portion 1205 that is received in a connection passage 1604 in the fixed side plate 1600 to couple the housing 1200 to the fixed side plate 1600. As with rope grab 100 described above, the housing 1200 includes a cam spring holding channel 1218 that surrounds the central post 1204. The cam holding channel 1218 includes a circular portion and an extending leg portion to hold a first side of the cam spring 1132. A second side of the spring engages the locking cam 1300. This arrangement of the cam spring 1132 provides a relatively light biasing force on the locking cam 1300 to rotate the locking cam 1300 towards an elongated member (cable or rope) in the elongated member passage 1230 of the housing 1200. This relatively light biasing force is countered by gravity in normal climbing operations which keeps the cam lock 1300 from locking onto the elongated member. Hence during normal operations, the rope grab 1000 moves relatively freely up and down the elongated member. In a free fall (fall event), gravitational forces do not counteract the light biasing force of the cam spring 1132 and the locking cam 1300 will lock onto the elongated member. Inertial loads on the locking cam 1300 during a fall also work in tandem with the light biasing force of the cam spring 1132 to rotate the locking cam 1300 onto the elongated member.
In rope grab 1000, the locking arm 1400 does not include an energy absorbing portion like locking arm 400 described above. Locking arm 1400, however, does include a locking arm extending portion 1408 and a connecting arm 1404. The locking arm extending portion 1408 is designed to engage a portion of the locking cam 1300 during a fall event to engage a radial edge 1302 into the elongated member as described above regarding locking arm extending portion 408 and the locking cam 300. The connecting arm 1404 includes a connecting aperture 1406 in which a connector 1350 is attached. In particular, a lifeline swivel connector 1122 is coupled to the connecting aperture 1406 of the locking arm 1400 via swivel pivot connector 1118. The swivel lifeline connector 1122 includes a base with a connection passage 1121 and a pair of spaced arms 1122a and 1122b with aligned passages 1123a and 1123b. A pair of spaced arms 1118a and 1118b of a swivel pivot connector 1118 is passed through the connection passage 1121 of the swivel lifeline connector 1122. A head portion 1118c of the swivel pivot connector 1118 has a diameter larger than the diameter of the connection passage 1121 of the swivel lifeline connector 1122. The pair of spaced arms 1118a and 1118b have aligned swivel pivot connection passages 1115a and 1115b. A rivet 1120 passes through the aligned swivel pivot connection passages 1115a and 1115b and the connection passage 1406 of the locking arm 1400 to couple the swivel lifeline connector 1122 to the locking arm 1400. A rivet 1124 passed through the aligned passages 1123a and 1123b of the swivel lifeline connector 1122 is used to couple a lifeline to the rope grab 1000. The carabiner 1350 is selectively coupled to the rivet 1124. The carabiner 1350 would be coupled to a safety harness (not shown) donned by a user.
The second bearing 1117 is positioned in a main locking arm passage 1412 of the locking arm 1400. The main locking passage 1412 of the locking arm is then positioned around the central post 1204 of the housing 1200 as described above. The spring spacer 1112 is also positioned around another portion of the central post 1204. The coiled portion of the arm spring 1110 is positioned around the spring spacer 1112 while a first end portion 1110a of the arm spring 1110 is received in a spring holding slot 1112b of the spring spacer 1112. The first end portion 1110a of the arm spring 1110 is further received in a cut out section 1203 of the center post 1204 of the housing 1200. This arrangement holds the first end portion 1110a of the arm spring 1110 in a static position in relation to the housing 1200. A second end portion 1110b of the arm spring 1110 is received in the arm spring groove 1409 of the locking arm 1400 to assert a biasing force on the locking arm 1400 in a locked position.
The rotating side plate 1500 includes an upper portion with a roller passage 1514 and lower portion with a pivot connection passage 1512. The upper roller 1114 is rotationally coupled to side plate 1500 via pin 1116. The pivot connection passage 1512 receives a second post 1208 of the housing 1200. The rotating side plate 1500 further includes a first edge 1508 and an opposed second edge 1510. The rotating side plate 1500 further includes a first cut out section 1533 that extends in from the second edge 1510 near the lower portion and a centrally located second cut out section 1531 to reduce weight of the rope grab 1000. Also included along the second edge 1510 of the rotating side plate 1500 is a lock surface portion 1511 and an extending tab 1502. The first cut out section 1533 is positioned between the lock surface portion 1511 and the extending tab 1502. A side plate spring 1130 is also received on a second post 1208 of the housing 1200. A biasing force from the side plate spring 1130 engaging the extending tab 1502 biases the rotating side plate 1500 to the retaining configuration. The rotating side plate 1500 must be rotated by hand after lever 1700 (discussed below) is rotated. This is done by pulling back on the rotating side plate 1500 proximate the upper roller 1114. Once in the open position, an elongated member can be slid into or out of the cable passage 1230. Once the elongated member is positioned in or taken out of the cable passage 1230, the rotating side plate 1500 can be released to rotate the rotating side plate 1500 to the retaining position and the lever 1700 can be released to engage the lock member 1106 (discussed below) to the rotating side plate 1500.
The lever 1700 and an associated lever biasing member 1109 are mounted on a third post 1211 extending from the housing 1200. The lever 1700 is rotationally mounted on the third post 1211. The lever biasing member 1109 biases the lever 1700 into a locked position with one end engaging the lever 1700 and another end engaging the housing 1200. The lock member 1106 and a lock member biasing member 1108 are also mounted on the third post 1211. The lock member biasing member 1108 biases the lock member 1106 in a lock position so that a lock portion 1107 of the lock member engages the lock surface portion 1511 of the rotating side plate 1500. A raised tab 1701 of lever 1700 is received in a slot 1105 of the lock member 1106 to rotate the lock portion 1107 of the lock member 1106 away from the lock surface portion 1511 of the rotating side plate when the lever 1700 is rotated.
Referring to the partial views of the rope grab 1000 in
The partial cross-sectional views in
As with rope grab 100, during a fall event with rope grab 1000, a user's frontal attachment to the user's harness that is coupled to the locking arm 1400 will pull the locking arm 1400 down, therein rotating locking arm 1400 about the central post 1204. This movement causes the extending portion 1408 of the locking arm 1400 to engage a locking arm engaging surface 1332 of the locking cam 1300 therein pivoting the locking cam 1300 also about the central post 1204 of the housing 1200. This movement of the locking cam 1300 forces the radial engaging edge 1302 of the locking cam 1300 to forcefully pinch a portion of the elongated member 1702 or 1714 between the radial edge 1302 of the locking cam 1300 and the cable guide 1231 of the housing 1200 therein locking movement of the rope grab 1000 in relation to the elongated member 1702 or 1714. The rope grab 1000 will remain locked onto the elongated member 1702 or 1714 until the downward force of the fallen user is removed. As discussed above, also during a fall event, the gravitation forces on the cam lock 1300 are overcome by the light biasing force of the cam spring 1132 as well as by inertial forces, to also cause the cam lock 1300 to lock onto the elongated members 1702 or 1714.
Another embodiment of a rope grab 2000 is illustrated in the
The housing 2200 of rope grab 2000 includes a cable guide 2231 that extends from the first side edge of the housing 2200 in generally a C shape. The cable guide 2231 forms a cable guide passage 2230 (or elongated member passage) that extends from proximate an upper end to a lower end of the housing 2200. Proximate the lower end of the housing 2200 and cable guide 2231 is positioned lower roller rivet passages 2340 that passes through the housing 2200. A rivet 2142 passing through the lower roller rivet passages 2340 rotationally couples a lower roller 2134 to the housing 2200. A central post 2204 extends generally perpendicular from the first side of the housing 2200. The central post 2204 is generally located at a mid-portion between an upper end and a lower end of the housing 2200 towards a second side edge of the housing 2200 similar to central post 204 of cable grab 100 discussed above. Also similar to cable grab 100, the cam passage 2304 of the locking cam 2300 as well as passages in the cam spring 2132, the first bearing 2128, second bearing 2117, the spring spacer 2112, the arm spring 2110 are all received around the central post 2204 of the housing 2200. The central post 2204 includes an end portion 2205 that is received in a connection passage 2604 in the fixed side plate 2600 to couple the housing 2200 to the fixed side plate 2600. As with rope grab 100 described above, the housing 2200 includes a cam spring holding channel 2218 that surrounds the central post 2204. The cam holding channel 2218 includes a circular portion and an extending leg portion to hold a first side of the cam spring 2132. A second side of the spring engages the locking cam 2300. This arrangement of the cam spring 2132 provides a relatively light biasing force on the locking cam 2300 to rotate the locking cam 2300 towards an elongated member (cable) in the elongated member passage 2230 of the housing 2200. This relatively light biasing force is countered by gravity in normal climbing operations which keeps the cam lock 2300 from locking onto the elongated member. Hence, during normal operations, the rope grab 2000 moves relatively freely up and down the elongated member. In a free fall (fall event), gravitational forces do not counteract the light biasing force of the cam spring 2132 and the locking cam 2300 will lock onto the elongated member. Inertial loads on the locking cam 2300 during a fall also work in tandem with the light biasing force of the cam spring 2132 to rotate the locking cam 2300 onto the elongated member.
In rope grab 2000, the locking arm 2400 does not include an energy absorbing portion like locking arm 400 described above. Locking arm 2400 does include a locking arm extending portion 2408 and a connecting arm 2404. The locking arm extending portion 2408 is designed to engage a portion of the locking cam 2300 during a fall event to engage a radial edge 2302 into the elongated member as described above regarding the locking arm extending portion 408 and the locking cam 300. The connecting arm 2404 includes a connecting aperture 2406 in which a connector 2350 is attached. In particular, a lifeline swivel connector 2122 is coupled to the connecting aperture 2406 of the locking arm 2400 via swivel pivot connector 2118. The swivel lifeline connector 2122 includes a base with a connection passage 2121 and a pair of spaced arms 2122a and 2122b with aligned passages 2123a and 2123b. A pair of spaced arms 2118a and 2118b of a swivel pivot connection 2118 is passed through the connection passage 2121 of the swivel lifeline connector 2122. A head portion 2118c of the swivel pivot connection 2118 has a diameter larger than the diameter of the connection passage 2121 of the swivel lifeline connector 2122. The pair of spaced arms 2118a and 2118b have aligned swivel pivot connection passages 2115a and 2115b. A rivet 2120 passes through the aligned swivel pivot connection passages 2115a and 2115b and the connection passage 2406 of the locking arm 2400 to couple the swivel lifeline connector 2122 to the locking arm 2400. A rivet 2124 passed through the aligned passages 2123a and 2123b of the swivel lifeline connector 2122 is used to couple a lifeline to the rope grab 2000. The carabiner 2350 is selectively coupled to the rivet 2124. The carabiner 2350 would be coupled to a safety harness (not shown) donned by a user.
The second bearing 2117 is positioned in a main locking arm passage 2412 of the locking arm 2400. The main locking passage 2412 of the locking arm is then positioned around the central post 2204 of the housing 2200 as described above. The spring spacer 2112 is also positioned around another portion of the central post 2204. The coiled portion of the arm spring 2110 is positioned around the spring spacer 2112 while a first end portion 2110a of the arm spring 2110 is received in a spring holding slot 2112b of the spring spacer 2112. The first end portion 2110a of the arm spring 2110 is further received in a cut out section 2203 of the center post 2204 of the housing 2200. This arrangement holds the first end portion 2110a of the arm spring 2110 in a static position in relation to the housing 2200. A second end portion 2110b of the arm spring 2110 is received in the arm spring groove 2409 of the locking arm 2400 to assert a biasing force on the locking arm 2400 in a locked position.
The rotating slide plate 2500 includes an upper portion with a roller passage 2514 and lower portion with a pivot connection passage 2512. The upper roller 2114 is rotational coupled to slide plate 2500 via pin 2116. The pivot connection passage 2512 receives at second post 2208 of the housing 2200. The rotating slide plate 2500 further includes a first edge 2508 and an opposed second edge 2510. The rotating side plate 2500 further includes a first cut out section 2533 that extends in from the second edge 2510 near the lower portion and a centrally located second cut out section 2531 to reduce weight of the rope grab 2000. Also included in along the second edge 2510 of the rotating side plate 2500 is a lock surface portion 2511 and an extending tab 2502. The first cut out section 2533 is positioned between the lock surface portion 2511 and the extending tab 2502. A side plate spring 2108 is also received on a second post 1208 of the housing 2200. A biasing force from the side plate spring 2108 engaging the extending tab 2502 biases the rotating side plate 2500 to the retaining configuration. The rotating side plate 2500 must be rotated by hand after lever 2700 or 2102 (discussed below) is rotated. This is done by pulling back on the rotating side plate 2500 proximate the upper roller 2114. Once in the open position, an elongated member can be slid into or out of the cable passage 2230. Once the elongated member is positioned in or taken out of the cable passage 2230, the rotating side plate 2500 can be released to rotate the rotating side plate 2500 to the retaining position and the lever 2700 or 2102 can be released to engage the lock member 2106 (discussed below) to the rotating side plate 2500.
In this embodiment, the first lever 2700 includes a lever post 2701 that extends though a first lever passage 2207 in the housing 2200 and a second lever passage 2607 in the fixed side plate 2600. The second lever 2102 and a washer 2104 are mounted to an end of the lever post 2701. Hence, this embodiment has two levers 2700 and 2102 that are connected together that are respectfully positioned on either side of the rope grab 2000. A lock member 2106 is also mounted on the lever post 2701. In particular, a lock tab 2707 extending from the lever post 2701 is received in a lock slot 2109 to lock the rotation of the lock member 2106 with the rotation of the lever post 2701. The lock member 2106 engages the lock surface portion 2511 of the rotating slide plate 2500 to lock the rotating side plate 2500 to cover a side of the cable guide passage 2230 as discussed below. The lock member 2106 includes a cutout section 2107. When the lever post 2701 is rotated by rotating one of the levers 2700 or 2102 and the cutout section 2107 is aligned with the lock surface portion 2511 of the rotating side plate 2500, the rope grab 2000 is in an unlocked configuration and the rotating slide plate 2500 can be moved as discussed below. A lever biasing member 2138 is received around the lever post 2701. The lever biasing member 2138 has one end engaged to the housing 2200 and another end engaged with lever 2700 to bias the lever post 2701 and the connected lock member 2106 in a lock configuration where the cutout section 2107 of the lock member 2106 is not aligned with the lock surface portion 2511 of the rotating side plate.
Referring to the partial views of the rope grab 2000 in
The partial cross-sectional views in
As with rope grab 100, during a fall event with rope grab 2000, a user's frontal attachment to the user's harness that is coupled to the locking arm 2400 will pull the locking arm 2400 down, therein rotating locking arm 2400 about the central post 2204. This movement causes the extending portion 2408 of the locking arm 2400 to engage a locking arm engaging surface 2332 of the locking cam 2300 therein pivoting the locking cam 2300 also about the central post 2204 of the housing 2200. This movement of the locking cam 2300 forces the radial engaging edge 2302 of the locking cam 2300 to forcefully pinch a portion of the elongated member 2914 or 2920 between the radial edge 2302 of the locking cam 2300 and the cable guide 2231 of the housing 2200 therein locking movement of the rope grab 2000 in relation to the elongated member 2914 or 2920. The rope grab 2000 will remain locked onto the elongated member 2914 or 2920 until the downward force of the fallen user is removed. As with other embodiments, also during a fall event, the gravitation forces on the cam lock 2300 are overcome by the light biasing force of the cam spring 2132 as well as by inertial forces, to also cause the cam lock 2300 to lock onto the elongated members 2914 or 2920.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
This Application is a Continuation-In-Part of U.S. application Ser. No. 13/551,845, same title herewith, filed on Jul. 18, 2012, and herein claims priority to said Application and incorporates said Application in its entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2561514 | Houseman | Jul 1951 | A |
2606350 | French | Aug 1952 | A |
3177543 | Fountain | Apr 1965 | A |
3179994 | Meyer et al. | Apr 1965 | A |
3811155 | Stafford | May 1974 | A |
3852943 | Healy | Dec 1974 | A |
3876036 | Sweet | Apr 1975 | A |
4059871 | Swager | Nov 1977 | A |
4071926 | Sweet et al. | Feb 1978 | A |
4077094 | Swager | Mar 1978 | A |
4521000 | Dodge, Jr. | Jun 1985 | A |
4542884 | Dodge, Jr. | Sep 1985 | A |
4560029 | Dalmaso | Dec 1985 | A |
4657110 | Wolner | Apr 1987 | A |
4791243 | Ibanez et al. | Dec 1988 | A |
4846075 | Tupper | Jul 1989 | A |
5146655 | Gibbs | Sep 1992 | A |
5156240 | Ostrobrod | Oct 1992 | A |
5224427 | Riches et al. | Jul 1993 | A |
5265696 | Casebolt | Nov 1993 | A |
5638919 | Pejout | Jun 1997 | A |
5860493 | Cherpitel | Jan 1999 | A |
6019195 | Pelofi | Feb 2000 | A |
6056086 | Gortan et al. | May 2000 | A |
6279680 | Casebolt | Aug 2001 | B1 |
6457556 | Skade et al. | Oct 2002 | B1 |
6511249 | Pelofi et al. | Jan 2003 | B2 |
6725969 | Meister | Apr 2004 | B1 |
6918464 | Renton et al. | Jul 2005 | B2 |
7188704 | Renton et al. | Mar 2007 | B2 |
7647677 | Casebolt | Jan 2010 | B2 |
7708116 | Martin et al. | May 2010 | B2 |
8550225 | Blomberg et al. | Oct 2013 | B2 |
8584797 | Krauss | Nov 2013 | B2 |
8720014 | Chen | May 2014 | B2 |
8733739 | Mauthner et al. | May 2014 | B2 |
20020014370 | Casebolt et al. | Feb 2002 | A1 |
20020175025 | Kurtgis | Nov 2002 | A1 |
20070119653 | Brown et al. | May 2007 | A1 |
20090133977 | Warren | May 2009 | A1 |
20090194366 | Parker et al. | Aug 2009 | A1 |
20100012424 | Krauss | Jan 2010 | A1 |
20110186388 | Sudale et al. | Aug 2011 | A1 |
20140020988 | Casebolt et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1030732 | May 1978 | CA |
28 12 073 | Jun 1979 | DE |
28 10 928 | Sep 1979 | DE |
86 06 240 | Jun 1986 | DE |
35 31 391 | Mar 1987 | DE |
202 17 045 | May 2003 | DE |
20 2005 011 338 | Dec 2006 | DE |
20 2007 012 804 | Feb 2009 | DE |
0 168 021 | Jan 1986 | EP |
2 407 211 | Jan 2012 | EP |
2 539 477 | Jul 1984 | FR |
2 555 060 | May 1985 | FR |
2 857 601 | Jan 2005 | FR |
1 536 354 | Dec 1978 | GB |
2 396 195 | Jun 2004 | GB |
WO 96023951 | Aug 1996 | WO |
WO 0060209 | Oct 2000 | WO |
WO 2005058422 | Jun 2005 | WO |
WO2006056790 | Jun 2006 | WO |
WO 2009037173 | Mar 2009 | WO |
WO 2009100315 | Aug 2009 | WO |
Entry |
---|
International Search Report for Application Serial No. PCT/US2013/050868 mailed Jul. 2, 2014. |
SE 70, Operation & Maintenance instructions for the Söll Vi-Go type safe climbing system with guided type fall arrester, (Miller by Sperian) Sep. 10, 2008 [online], [retrieved on May 7, 2009] Retrieved from the Vi-Go — Vertical Arrest System webpage <http://www.steigschutz.de/xist4c/web/Vi-Go—id—14703—.htm>, 21 pages. |
Advisory Action/Examiner-Initiated Interview Summary for U.S. Appl. No. 13/551,845, mailed Mar. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20140020988 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13551845 | Jul 2012 | US |
Child | 13891871 | US |