The object of the invention is a rope of a lifting device, a rope arrangement, an elevator, and a condition monitoring method for the rope of a lifting device.
The elevator car of elevators is most generally moved with hoisting roping, which comprises one or more ropes. To ensure safety and availability, the hoisting roping must be kept in good condition. The hoisting roping is most generally fixed at its ends to the building and/or to the elevator car and to the counterweight, depending on the suspension ratio and otherwise on the type of roping. In connection with the operation of the elevator, the hoisting roping with its rope(s) moves as the elevator car moves. The speed of movement of the elevator car and of the hoisting ropes is most generally controlled with a traction sheave, and the hoisting ropes are also guided to pass along the desired route by means of diverting pulleys. Wear is caused in the hoisting ropes over time owing to, among other things, fatigue produced by their guidance and by traction sheave contact as well as by repeated bending and tensile stress.
The ropes of the suspension roping of elevators, including the overspeed governor ropes of the elevator, have conventionally been manufactured from metal. Known in the art are also elevators in which is used hoisting roping comprising ropes that have load-bearing composite parts. This type of solution is presented in e.g. publication WO 2009090299. The overspeed governor ropes of an elevator are helical ropes of round cross-sectional shape, the force-transmitting parts of which ropes are of metal material. A problem in solutions according to prior-art is that the strength properties of metal in relation to its mass are such that the mass of the rope increases to be large. When producing acceleration or deceleration in the elevator car, a corresponding change in speed must also be produced in the overspeed governor rope. The magnitude of the energy consumed for this depends on the mass of the rope. Yet another problem has been the creeping of metal ropes.
It is known in the art that the condition of prior-art ropes of an elevator can be assessed visually. One problem, among others, is that it has been necessary to assess the condition of all the ropes of an elevator separately. Problems have also been caused by the fact that it has been awkward to visually observe the condition of coated ropes of an elevator.
Efforts have been made to solve the problem of condition monitoring in connection with composite-structured elevator ropes according to prior art with a method wherein one of the load-bearing parts of the rope is arranged to be more susceptible to breakage in relation to the number of bends than the other load-bearing parts, and in the method the condition of the load-bearing part that is most susceptible to breakage is monitored.
There have, however, been problems with the reliability of the method and it has not been possible with the method to obtain quantitive data about the wear of an elevator rope.
The aim of the invention is to eliminate, inter alia, the aforementioned drawbacks of prior-art solutions. The aim of the invention is to improve the condition monitoring of composite-structured ropes of a lifting device, more particularly of a passenger transport elevator and/or freight transport elevator.
The aim of the invention is to achieve one or more of the following advantages, among others:
The invention is based on the concept that in elevator systems the elevator car, the counterweight, or both, can be supported and/or moved safely with a composite-structured rope according to the invention, and according to the invention condition monitoring of the aforementioned rope can be arranged using long sensors that are even hundreds of meters in length. The rope according to the invention is also suited for use as an overspeed governor rope and as a compensating rope. The rope according to the invention is applicable for use in both elevators provided with a counterweight and without a counterweight. The rope and/or rope arrangement according to the invention can also be used in connection with other lifting devices, e.g. in the roping of cranes. The lightweightness of composite-structured rope is useful, especially in accelerating situations, because the energy required by changes in the speed of the rope depends on its mass. In addition, lightweightness makes handling of the ropes easier.
Some inventive embodiments are also presented in the descriptive section and in the drawings of the present application. The inventive content of the application can also be defined differently than in the claims presented below. The inventive content may also consist of several separate inventions, especially if the invention is considered in the light of expressions or implicit sub-tasks or from the point of view of advantages or categories of advantages achieved. In this case, some of the attributes contained in the claims below may be superfluous from the point of view of separate inventive concepts. The features of the various embodiments of the invention can be applied within the scope of the basic inventive concept in conjunction with other embodiments.
Preferably the cross-section of the rope is of rectangular shape or a conic section and the width of the rope is greater than the thickness.
Preferably the rope comprises a plurality of load-bearing parts in the longitudinal direction of the rope, which parts are distributed in the rope at a distance from each other in the width direction of the rope, and which rope can be bent around the neutral axis of the width direction of the rope, and that the rope comprises at least one load-bearing part that extends in the thickness direction of the rope to a first distance from the neutral axis of the width direction of the rope and at least one load-bearing part that extends to a second distance from the neutral axis of the width direction of the rope, which second distance is greater than the first distance.
Preferably the load-bearing parts of the rope are of essentially the same material, preferably of completely the same material.
Preferably the aforementioned load-bearing parts are fiber-reinforced composite material, preferably glass-fiber reinforced, more preferably aramid-fiber reinforced, most preferably carbon-fiber reinforced composite material.
Preferably the aforementioned load-bearing parts are a polymer fiber reinforced material, e.g. a polybenzoxazole fiber reinforced, or a polyethylene fiber reinforced, such as an UHMWPE fiber reinforced, or a nylon fiber reinforced composite material. Thus all the reinforcements are more lightweight than metal fibers.
Preferably the proportion by volume of the reinforcements of each aforementioned load-bearing part is at least 50 percent by volume reinforcing fibers in the load-bearing part. In this way the longitudinal mechanical properties of the load-bearing part are adequate.
Preferably the proportion of the reinforcements of each aforementioned load-bearing part is at least 50 percent by weight reinforcing fibers in the load-bearing part. In this way the longitudinal mechanical properties of the load-bearing part are adequate.
Preferably at least 50 percent of the surface area of the cross-section of each aforementioned load-bearing part is reinforcing fibers. In this way the longitudinal mechanical properties of the load-bearing part are adequate.
Preferably the aforementioned load-bearing part or aforementioned load-bearing parts together cover over 40 percent of the surface area of the cross-section of the rope, preferably 50 percent or over, even more preferably 60 percent or over, even more preferably 65 percent or over. In this way a large part of the cross-sectional area of the rope is load-bearing.
Preferably the aforementioned load-bearing parts are fiber-reinforced hybrid composite material, preferably glass-fiber reinforced and/or aramid-fiber reinforced and/or carbon-fiber reinforced hybrid composite material. In this way the optimal mechanical properties, such as strength properties, stiffness properties, vibration properties and/or thermomechanical properties can always be selected for the rope according to need.
In one embodiment one of the load-bearing composite parts of the rope, preferably two, most preferably each composite part, comprises inside it one or more optical fibers, most preferably of all a fiber bundle or fiber coil, which is disposed essentially inside and/or in the proximity of the surface of the load-bearing part in question as viewed in the thickness direction of the rope. Thus good measurement accuracy is achieved.
In one embodiment the condition monitoring method for a rope is based on measuring, wherein an optical fiber functions as an optical Fabry-Pérot-type sensor.
In one embodiment the condition monitoring method for a rope is based on measuring, wherein a single-piece optical fiber is used as an optical fiber, which comprises Bragg gratings, i.e. the Fiber Bragg Grating FBG method is applied in the condition monitoring of the rope.
In one embodiment the condition monitoring method for a rope is based on measuring, wherein a sensor functioning on the Time-Of-Flight TOF principle is used as an optical fiber,
In one embodiment the condition monitoring method for a rope is based on measuring, wherein a sensor based on Brillouin spectrum measurement is used as an optical fiber.
Preferably the tensile strengths and/or the moduli of elasticity of at least some, most preferably all, the load-bearing parts are dimensioned to be essentially the same.
Preferably the surface areas of the cross-sections of at least some, most preferably all, the load-bearing parts are essentially the same.
Preferably the load-bearing part is visible outside the rope, owing to the transparency of the matrix material binding the load-bearing parts to each other.
Preferably the rope and/or rope arrangement of a lifting device, more particularly of a passenger transport elevator and/or freight transport elevator, which rope and/or rope arrangement comprises a plurality of ropes, which are arranged to move the elevator car e.g. by means of a traction sheave. Preferably at least one of the aforementioned ropes is provided with one or more optical fiber, most preferably with a fiber bundle or fiber coil.
Preferably the width/thickness ratio of the rope is at least 2 or more, preferably at least 4, or even 5 or more, or even 6 or more, or even 7 or more or even 8 or more. In this way good force-transmitting capability is achieved with a small bending radius. This can be implemented preferably with the fiber-reinforced composite material presented in this patent application, which material has a very advantageously large width/thickness ratio owing to the rigidity of the structure.
Preferably the width of each aforementioned force-transmitting part is greater than the thickness, preferably such that the width/thickness ratio of each aforementioned force-transmitting part is at least 1.3 or more, or even 2 or more, or even 3 or more, or even 4 or more, or even 5 or more. In this way a wide rope can be formed simply and to be thin.
Preferably the plurality mentioned in the rope arrangement comprises a plurality of ropes, of which each rope can be bent around the neutral axis of the width direction of the rope. Each aforementioned rope comprises at least one or more optical fibers, preferably a fiber bundle or fiber coil, in the proximity of surface of the load-bearing part, inside the load-bearing part and/or embedded into the polymer matrix.
Preferably the optical fibers and/or fiber bundles comprised in the aforementioned rope or rope arrangement are essentially translucent to LED light or laser light. Thus the condition of the load-bearing part can be monitored by monitoring changes in one of its optical properties.
Preferably the density of the aforementioned reinforcing fibers of the aforementioned rope or rope arrangement is less than 3.5 kg/m3, and the tensile strength is over 2 GPa. One advantage is that the fibers are lightweight, and not many of them are needed because they are strong.
Preferably the load-bearing part of the aforementioned rope or rope arrangement is an unbroken elongated rod-like piece.
Preferably the load-bearing part of the aforementioned rope or rope arrangement is essentially parallel with the longitudinal direction of the rope.
Preferably the structure of the aforementioned rope or of the rope of the rope arrangement continues essentially the same for the whole distance of the rope.
Preferably the aforementioned reinforcing fibers and one or more optical fibers are in the longitudinal direction of the rope.
Preferably individual reinforcing fibers and/or one or more optical fibers and/or fiber bundles are homogeneously distributed in the aforementioned matrix.
Preferably the aforementioned reinforcing fibers and/or one or more optical fibers and/or fiber bundles are continuous fibers in the longitudinal direction of the rope, which fibers preferably continue for the whole length of the rope.
Preferably the aforementioned reinforcing fibers and/or the one or more optical fibers and/or fiber bundles are bound into an unbroken load-bearing part with the aforementioned polymer matrix, preferably in the manufacturing phase by disposing the optical fibers between or on the surface of the prepeg layers or by laminating the reinforcing fibers and the optical fibers in the material of the polymer matrix.
Preferably the aforementioned load-bearing part is composed of straight reinforcing fibers essentially parallel with the longitudinal direction of the rope and/or of one or more optical fibers and/or fiber bundles, which are bound into an unbroken part with the polymer matrix.
Preferably essentially all the reinforcing fibers of the aforementioned load-bearing part and/or one or more optical fibers and/or fiber bundles are in the longitudinal direction of the rope.
Preferably the structure of the load-bearing part continues essentially the same for the whole distance of the rope.
Preferably the polymer matrix is a non-elastomer.
Preferably the module of elasticity E of the polymer matrix material is over 1.5 GPa, most preferably over 2 GPa, even more preferably in the range 2-10 GPa, most preferably of all in the range 2.5-4 GPa.
Preferably the polymer matrix comprises epoxy, polyester, phenolic plastic or vinyl ester.
Preferably over 45 percent of the surface area of the cross-section of the load-bearing part is the aforementioned reinforcing fiber, preferably such that 45-85 percent is the aforementioned reinforcing fiber, more preferably such that 60-75 percent is the aforementioned reinforcing fiber and optical fiber, most preferably such that approx. 59 percent of the surface area is reinforcing fiber and at most 1 percent is optical fibers and approx. 40 percent is matrix material.
Preferably the reinforcing fibers and one or more optical fibers and/or fiber bundles together with the matrix form an unbroken load-bearing part, inside which relative abrasive movement among the fibers or between the fibers and the matrix essentially does not occur.
Preferably the width of the load-bearing part is greater than the thickness in the transverse direction of the rope.
Preferably the rope comprises a plurality of the aforementioned load-bearing parts side by side.
Preferably the load-bearing part is surrounded with a polymer layer, which is preferably an elastomer, most preferably a high-friction elastomer such as e.g. polyurethane.
Preferably the load-bearing part or load-bearing parts cover most of cross-section of the rope.
Preferably the load-bearing part is composed of the aforementioned polymer matrix, of reinforcing fibers bound to each other by the polymer matrix and of one or more optical fibers and/or fiber bundles, and also possibly of a sizing around the fibers, and also possibly of additives mixed into the polymer matrix.
Preferably the structure of the rope continues essentially the same for the whole distance of the rope and that the rope comprises a wide and at least essentially flat, preferably fully flat, side surface for enabling force transmission based on friction via the aforementioned wide surface.
According to the invention, the elevator, more particularly a passenger transport elevator and/or freight transport elevator, comprises an elevator car, a traction sheave, and a power source for rotating the traction sheave. It comprises one of the types of rope described earlier and/or one of the types of rope arrangement described earlier. The elevator car is arranged to be moved by means of the aforementioned rope and/or rope arrangement.
Preferably the rope and/or rope arrangement is arranged to move an elevator car and a counterweight.
Preferably the elevator comprises a rope pulley, preferably in the proximity of the top end of the path of movement of the elevator car, while supported on which the rope/ropes of the suspension roping support the elevator car and the counterweight, preferably with a 1:1 suspension or alternatively with a 2:1 suspension.
According to the invention the elevator comprises means for monitoring the condition of the optical fibers and/or fiber bundles of the rope, which means monitor from the load-bearing parts of the rope the condition of preferably only the aforementioned one or more optical fibers and/or fiber bundles.
Preferably in the method for monitoring the condition of a rope and/or roping, which rope and/or roping comprises a plurality of optical fibers and/or fiber bundles, a plurality of optical fibers and/or fiber bundles are arranged in some, preferably in one, more preferably in two, most preferably in a number of load-bearing parts, and in the method the condition of a load-bearing part containing optical fibers is monitored.
Preferably in the method the condition of all the load-bearing parts is not monitored.
It is advantageous that the condition of the load-bearing parts other than those comprising optical fibers is not monitored either at all or at least not in the same way as the condition of the parts comprising optical fibers.
Preferably in the method the condition of the rope and/or rope arrangement is monitored by monitoring the condition of the parts comprising one or more optical fibers and/or fiber bundles in one of the following ways:
In one embodiment in the method the condition of the rope and/or roping is monitored by monitoring the condition of one or more optical fibers and/or fiber bundles and if it is detected that a part comprising an optical fiber has broken or the condition of it has fallen to below a certain predefined level, a need to replace or overhaul the rope or ropes is diagnosed and rope replacement work or rope maintenance work is started.
In one embodiment in the method the condition of the rope and/or roping is monitored by monitoring the condition of a number of optical fibers and/or fiber bundles and if differences are detected between the conditions of the monitored fibers, a need to replace or overhaul the rope or ropes is diagnosed and rope replacement work or rope maintenance work is started.
Preferably with the method the condition of the rope and/or roping is monitored by monitoring changes in the properties in a part or parts of one or more optical fibers and/or fiber bundles, such as e.g. in the propagation of a light pulse and/or on the basis of changes occurring in the spectrum of the light. In one embodiment the tension produced by the weight of the elevator car/counterweight is transmitted along at least one of the aforementioned parts from the elevator car/counterweight at least to the traction sheave.
In one embodiment an optical fiber of the rope also functions as a long vibration sensor. In the vibration measuring apparatus, single-mode fiber or multimode fiber is used as a sensor and a semiconductor laser as a light source. The detection of vibration is based on measuring the changes of a speckle diagram formed of bright and dark spots occurring at the second end (in the far field) of an optical fiber.
Preferably the optical cables to be used for measuring purposes comprise a number of optical fibers needed for measurements and also, in addition to them, fibers to be used for data transfer.
The invention will now be described mainly in connection with its preferred embodiments, with reference to the attached drawings, wherein:
The rope 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 comprises a load-bearing part 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, which is carbon-fiber reinforced, aramid-fiber reinforced and/or glass-fiber reinforced composite, which comprises carbon fibers, aramid fibers and/or glass fibers, most preferably carbon fibers, and also one or more optical fibers, more preferably one or more fiber bundles, in a polymer matrix. The reinforcing fibers and optical fibers are longitudinal to the rope, for which reason the rope retains its structure when bending. Individual fibers are thus aligned in essentially the longitudinal direction of the rope, in which case the fibers are aligned with the force when the rope is pulled. An optical fiber and/or fiber bundle can be one continuous fiber or bundle laminated inside, or in the proximity of the surface of, the composite structure such that the fiber goes inside the structure at a first end of the rope, turns back at the other end of the rope and comes out of the structure again at the first end of the rope. A fiber and/or a fiber bundle can be coiled, i.e. the fiber can have one or more turns inside, or on the surface of, the structure such that however only one fiber and/or fiber bundle is used for the measurement, and the aforementioned fiber and/or fiber bundle can go into and come out of the same end or different ends of the rope. Also a number of parallel fibers or bundles can be used for measuring, laminated in a corresponding manner inside the composite structure or in the proximity of its surface.
The rope 10 presented in
The rope 20 presented in
The rope 30 presented in
The rope 40 presented in
The rope 60 presented in
The rope 70 of rectangular cross-sectional shape presented in
The rope 80 presented in
The rope 90 presented in
The reinforcing fibers are preferably distributed essentially evenly, i.e. homogeneously, in the polymer matrix such that the load-bearing part is as homogeneous as possible when viewed in the direction of the cross-section of the rope. In other words, the fiber content in the cross-section of the composite part does not therefore vary greatly. The reinforcing fibers and optical fibers together with the matrix form an unbroken load-bearing part, inside which relative abrasive movement does not occur when the rope bends. The individual fibers of the load-bearing part are mainly surrounded with the polymer matrix, but contacts between fibers can occur in places because controlling the position of the fibers in relation to each other in the simultaneous impregnation with the polymer matrix is difficult, and on the other hand totally perfect elimination of random contacts between fibers is not wholly necessary from the viewpoint of the functioning of the invention. If, however, it is desired to reduce their random occurrence, the individual fibers can be pre-coated such that a polymer sizing is around them already before the binding of individual fibers to each other. In the invention the individual fibers of the load-bearing part can comprise material of the polymer matrix around them such that the polymer matrix is immediately against the fiber, but alternatively a thin sizing of the fiber, e.g. a primer arranged on the surface of the fiber in the manufacturing phase to improve chemical adhesion to the matrix material, can be in between. An optical fiber can be protected with polyimide.
Individual reinforcing fibers are distributed evenly in the load-bearing part such that the intervals of individual reinforcing fibers comprise the polymer of the matrix. Preferably the majority of the intervals of the individual reinforcing fibers in the load-bearing part are filled with the polymer of the matrix. Most preferably essentially all of the intervals of the individual reinforcing fibers in the load-bearing part are filled with the polymer of the matrix. The matrix of the load-bearing part is most preferably hard in its material properties. A hard matrix helps to support the reinforcing fibers, especially when the rope bends. When bending, tension is exerted on the fibers of the outer surface of the rope and compression on the fibers of the inner surface in their longitudinal direction. Under the influence of compression the fibers try to buckle. When a hard material is selected as the polymer matrix, the crumpling of fibers can be prevented because the hard material is able to support the fibers and thus to prevent their crumpling and to equalize the stresses inside the rope. To reduce the bending radius of the rope, among other things, it is thus advantageous that the matrix material is a polymer that is hard, preferably something other than an elastomer (e.g. rubber) or something else that behaves elastically or gives way. The most preferred materials are epoxy, polyester, phenolic plastic and vinyl ester.
In the method according to the invention for monitoring the condition of a rope and/or roping, which rope 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and/or roping R comprises a plurality of load-bearing parts, inside which and/or in the proximity of the surface of which, and/or in the polymer matrix surrounding which one or more optical fibers and/or fiber bundles are integrated as sensor fibers and/or as reference fibers, and in the method the condition of the sensor fibers is monitored, e.g. by measuring the time-of-flight of a light pulse in a sensor fiber. The rope and/or roping is according to what is presented elsewhere in this patent application, e.g. in
The property to be observed can also be e.g. a change in the amount of light traveling through the rope. In this case light is fed into an optical fiber with a laser transmitter or with a LED transmitter from one end and the passage of the light through the rope is assessed visually or by the aid of a photodiode at the other end of the fiber. The condition of the rope is assessed as having deteriorated when the amount of light traveling through the rope clearly decreases.
In one embodiment of the condition monitoring method for a rope an optical fiber functions as an optical Fabry-Pérot-type sensor. A Fabry-Pérot interferometer FPI comprises two reflective surfaces, or two parallel highly reflective dichroic mirrors, at the end of the fiber. When it hits the mirrors a part of the light passes through and a part is reflected back. After the mirror the light passing through travels e.g. through air, after which it is reflected back from the second mirror. Some of the light has traveled a longer distance in a different material, which has caused changes in the properties of the light. Strain causes changes in e.g. the phase of the light. The light with changed properties interferes with the original light, after which the change is analyzed. After the lights have combined they end up in a receiver and in a signal-processing device. With the method the strain of the fiber, and thus the condition of the rope, is assessed.
In one embodiment of the condition monitoring method for a rope an optical fiber is used, which fiber comprises Bragg gratings, i.e. the so-called Fiber Bragg Grating FBG method is applied in the condition monitoring of the rope. Periodic grating structures are made in a single-mode fiber for the FBG sensor, which grating structures reflect a certain wavelength of the light corresponding to the grating back. When light is conducted into the fiber, the wavelength of the light corresponding to the grating is reflected back. When strain is exerted on the grating structure, the refractive index of the fiber changes. Changing of the refractive index affects the wavelength of the light being reflected back. By monitoring changes in wavelength, a change in the strain exerted on the grating can be ascertained, and thus also the condition of the rope. There can be tens or hundreds of gratings by the side of the same fiber.
In one embodiment of the condition monitoring method for a rope a distributed sensor fiber based on Brillouin spectrum measurement is used. Ordinary single-mode fiber or multimode fiber can be used as a sensor. The optical fiber functions as a distributed sensor, which can function as a sensor that is hundreds of meters long, which measures throughout its length and corresponds if necessary to thousands of point-form sensors. Backscattering of light occurs continuously as the light propagates in the fiber. This can be utilized by monitoring the strength of certain backscattering wavelengths. Brillouin scattering arises in the manufacturing phase in non-homogeneous points created in the fiber. By observing the wavelengths of the original and the scattered light signal the strain of the fiber, and thus the condition of the rope, is determined.
The effect of temperature on strain measurements can be eliminated by, inter alia, using a reference fiber as an aid, which reference fiber is installed such that strain caused by the structure to be measured is not exerted on it.
It is obvious to the person skilled in the art that in developing the technology the basic concept of the invention can be implemented in many different ways. The invention and the embodiments of it are not therefore limited to the examples described above, but instead they may be varied within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20125073 | Jan 2012 | FI | national |
This application is a Bypass Continuation of PCT International Application No. PCT/FI2013/050048 filed on Jan. 16, 2013, which claims priority under 35 U.S.C. §119(a) to Patent Application No. 20125073 filed in Finland on Jan. 24, 2012, all of which are hereby expressly incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
2526324 | Bloomfield | Oct 1950 | A |
4151755 | Allaben, Jr. | May 1979 | A |
4523804 | Thompson | Jun 1985 | A |
4696542 | Thompson | Sep 1987 | A |
5182779 | D'Agostino et al. | Jan 1993 | A |
6453960 | Kondo | Sep 2002 | B1 |
7154081 | Friedersdorf | Dec 2006 | B1 |
20030121729 | Heinz et al. | Jul 2003 | A1 |
20040262087 | Ach | Dec 2004 | A1 |
20050226584 | Williams et al. | Oct 2005 | A1 |
20050245338 | Eichhorn et al. | Nov 2005 | A1 |
20070062762 | Ach | Mar 2007 | A1 |
20080148704 | Angelis | Jun 2008 | A1 |
20080149430 | De Angelis | Jun 2008 | A1 |
20090080472 | Yao | Mar 2009 | A1 |
20110000746 | Pelto-Huikko et al. | Jan 2011 | A1 |
20110192683 | Weinberger et al. | Aug 2011 | A1 |
20110240408 | Wesson et al. | Oct 2011 | A1 |
20110253487 | Kocher et al. | Oct 2011 | A1 |
20110266097 | Valjus et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
101977834 | Feb 2011 | CN |
102264623 | Nov 2011 | CN |
102869596 | Jan 2013 | CN |
1 199 276 | Apr 2002 | EP |
1357073 | Oct 2003 | EP |
WO 2010081935 | Jul 2010 | FI |
WO 2013110853 | Aug 2013 | FI |
WO 0198743 | Dec 2001 | GB |
4-315702 | Nov 1992 | JP |
2001-302135 | Oct 2001 | JP |
EP 1561719 | Aug 2005 | JP |
WO 0234659 | May 2002 | WO |
WO 2009026730 | Mar 2009 | WO |
WO 2009090299 | Jul 2009 | WO |
WO 2010072690 | Jul 2010 | WO |
WO 2011128223 | Oct 2011 | WO |
WO 2011148033 | Dec 2011 | WO |
Entry |
---|
WIPO, Machine Translation, WO 2010072690 A1,Feb. 8, 2014, pp. 3-13. |
WIPO, Machine Translation, WO 2010072690 A1, Elevator Support Means, Mfg. Method for Said Support Means and Elevator System Comprising said Support Means, Mar. 14, 2016, pp. 1-20. |
Eric Pinet, “Fabry-Perot Fiber-Optics Sensors for Physical Parameters Measurement in Challenging Conditions,” Journal of Sensors, vol. 2009, 9 pages, Jan. 1, 2009. |
Jose Luis Santos, “Handbook of Optical Sensors,” pp. 336-337, Oct. 1, 2014. |
Number | Date | Country | |
---|---|---|---|
20140305744 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FI2013/050048 | Jan 2013 | US |
Child | 14314939 | US |