Exemplary embodiments pertain to the art of elevator systems and, more particularly, to ropeless elevator systems including a transfer system.
Ropeless elevator systems, also referred to as self-propelled elevator systems, are useful in certain applications (e.g., high rise buildings) where the mass of the ropes for a roped system is prohibitive and there is a desire for multiple elevator cars to travel in a single lane. There exist ropeless elevator systems in which a first lane is designated for upward traveling elevator cars and a second lane is designated for downward traveling elevator cars with at least two transfer stations in the hoistway used to move elevator cars horizontally between the first lane and second lane.
Transfer stations do not typically provide redundancy for transfer station operation. Therefore, the numbers of structures capable of moving elevator cars is equal to or lower than the number of lanes of the hoistway. The assumption is that in a worst case scenario, independent working carriages in the transfer station may work with a reduced number of carriages. Working with a reduced number of carriages decreases overall elevator system efficiency and may cause operation delays, as well as logistical challenges.
Disclosed is a ropeless elevator system including a first lane, a second lane disposed adjacent to the first lane, and an elevator car moveable within each of the first lane and the second lane. A transfer system is configured to facilitate movement of the elevator car from one of the first lane and the second lane to the other of the first lane and the second lane. The transfer system includes a first transfer assembly arranged in at least one of the first and second lanes. The first transfer assembly is configured to guide the elevator car out of the one of the first and second lanes. A transfer station includes a second transfer assembly configured to receive the elevator car from the first transfer assembly. The second transfer assembly extends between the first and second lanes.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the first transfer assembly includes at least one selectively deployable transfer system arranged in the at least one of the first and second lanes.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one selectively deployable transfer system includes a first selectively deployable conveyor and a second selectively deployable conveyor.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one selectively deployable transfer system includes a first selectively deployable transfer system arranged in the first lane and a second selectively deployable transfer system arranged in the second lane.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one selectively deployable transfer system includes a first selectively deployable transfer system arranged in the first lane and a second selectively deployable transfer system arranged in the first lane vertically spaced from the first selectively deployable transfer system.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the second transfer assembly includes a first transfer system extending along a first axis generally horizontally from the one of the first and second lanes and a second transfer system extending along a second axis generally perpendicularly relative to the first axis.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the first transfer system includes at least one first conveyor assembly and the second transfer system includes at least one second conveyor assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one first conveyor assembly is selectively vertically adjustable relative to the at least one second conveyor assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one second conveyor assembly is selectively vertically adjustable relative to the at least one first conveyor assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the transfer station is horizontally off-set relative to each of the first and second lanes.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include a linear motor system including a fixed portion mounted in at least one of the first lane and the second lane, and a moving portion mounted to the elevator car, the moving portion being configured and disposed to disengage the fixed portion during horizontal movement of the elevator car from the one of the first and second lanes.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include a guide structure extending along one of the first and second lanes and at least one roller assembly mounted to the car, the roller assembly including at least one pivot arm supporting one or more rollers that selectively engage with the guide structure.
Also disclosed is a transfer system for a ropeless elevator system including a first transfer assembly configured to guide an elevator car out of the one of a first lane and a second lane. The transfer station includes a second transfer assembly configured to receive the elevator car from the first transfer assembly. The second transfer assembly extends between the first and second lanes.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the first transfer assembly includes at least one selectively deployable transfer system arranged in the at least one of the first and second lanes.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one selectively deployable transfer system includes a first selectively deployable conveyor and a second selectively deployable conveyor.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one selectively deployable transfer system includes a first selectively deployable transfer system arranged in the first lane and a second selectively deployable transfer system arranged in the second lane.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one selectively deployable transfer system includes a first selectively deployable transfer system arranged in the first lane and a second selectively deployable transfer system arranged in the first lane vertically spaced from the first selectively deployable transfer system.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the second transfer assembly includes a first transfer system extending along a first axis generally horizontally from the one of the first and second lanes and a second transfer system extending along a second axis generally perpendicularly relative to the first axis.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the first transfer system includes at least one first conveyor assembly and the second transfer system includes at least one second conveyor assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one first conveyor assembly is selectively vertically adjustable relative to the at least one second conveyor assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the at least one second conveyor assembly is selectively vertically adjustable relative to the at least one first conveyor assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein the transfer station is horizontally off-set relative to each of the first and second lanes.
Further disclosed is a method of transferring an elevator car between elevator lanes. The method includes shifting an elevator car to a transfer station, deploying one or more selectively deployable conveyors, positioning the elevator car onto the one or more selectively deployable conveyors, shifting the elevator car from one lane upon the selectively deployable conveyors onto a transfer assembly, and guiding the elevator car to another lane on the transfer assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein shifting the elevator car onto a transfer assembly includes shifting the elevator car onto one or more of a first plurality of conveyor systems.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein guiding the elevator car to another lane includes shifting the elevator car upon one or more of a second plurality of conveyor systems.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein guiding the elevator car to another lane includes shifting the one or more of the first plurality of elevator systems relative to the one or more of the plurality of second conveyor systems.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein shifting the elevator car from the one lane includes disengaging a roller assembly from a guide rail.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein shifting the elevator car from the one lane includes moving the elevator car horizontally to disengage a moving portion of a linear motor assembly from a stationary portion of the linear motor assembly.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein deploying the one or more selectively deployable conveyors includes rotating the one or more selectively deployable conveyors into the lane.
In addition to one or more of the features described above or below, or as an alternative, further embodiments could include wherein rotating the one or more selectively deployable conveyors into the lane includes pivoting the one or more selectively deployable conveyors upwardly.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
In the exemplary embodiment shown, an upper transfer station 24 may be located above a top most floor 26. Upper transfer station 24 facilitates horizontal travel of one or more elevator cars 20 between select ones of lanes 13, 15 and 17. It is understood that upper transfer station 24 may be located at top most floor 26. A lower transfer station 28 may be arranged below a first floor 30. In a manner similar to that described above, lower transfer station 28 facilitates horizontal travel of one or more of elevator cars 20 between select ones of lanes 13, 15 and 17. It is understood that lower transfer station 28 may be located at first floor 30. Although not shown in
Elevator cars 20 are self-propelled using, for example, a linear motor system 32 having one or more fixed portions or motor primaries 34 and one or more moving portions or motor secondaries 36. The one or more fixed portions 34 are mounted in and extend along lanes 13, 15 and 17. The one or more moving portions 36 are mounted on elevator cars 20. In accordance with an aspect of an exemplary embodiment, moving portion(s) 36 is positioned and arranged to disengage from fixed portion(s) 34 allowing elevator car 20 to freely translate or horizontally shift into, for example, one or the other of upper transfer station 24 and lower transfer station 28 as well as any transfer stations that may be arranged therebetween. Drive signals are provided to fixed portion 34 and/or moving portion 36 from a controller (not shown) to control movement of elevator cars 20 in a respective one of lanes 13, 15 and/or 17.
As shown in
More specifically, as shown in
In accordance with an aspect of an exemplary embodiment, ropeless elevator system 10 includes a first transfer assembly 64 that guides elevator car 20 from lane 13 into a desired one of upper transfer station 24. It should however be noted that ropeless elevator system 10 may include additional first transfer assembles in lane 13 to guide elevator car 20 into lower transfer station 28, and any one of a number of intermediate transfer stations (not shown). Also, one or more first transfer assemblies (not separately labeled) may be arranged in lanes 15 and 17. First transfer assembly 64 includes a first selectively deployable transfer system 68 and a second selectively deployable transfer system 70. Each selectively deployable transfer system 68 and 70 includes a corresponding selectively deployable conveyor 72 and 74.
In accordance with an aspect of an exemplary embodiment illustrated in
In further accordance with an exemplary embodiment, once elevator car 20 is supported, pivot arm 58 may be rotated to disengage second and third roller members 55 and 56 from guide structure 40, as shown in
In further accordance with an aspect of an exemplary embodiment, ropeless elevator system 10 includes a second transfer assembly 84 arranged in upper transfer station 24. Of course, it should be understood that ropeless elevator system 10 may also include a second transfer assembly in lower transfer station 28 as well as any one of a number of intermediate transfer stations (not shown). Second transfer assembly 84 includes a first transfer system 90 that receives elevator car 20 along a first axis from, for example, lane 13, and a second transfer system 92 that guides elevator car 20 along a second axis, horizontally between lanes 13, 15 and 17, as shown in
In accordance with an aspect of an exemplary embodiment, first transfer system 90 includes a first plurality of conveyor belt systems 95-100 that extend along the first axis. That is, first conveyor belt systems 95-100 may include one or more conveyor belts (not separately labeled) that move elevator car 20 out from a respective one of lanes 13, 15 and 17 into upper transfer station 24. Second transfer system 92 includes a second conveyor assembly 104 having a second plurality of conveyor belt systems 106-108 that extend along a second axis that is substantially perpendicular to the first axis. Second conveyor assembly 104 shifts elevator car 20 between lanes 13, 15 and 17.
In further accordance with an aspect of an exemplary embodiment, first conveyor assembly 94 is selectively shiftable relative to second conveyor assembly 104. More specifically, as shown in
At this point, it should be understood that the exemplary embodiment describe a system for shifting elevator cars horizontally between any existing lanes. In this manner, one or more elevator cars may, for example, travel up in lane 13 and then travel down in lane 17 while additional elevator cars may travel in lane 15 in order to reduce elevator wait times. That is, in accordance with an exemplary embodiment, multiple elevator cars may exist in a lane. Accordingly, during select periods, more lanes may be designated as downward travel lanes and at other select periods, more lanes may be designated as upward travel lanes. Further, the exemplary embodiments provide a system that allows elevator cars to transfer between lanes without interrupting continuity of guide structure. It should be further understood, that the exemplary embodiments could be combined with other elevator car transfer systems in order to meet design and operational requirements of a structure. Still further, it should be understood that the exemplary embodiments may be employed to transfer an elevator car to a parking station and/or a maintenance location without shutting down a lane.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
While the present disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this present disclosure, but that the present disclosure will include all embodiments falling within the scope of the claims.
This application claims the benefit of U.S. provisional patent application Ser. No. 62/193,388, filed Jul. 16, 2015, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
633215 | Poulson | Sep 1899 | A |
1859483 | Winslow | May 1932 | A |
3658155 | Salter | Apr 1972 | A |
5288956 | Kadokura | Feb 1994 | A |
5501295 | Muller | Mar 1996 | A |
5799755 | Wan | Sep 1998 | A |
5857545 | Barrett et al. | Jan 1999 | A |
7537089 | Duenser | May 2009 | B2 |
9016438 | Altenburger et al. | Apr 2015 | B2 |
10017354 | Ginsberg | Jul 2018 | B2 |
10059566 | Witczak | Aug 2018 | B2 |
20060011420 | Duenser | Jan 2006 | A1 |
20060163008 | Godwin | Jul 2006 | A1 |
20070181374 | Mueller | Aug 2007 | A1 |
20080223666 | Cuthbert | Sep 2008 | A1 |
20110042168 | Grundmann | Feb 2011 | A1 |
20110132693 | Altenburger | Jun 2011 | A1 |
20130206514 | Kim | Aug 2013 | A1 |
20140190774 | Hsu | Jul 2014 | A1 |
20160075533 | Scomparin | Mar 2016 | A1 |
20170015524 | Fargo | Jan 2017 | A1 |
20170088396 | Fargo | Mar 2017 | A1 |
20170107080 | Steinhauer | Apr 2017 | A1 |
20180009633 | Fargo | Jan 2018 | A1 |
20180029829 | Piech | Feb 2018 | A1 |
20180029832 | Fargo | Feb 2018 | A1 |
20180257911 | Gainche | Sep 2018 | A1 |
20180305183 | Roberts | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1912520 | Sep 1970 | DE |
0885831 | Dec 1998 | EP |
2219985 | Feb 2013 | EP |
H0952678 | Feb 1997 | JP |
100271022 | Nov 2000 | KR |
100275574 | Dec 2000 | KR |
2005115906 | Dec 2005 | WO |
2008136692 | Nov 2008 | WO |
Entry |
---|
EP Partial Search report for application EP16179794, dated Jan. 4, 2017, U320399EP, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170015524 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62193388 | Jul 2015 | US |