The present invention relates to rope structures and, more particularly, to rope displacement systems and methods adapted to lift, lower, and pull objects using a rope structure and the assistance of mechanical device such as a winch.
Rope is often used to displace an object. The object is supported by a distal portion of the rope, and a proximal portion of the rope is displaced to place the rope under tension and thereby displace the load. To displace the proximal portion of the rope, a winch device is often used. Examples of winch devices include a drum or spool winch, a windlass, and a capstan. The winch device may be human powered or motorized. In either case, the winch provides a mechanical advantage. When human powered, although human effort is required, the winch eliminates the need to grip the rope. When motorized, the winch eliminates the need for human effort altogether.
A winch typically defines an engaging surface that can take many forms. For a winch employing a drum or spool, the engaging surface is essentially cylindrical, often having side walls. For a winch in the form of a capstan or windlass, the engaging surface can be cylindrical or can define an annular cavity the cross-sectional area of which decreases towards the axis of rotation.
With any form of winch, at least an active portion of the rope is wound around the drum such that, when the drum is rotated about a longitudinal drum axis, friction causes a working portion of the rope under tension to be displaced along a pulling axis. For many winch systems, a stored portion of the rope can be stored on the drum; for other winch systems, such as when the winch takes the form of a capstan or windlass, the stored portion of the rope is stored separate from the winch. The friction may be between the active portion of the rope and the engaging surface or between the active portion of the rope and a stored portion of the rope already wound around the drum.
Loads on the active portion of a rope that is being displaced using a winch thus include tension loads that extend between the winch and the load, bearing loads directed radially inwardly towards the axis of the winch, and compression loads directed inwardly towards the longitudinal axis of any portion of the rope.
In the case of a winch having a drum or spool, the active portion of the rope engages the stored portion of the rope wrapped around the drum or spool. The stored portion of the rope defines shallow grooves between adjacent stored portions. The bearing loads on the active portion of the rope tend to pull the active portion of the rope down into these grooves. Compression loads on the active portion of the rope tend to deform the active portion of the rope to fit into the grooves formed by the stored portion of the rope. As the spool turns, the active portion of the rope is wound onto the drum and becomes the stored portion. The stored portion is no longer under significant tension load, but still may lie within a groove.
In another case, the rope may be taken up by a capstan or windlass having a friction surface defined by an annular V-shaped groove. The active portion of the rope is fed into the V-shaped groove. The slanted sides defining the V-shaped groove increase friction between the capstan or windlass and the rope but apply compression loads on the active portion of the rope. These compression loads tend to deform the rope such that the rope is forced towards the bottom of the V-shaped groove.
Accordingly, one or both of the active portion and the stored portion of the rope may be forced into a groove and become bound within the winch. When a rope is bound within the winch, the displacement of rope by the winch or the removal of the stored portion of the rope from the winch may be disrupted.
The need thus exists for rope structures and rope displacement systems and methods for lifting, lowering, and/or pulling ropes that are less susceptible to binding when displacing rope using a winch or unwinding rope from a winch.
The present invention may be embodied as a rope structure comprising a plurality of fibers combined to form a plurality of yarns which are in turn combined to form a plurality of strands. The plurality of strands are combined using a single braid process to form the rope structure defining a void space. At least one of the fibers, the yarns, and the strands are configured substantially to reduce a volume of the void space and thereby maintain a shape of the rope structure when the rope structure is under load.
The present invention may also be embodied as a method of forming a rope structure comprising the following steps. A plurality of fibers are combined to form a plurality of yarns. The plurality of yarns are combined to form a plurality of strands. The plurality of strands are combined using a single braid process to form the rope structure defining a void space. At least one of the fibers, the yarns, and the strands are configured substantially to reduce a volume of the void space such that a shape of the rope structure is maintained when the rope structure is under load.
The present invention may also be embodied as a rope displacement system for displacing a rope connected to a load. As a rope displacement system, the present invention comprises a rope structure and a winch assembly. The rope structure comprises a plurality of fibers combined to form a plurality of yarns, where the plurality of yarns are combined to form a plurality of strands. The plurality of strands are combined using a single braid process to form the rope structure such that the rope structure defines a void space. at least one of the fibers, the yarns, and the strands are configured substantially to reduce a volume of the void space and thereby maintain a shape of the rope structure when the rope structure is under load. The winch assembly engages at least a portion of the rope structure such that operation of the winch assembly displaces the rope structure.
Depicted in
In the example rope structure 20, the yarns and strands are substantially the same in construction, composition, and nominal diameter. Although the strands forming the example rope structures 20 are all substantially the same in construction, composition, and nominal diameter, strands of differing composition and nominal diameter may be used to form a rope structure of the present invention.
The example rope structure 20 is formed of strands 22 comprising seven yarns 24. The number of yarns 24 is not important to the invention. The number of fibers 26 is also not important. As will be described in further detail below, the fibers 26 are combined into yarns 24 that are in turn combined into strands 22 that, when combined to form the rope structure 20, substantially eliminate or reduce the volume of the void space 30 within the rope structure 20 during normal use and/or substantially evenly distribute loads on the fibers 26 when the rope structure is under load.
The example rope structure 20 has a strand/rope ratio of the nominal diameters of the strands forming the example rope structure 20 to the nominal overall diameter of the rope structure 20 may be within a first range of approximately between 0.35 and 0.38 and in any event within a second range of approximately 0.33 and 0.40.
The fibers used to form the example rope structure 20 may be one or more fibers selected from the group consisting of polyamide (PA), polyethylene terephthalate/polyethersulfone (PET/PES), polypropylene (PP), polyethylene (PE), high modulus polyethylene (HMPE), liquid crystal polymer (LCP), Para-Aramid, poly p-phenylene-2,6-benzobisoxazole (PBO) fibers, and high modulus polypropylene (HMPP).
The construction and nominal diameters of the yarns and strands, the strand/rope ratio, and the materials used to form the fibers 26 are selected such that each of the strands 22 deforms somewhat substantially to fill the void space 30 within the rope structure 20 under normal use. The strands in
Another object of the design of the example rope structure 20 is that the loads on the individual fibers 26 forming the rope structure 20 should be distributed as evenly as possible. Because the effective diameter of the strands 22 of the example rope structure 20 is larger than normal, simply forming the yarns 24 in a single step as conventional bundles of the fibers 26 will result in the length of the outermost of the fibers 26 being longer than that of the length of innermost of the fibers 26. Such differences in length may result in an uneven distribution of loads across the individual fibers 26 when the rope structure 20 is under load.
The example strands 22 are thus formed according to one of the following processes. In a first example, the yarns 24 may be formed using a conventional single twist process.
Second, the yarns 24 may be formed using a two-step twist process in which a first set of the fibers 26 is first twisted together and a second set of the fibers 26 is then twisted around the first set of fibers. When combined using this two-stage process, the twists applied to the first and second sets of fibers 26 are different and are determined such that the length of the fibers 26 in each of the first and second sets is approximately the same; loads on the rope structure 20 will thus be somewhat evenly distributed across the fibers 26.
Alternatively, instead of simply bundling the fibers 26 to form the yarns 24 and bundling the yarns 24 to form the strands, the yarns 24 forming the strands 22 may be combined using a rope-making process such as twisting or braiding. For example, the yarns 24 may be combined in the same manner as a 3-strand rope. In this case, the rope structure 20 is formed of a plurality of small 3-strand ropes. Using a twisting or braiding rope-making process to form the strands 22 allows the rope structure 20 to is be fabricated such that loads on the rope structure 20 are substantially evenly distributed across the fibers 26.
Yet another method of forming the example strands 22 of the rope structure 20 is to use a first set of fibers 26 of a first material and a second set of fibers 26 of a second material, where the elongation of the first and second materials is different. When fibers of two different materials are used, the first and second sets of fibers 26 are bundled such that the uneven elongation of the fibers in the first and second sets results in substantially even distribution of loads across the fibers 26 when the rope structure 20 is under load.
The example rope structure 20 is of particular importance when used as part of a rope displacement system comprising a winch assembly. Several example rope displacement systems of the present invention will now be described with reference to
Referring initially to
The example winch assembly 122 is drum or spool type winch having a substantially cylindrical portion 130 and first and second side walls 132 and 134. The side walls 132 and 134 are affixed to ends of the cylindrical portion 130 to define an annular winch chamber 136.
As is conventional, the cylindrical portion 130 is adapted to be rotated about its longitudinal axis. The cylindrical portion 130 can be rotated by hand using a crank or the like or by a motor assembly. The side walls 132 and 134 help prevent the rope structure 20 from leaving the winch chamber 136 as the rope structure 20 is wound onto the cylindrical portion 130.
As schematically depicted in
Referring now to
The example winch assembly 222 is windlass-type winch having a hub portion 230 and first and second side walls 232 and 234. The side walls 232 and 234 extend from the hub portion 230 to define an annular, V-shaped winch chamber 236 that narrows towards the hub portion 230. As is conventional, the hub portion 230 is adapted to be rotated about its longitudinal axis. The hub portion 230 can be rotated by hand using a crank or the like or a motor assembly. As shown in
As schematically depicted in
From the foregoing, it should be apparent that the present invention may be embodied in forms other than the example rope structures and systems and methods for displacing rope structures described herein.
This application claims priority of U.S. Provisional Patent Application Ser. No. 60/998,034 filed Oct. 5, 2007, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3367095 | Field, Jr. | Feb 1968 | A |
4947917 | Noma et al. | Aug 1990 | A |
5240769 | Ueda et al. | Aug 1993 | A |
5802839 | Van Hook | Sep 1998 | A |
5822791 | Baris | Oct 1998 | A |
6341550 | White | Jan 2002 | B1 |
6876798 | Triplett et al. | Apr 2005 | B2 |
6945153 | Knudsen et al. | Sep 2005 | B2 |
7127878 | Wilke et al. | Oct 2006 | B1 |
7134267 | Gilmore et al. | Nov 2006 | B1 |
7165485 | Smeets et al. | Jan 2007 | B2 |
7168231 | Chou et al. | Jan 2007 | B1 |
7367176 | Gilmore et al. | May 2008 | B1 |
7389973 | Chou et al. | Jun 2008 | B1 |
7437869 | Chou et al. | Oct 2008 | B1 |
7735308 | Gilmore et al. | Jun 2010 | B1 |
7739863 | Chou et al. | Jun 2010 | B1 |
7743596 | Chou et al. | Jun 2010 | B1 |
20030226347 | Smith et al. | Dec 2003 | A1 |
20070079695 | Bucher et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
03102295 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
60998034 | Oct 2007 | US |