Information
-
Patent Grant
-
6435316
-
Patent Number
6,435,316
-
Date Filed
Tuesday, October 12, 199925 years ago
-
Date Issued
Tuesday, August 20, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Lillis; Eileen D.
- Tran; Thuy V.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 187 406
- 187 407
- 187 408
- 187 411
- 187 412
- 187 414
-
International Classifications
-
Abstract
In a rope supporting apparatus for an elevator, a column-like body along a guide rail provided within a hoist way is mounted on the guide rail through support bodies located at upper and lower ends of the guide rail. A rope end fixing member to which an end of a rope is fixed is fastened to the column-like body. The column-like body has a higher bending strength than the guide rail. Since the support bodies at both upper and lower ends of the column-like body are disposed with a sufficient distance between them, a pivoting reactive force, which is a load generated in the support bodies in a direction perpendicular to a center axis of the rail, becomes small, and any bending moment applied to the guide rail by the pivoting reactive force is smaller than the bending moment applied to the column-like body.
Description
TECHNICAL FIELD
The present invention relates to a rope supporting apparatus for an elevator for supporting ropes for suspending a car and/or a counterweight within a hoist way.
BACKGROUND ART
FIG. 10
is a structural view showing an example of a conventional elevator. In the drawing, a hoist way
1
is formed by a steel structure
2
. Also, a machine room
3
is formed in the vicinity of a bottom portion of the hoist way
1
. Rope holding beams
6
and
7
are mounted on beams
4
and
5
positioned at the upper portion of the steel structure
2
. Rotatable return pulleys
8
and
9
are provided on the rope holding beams
6
and
7
.
A hoisting machine
10
having a sheave
11
is disposed in the machine room
3
. Also, rotatable deflector sheaves
12
and
13
are provided in the machine room
3
. A rope
16
for suspending a car
14
and a counterweight
15
within the hoist way
1
is laid around the sheave
11
and directed by the return pulleys
8
and
9
through the deflection sheaves
12
and
13
and is caused to pass below suspension sheaves
17
and
18
provided on the car
14
and the counterweight
15
. Both end portions of the rope
16
are fixed to the rope holding beams
6
and
7
through fastening members
19
, respectively.
In such an elevator, the sheave
11
is rotated forward or reversely by a drive force of the hoisting machine
10
so that the car
14
and the counterweight
15
are alternatively moved up and down within the hoist way
1
.
In the example shown in
FIG. 10
, the hoist way
1
is formed by the steel structure
2
. However, in the case where the hoist way is formed of concrete, concave/convex portions for supporting both end portions of the rope holding beams are provided on the walls of the hoist way. Then, both end portions of the rope holding beams are fixed to shoulder portions of the concave/convex portions.
However, in the above-described conventional elevator, the beams
4
and
5
or concave/convex portions for supporting the rope holding beams
6
and
7
must be provided and, in the case of the concrete structure in particular, discussions have to be held between the building designers and builders and the elevator company, and additional work for providing the concave/convex portions on the hoist way walls must be carried out. Consequently, the period of time required for construction is lengthened and at the same time, construction costs are increased.
In contrast, Hatsumei Kyokai Technical Disclosure Bulletin No. 90-9351, for example, discloses a rope end fixing device in which a member to which the end portions of a rope are fixed may be mounted on a guide rail for guiding the vertical movement of the car and/or counterweight.
FIG. 11
is a front view showing an example of a conventional rope end fixing device. In the drawing, a guide rail
21
for guiding the vertical movement of the car or the counterweight is fixed in place through a plurality of brackets
22
. A rope end fixing member
24
is fixed through, for example, a plurality of support bodies
23
having bolt-and-nut assemblies. End portions of a plurality of ropes
16
are fixed to the rope end fixing member
24
through fastening members
19
, respectively.
In the rope end fixing device having the support body
23
and the rope end fixing member
24
, since a tension T to be applied to an end portion of each rope
16
is eccentric to a cross sectional center line C of the guide rail
21
, a bending moment is applied to the guide rail
21
. For this reason, it is necessary to prevent the bending moment from deforming the guide rail
21
by increasing the cross sectional area of the guide rail
21
or decreasing the spacing between the rail brackets
22
, increasing the manufacturing and installation costs.
DISCLOSURE OF THE INVENTION
In order to solve the above mentioned problems, an object of the present invention is to provide a rope supporting apparatus for an elevator which is able to reduce any bending moment that applied to a guide rail.
A rope supporting apparatus for an elevator according to the present invention comprises: a column-like body extending along a guide rail installed within a hoist way and mounted on the guide rail; a rope supporting member fixed to the column-like body for supporting a rope suspending at least one of a car and a counterweight within the hoist way; and a plurality of support bodies provided between both end portions of the column-like body and the guide rail for transmitting a load from the column-like body to the guide rail.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a front view showing a rope supporting apparatus for an elevator in accordance with embodiment 1 of the present invention;
FIG. 2
is a cross-sectional view taken along the line II—II of
FIG. 1
;
FIG. 3
is a right side elevational view showing an essential portion of the apparatus shown in
FIG. 1
;
FIG. 4
is a front view showing a rope supporting apparatus for an elevator in accordance with embodiment 2 of the present invention;
FIG. 5
is a front view showing a rope supporting apparatus for elevator in accordance with embodiment 3 of the present invention;
FIG. 6
is a front view showing a rope supporting apparatus for an elevator in accordance with embodiment 4 of the present invention;
FIG. 7
is a cross-sectional view taken along the line VII—VII of
FIG. 6
;
FIG. 8
is a front view showing a rope supporting apparatus for an elevator in accordance with embodiment 5 of the present invention;
FIG. 9
is a cross-sectional view showing a rope supporting apparatus for an elevator in accordance with embodiment 6 of the present invention;
FIG. 10
is a structural view showing one example of a conventional elevator; and
FIG. 11
is a front view showing one example of a conventional rope end fixing apparatus of an elevator.
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the present invention will now be described with reference to the drawings.
Embodiment 1
FIG. 1
is a front view showing a rope supporting apparatus for an elevator in accordance with this embodiment of the invention,
FIG. 2
is a cross-sectional view taken along the line II—II of FIG.
1
and
FIG. 3
is a right side elevational view showing an essential portion of the apparatus shown in FIG.
1
.
In the drawings, in a hoist way, a guide rail
31
for guiding the vertical movement of a car (not shown) or a counterweight (not shown) is fixed in place through a plurality of rail brackets
32
. A column-like body
33
extends along a part of the guide rail
31
. The depicted column-like body
33
has a tubular structure in cross-section. As shown in
FIG. 2
, the column-like body
33
has a generally rectangular cross-section transverse to its length with a first wall in contact with a surface of the guide rail
31
, and second and third walls generally perpendicular to the first wall, and a fourth wall generally parallel to the first wall. In the depicted embodiment, the fourth wall has two parts that are separated by a gap along the length of the column-like body
33
. The column-like body
33
is not limited to a tubular structure. The column-like body is mounted on the guide rail
31
through a plurality of support bodies
34
located near the ends of the column-like body
33
. The support bodies
34
have bolts
35
passing through the guide rail
31
and the column-like body
33
and nuts
36
engaged with the bolts
35
.
A rope end fixing member
37
having a C-shaped cross section and which is a rope support member extending in a direction perpendicular to the column-like body
33
is fixed thereto by welding or the like. End portions of a plurality of ropes
16
are fixed to the rope end fixing member
37
through fastening members
19
, respectively.
Further, the column-like body
33
has a higher bending strength than that of the guide rail.
In such a rope supporting apparatus, the working center of tension applied to the ropes
16
does not correspond to the center axis C of the guide rail
33
so that the bending moment caused by the eccentric load is applied to the column-like body
33
through the rope end fixing member
37
. This bending moment is transmitted to the guide rail
31
through support bodies
34
. However, since the support bodies
34
at both upper and lower end portions of the column-like body
33
are arranged with a sufficient distance therebetween, the pivot reactive force, which is the load in the direction perpendicular to the rail center axis C generated in the support bodies
34
(in the right and left directions in
FIG. 1
) becomes smaller, and the bending moment applied to the guide rail
31
by the pivot reactive force becomes smaller than the bending moment applied to the column-like body
33
.
Also, the bending moment applied to the column-like body
33
is substantially the same as the bending moment applied to the guide rail
21
in the conventional apparatus shown in FIG.
11
. However, the bending strength of the column-like body
33
is made higher than the bending strength of only the guide rail
31
so that sufficient strength of the rope supporting apparatus may be maintained. Accordingly, it is unnecessary to enlarge the guide rail
21
and it is possible to increase the distance between the rail brackets
32
. Furthermore, it is also possible to increase the tension applied to the rope ends.
Also, since the support bodies
34
which pass through the guide rail
31
and the column-like body
33
are used, it is possible to facilitate the mounting of the column-like body
33
onto the guide rail
31
to thereby reduce manufacturing costs and shorten installation time.
Furthermore, the support bodies
34
are disposed in the vicinity of the rail brackets
32
so that the distortion is prevented from being generated in the guide rail
31
by the load from the support bodies
34
.
Embodiment 2
Next,
FIG. 4
is a front view showing a rope supporting apparatus for an elevator in accordance with embodiment of the invention. In the drawing, a plurality of first oblong holes
31
a
extending in parallel with the center axis C and a plurality of second oblong holes
31
b
extending perpendicular to the center axis C are provided in the guide rail
31
.
A plurality of first support bodies
41
for mounting the column-like body
33
onto the guide rail
31
through the first oblong holes
31
a
are provided at both upper and lower end portions of the column-like body
33
. These first support bodies
41
serve to transmit to the guide rail
31
only the load in the perpendicular direction to the center axis C of the guide rail
31
.
A plurality of second support bodies
42
for mounting the column-like body
33
on the guide rail
31
through the second oblong holes
31
b
are provided at the lower end portion of the column-like body
33
. These second support bodies
42
serve to transmit to the guide rail
31
only the load parallel to the center axis C of the guide rail
31
. The other structures are the same as those of embodiment 1.
In such a rope supporting apparatus, since the first support bodies
41
at both upper and lower end portions of the column-like body
33
are arranged with a sufficient distance therebetween, the pivot reactive force generated in the first support bodies
41
becomes small. The pivot reactive force is applied to the guide rail
31
so that the bending moment applied to the guide rail
31
becomes small. Also, since the second support bodies
42
support only the load parallel to the center axis C, the pivot reactive force for supporting the bending moment is generated in only the first support bodies
41
. Consequently, the bending moment applied to the guide rail
31
becomes largest at the positions of the first support bodies
41
. On the other hand, the compression load is applied to a portion below the second support bodies
42
of the guide rail
31
.
Accordingly, in the guide rail
31
, the position where the maximum bending moment is applied is displaced from the position where the compression load is applied so that the combined stress generated in the guide rail
31
by the bending moment and the compression load may be reduced. Thus, it is possible to decrease the size of the guide rail
31
and to increase the space between the arrangement of the rail brackets
32
. It is also possible to increase the tension applied to the rope ends.
Embodiment 3
Next,
FIG. 5
is a front view showing a rope supporting apparatus for an elevator in accordance with embodiment 3 of the present invention. In the drawing, guide rails
31
A and
31
B adjacent to each other in the vertical direction are connected and fixed to each other by a rail joint body
43
. The rail joint body
43
is fixed to a lower end portion of the guide rail
31
A and an upper end portion of the guide rail
31
B by a plurality of bolts
44
. The lower end portion of the column-like body
33
is in contact with the upper end portion of the rail joint body
43
.
Also, the column-like body
33
is mounted on the guide rail
31
by a plurality of support bodies
45
arranged at both upper and lower end portions thereof. The support bodies
45
have rail clips
46
for clamping the guide rail
31
in cooperation with the column-like body
33
and bolts
47
for fastening the rail clips
46
. Also, the support bodies
45
transmit to the guide rail
31
only the load in the direction perpendicular to the center axis C of the guide rail
31
. The other structures are the same as those of embodiment 1.
In such a rope supporting apparatus, since the first support bodies
45
at both upper and lower end portions of the column-like body
33
are arranged with a sufficient distance therebetween, the pivot reactive force generated in the first support bodies
45
becomes small. The pivot reactive force is applied to the guide rail
31
so that the bending moment applied to the guide rail
31
becomes small. Also, since the load applied from the column-like body
33
to the guide rail
31
in the direction parallel to the center axis C is supported by the rail joint body
43
, it is unnecessary to provide the support bodies for transmitting the load to the guide rail
31
in the direction parallel to the center axis C. Also, since the support bodies
45
having the rail clips
46
are used, it is unnecessary to provide holes in the guide rail
31
so that the time for manufacturing the guide rail
31
may be reduced and the bending strength of the guide rail
31
may be enhanced.
Furthermore, in the guide rail
31
, the position where the maximum bending moment is applied is displaced from the position where the compression load is applied so that the combined stress generated in the guide rail
31
by the bending moment and the compression load may be reduced. Thus, it is possible to reduce the size of the guide rail
31
and to increase the space between the arrangement of the rail brackets
32
. It is also possible to increase the tension applied to the rope ends.
Embodiment 4
Next,
FIG. 6
is a front view showing a rope supporting apparatus in accordance with embodiment of the present invention.
FIG. 7
is a cross-sectional view taken along the line VII—VII of FIG.
6
. In the drawings, a support member
51
for supporting only the load from the column-like body
33
in a direction parallel to the center axis C is fixed to the guide rail
31
by a plurality of bolts
52
. A lower end portion of the column-like body
33
is in contact with an upper end portion of the support member
51
.
The column-like body
33
is mounted on the guide rail
31
by a plurality of rail clips
53
. A plurality of pivot members
54
are fixed to both upper and lower end portions of the column-like body
33
, respectively, as support bodies which are brought into contact with both side portions of the guide rail
31
. The pivot members
54
transmit only the load from the column-like body
33
in the direction perpendicular to the center axis C to the guide rail
31
. Also, in this example, the pivot members
54
are the components for transmitting the load to the guide rail
31
in the direction perpendicular to the center axis C, whereas the rail clips
53
prevent the column-like body
33
from being displaced upwardly in
FIG. 7
from the guide rail
31
. The other structures are the same as those of embodiment 1.
In such a rope supporting apparatus, since the pivot members
54
at both upper and lower end portions of the column-like body
33
are arranged with a sufficient distance therebetween, the pivot reactive force generated in the first pivot members
54
becomes small. The pivot reactive force is applied to the guide rail
31
so that the bending moment applied to the guide rail
31
becomes small. Also, even in the case where the rail joint body
43
is not disposed in the vicinity of the column-like body
33
, as shown in embodiment 3, the load in the direction parallel to the center axis C applied from the column-like body
33
to the guide rail
31
may be received by the support member
58
. Furthermore, in addition to the rail clips
53
for mounting the column-like body
33
to the guide rail
31
, the pivot members
54
, which can be freely designed in terms of their cross-sectional area and shape, are fixed to the column-like body
33
in order to transmit to the guide rail
31
only the load in the direction perpendicular to the center axis C of the column-like body
33
. Accordingly, it is possible to maintain the strength of the pivot members
54
at a sufficient level.
Also, it is unnecessary to provide holes in the guide rail
31
so that the time for manufacturing the guide rail
31
may be reduced and the bending strength of the guide rail
31
may be enhanced. Furthermore, in the guide rail
31
, the position where the maximum bending moment is applied is displaced from the position where the compression load is applied so that the combined stress generated in the guide rail
31
by the bending moment and the compression load may be reduced. Thus, it is possible to reduce the size of the guide rail
31
and to increase the space between the of the arrangement rail brackets
32
. It is also possible to increase the tension applied to the rope ends.
Embodiment 5
Next,
FIG. 8
is a front view showing a rope supporting apparatus in accordance with this embodiment of the present invention. In the foregoing embodiments, the rope end fixing member
37
to which the end portions of the ropes
16
are fixed is shown as the rope supporting member. However, in this embodiment, a return pulley support member
55
is fixed to the column-like body
33
as a rope support member. A return pulley
56
is mounted on the return pulley support member
55
, and a rope
16
is wound around the return pulley.
In such an apparatus, similar to the respective foregoing embodiments, it is also possible to reduce the bending moment applied to the guide rail
31
by the tension of the rope
16
, to reduce the size of the guide rail
31
and to increase the distance between the rail brackets
32
.
Embodiment 6
Further, although
FIG. 2
shows an example in which the rope end fixing member
37
is mounted on an opposite surface (back surface) of the guide rail mounting surface of the column-like body
33
, it is also possible to mount the rope end fixing member
37
on the side surface of the column-like body
33
as shown in FIG.
9
. Also, in the foregoing embodiments, even though the rope end fixing member
37
is mounted at the upper portion of the column-like body
33
, it is possible to mount the rope end fixing member
37
at a central portion or lower portion, along the height of the column-like body
33
.
Also, in the foregoing embodiments, the cross-sectional shape of the column-like body
33
is substantially in the form of a C, but the shape thereof is not limited thereto. It is also possible for it to have, for example, a cylindrical shape. In addition, it is also possible for the column-like body
33
to be a solid member, but it is advantageous to use a hollow member in view of weight reduction.
Furthermore, in the foregoing embodiment, the rope end fixing member
37
is fixed to the column-like body
33
by welding, but it is possible to fix it with bolts or the like. Also, it is possible to provide the rope end fixing member at the column-like body by, for example, bending a steel member in a one-piece manner.
Furthermore, it is possible to use the support bodies
45
of
FIG. 5
or the pivot member
54
of
FIG. 6
instead of the first support member
41
according to the second embodiment shown in FIG.
4
.
Also, it is possible to install an elevator end detection switch or a mounting arm of a velocity regulator in the above-described rope supporting apparatus.
Furthermore, in the foregoing embodiment, the column-like body
33
is mounted on the guide rail
31
having a T-shaped cross section. However, the type of guide rail is not limited thereto. For instance, it is possible to use a guide rail which is formed by bending a steel plate.
Moreover, in the embodiment 1, the support bodies
34
having bolts are used but, the column-like body can be welded to the guide rail for instance and this welded portion may be used as the pivot member.
Also, although in the above-described embodiment 4, the support member
51
is fixed to the guide rail by the bolts
52
, it may also be fixed by welding.
Claims
- 1. A rope supporting apparatus for an elevator comprising:a guide rail mounted within a hoist way and having a center axis; a column-like body extending along a part of said guide rail, and having upper and lower ends and a length extending between the upper and lower ends, said column-like body being mounted on said guide rail; a rope supporting member fixed to said column-like body for supporting a rope for suspending at least one of a car and a counterweight within the hoist way, said rope supporting member having a length parallel to the center axis of said guide rail; and a load transmitting apparatus located between the upper and lower ends of said column-like body and connecting said column-like body to said guide rail for transmitting a load from said column-like body to said guide rail, and comprising first support bodies transmitting to said guide rail a load only in a direction perpendicular to the center axis of said guide rail and second support bodies transmitting to said guide rail a load only in a direction parallel to the center axis of said guide rail, wherein said first support bodies include upper supports and lower supports located below said upper supports, and said upper supports are separated from said lower supports by a distance larger than the length of said rope supporting member.
- 2. The rope supporting apparatus for an elevator according to claim 1, wherein said rope supporting member is a rope end fixing member to which an end portion of a rope is fixed.
- 3. The rope supporting apparatus for an elevator according to claim 1, wherein said column-like body has a higher bending strength than said guide rail.
- 4. The rope supporting apparatus for an elevator according to claim 1, wherein said second support bodies are rail clips clamping said guide rail in cooperation with said column-like body.
- 5. The rope supporting apparatus for an elevator according to claim 1, wherein said first support bodies comprise pivot members fixed to said column-like body in contact with two sides of said guide rail.
- 6. The rope supporting apparatus for an elevator according to claim 1, wherein said column-like body has a cross-section transverse to the length, the cross-section including a first wall extending along a surface of the guide rail, and second and third walls opposed to each other and extending from the first wall, whereby said column-like body has a tubular structure.
- 7. A rope supporting apparatus for an elevator comprising:a guide rail mounted within a hoist way and having a center axis; a column-like body extending along a part of said guide rail, and having upper and lower ends and a length extending between the upper and lower ends, said column-like body being mounted on said guide rail; a rope supporting member fixed to said column-like body for supporting a rope for suspending at least one of a car and a counterweight within the hoist way, said rope supporting member having a length parallel to the center axis of said guide rail; a load transmitting apparatus located between the upper and lower ends of said column-like body and connecting said column-like body to said guide rail transmitting a load from said column-like body to said guide rail, and comprising first support bodies transmitting to said guide rail a load only in a direction perpendicular to the center axis of said guide rail; and a support member fixed to said guide rail and in contact with the lower end of said column-like body for receiving a load only in a direction parallel to the center axis of said guide rail, wherein said first support bodies include upper supports and lower supports located below said upper supports, and said upper supports are separated from said lower supports by a distance larger than the length of said rope supporting member.
- 8. The rope supporting apparatus for an elevator according to claim 7, wherein said support bodies include rail clips for clamping said guide rail in cooperation with said column-like body.
- 9. The rope supporting apparatus for an elevator according to claim 7, wherein said first support bodies comprise pivot members fixed to said column-like body in contact with two sides of said guide rail.
- 10. The rope supporting apparatus for an elevator according to claim 7, wherein said rope supporting member is a rope end fixing member to which an end of a rope is fixed.
- 11. The rope supporting apparatus for an elevator according to claim 7, wherein said column-like body has a higher bending strength than said guide rail.
- 12. The rope supporting apparatus for an elevator according to claim 7, wherein said first support bodies are rail clips for clamping said guide rail in cooperation with said column-like body.
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/JP98/01245 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO99/48789 |
9/30/1999 |
WO |
A |
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
3666051 |
Davis et al. |
May 1972 |
A |
4079816 |
Ohta |
Mar 1978 |
A |
5878847 |
Mustalahti et al. |
Mar 1999 |
A |
6021873 |
Aulanko et al. |
Feb 2000 |
A |
6234276 |
Wagatsuma et al. |
May 2001 |
B1 |
Foreign Referenced Citations (4)
Number |
Date |
Country |
56-62380 |
Apr 1981 |
JP |
59-40276 |
Mar 1984 |
JP |
5-229766 |
Sep 1993 |
JP |
WO9609978 |
Apr 1996 |
WO |