This invention relates to rotary type atomizers or misters, primarily used for evaporative cooling and humidification devices.
Various types of evaporative cooling and humidification devices have been developed to add moisture to dry air. Air is usually passed through a wet saturated pad to cause evaporation and humidification of the air. Other forms of devices utilize nozzles to spray atomized mist into the air-stream. Pad type systems require regular replacement due to clogging and loss of efficiency over time, increasing cost. Nozzle type systems also require regular maintenance and are vulnerable to clogging, often requiring the need of water filtering and high pressure pumps to achieve fine mists suitable for evaporation, adding to cost.
In certain applications, rotary or sometimes referred to as centrifugal atomizers or misters are used to add moisture to the air. In such devices, water is propelled outwardly by a rotating plate or other body to impinge on a surface, where it is broken up into small droplets that are entrained in a stream of air and then discharged to the surroundings.
Currently known Rotary (or centrifugal) type atomizers utilized in evaporative cooling or humidification eliminate many of the disadvantages associated with wet pad and nozzle spray mist type systems, but generally need to be operated at high speeds to achieve sufficiently small droplets suitable for evaporation. This increases noise and requires the use of high speed motors, increasing complexity and cost. The droplets are generally of a broad spectrum of size, where the smaller droplets evaporate into the airstream and the larger droplets are not readily absorbed and are entrained in the airstream. This reduces efficiency and adds further complexity with the need for downstream water droplet eliminators to remove unwanted excess un-evaporated droplets. Known atomizers also have a tendency to become clogged with dust and other particles when they are used in industrial environments such as textile mills. Some of these disadvantages may limit the use of Rotary type atomizers as a cost effective alternative to wet pad and nozzle spray mist type systems.
It is a general object of the present invention to provide a much improved Rotary Atomizer that obviate's or mitigates some of these and other disadvantages of known Rotary atomizers.
In accordance with the present invention, there is provided a Rotary Atomizer having two main parts; a body rotatable on an axis and a body stationary about the same axis.
The rotatable body consists of generally concentric impingement and atomizing parts for impinging supplied water and propelling outwardly by centrifugal force onto a generally concentric impingement and atomizing part of the stationary body that also provides clearance for outwardly movement of said droplets. This causes the droplets to strike the impingement surfaces and breakup into many small droplets and continue to move outwardly. A further generally concentric impingement and atomizing part is provided on the said rotatable body of a diameter greater than the concentric impingement and atomizing part of the stationary body, which strike the outwardly directed water droplets, which further breaks up into smaller droplets and also propel outwardly by centrifugal force. These droplets then may strike a further concentric impingement and atomizing part of the stationary body, which again breaks up said outwardly directed droplets, further enhancing the volume and density of the small water droplets.
At least one of the rotatable parts generates a radial or outwardly directed air flow, which mixes with the outwardly propelled water droplets further enhancing the efficiency and production of fine mist.
Additional generally concentric and alternating impingement and atomizing parts of the rotatable and stationary bodies may be utilized to further enhance the efficiency of production of small water droplets.
Due to the multiplication effect of outwardly propelled droplets being subjected to a series of large impingement forces from alternating rotating and stationary concentric impingement and atomizing parts, the present invention, is able to produce a fine mist or fog type discharge at lower speeds than conventional atomizers. This reduces the problem of wetting nearby surfaces and eliminates or reduces the need for filters or moisture eliminators to remove larger un-evaporated droplets.
Due to the lower speeds, noise is reduced considerably and allows for much simpler design and reduced cost of evaporative coolers and humidifiers.
It has been found that the rotary Atomizer of the present invention provides an effective solution to obviate or mitigate problems presented by known prior art rotary Atomizers, as described above.
For a better understanding of the present invention and to show more clearly how it may be carried into effect, reference will be made to the accompanying drawings in which:
Referring to
The rotating body preferably consists of hub 6 and means for mounting to a rotating shaft 3, a cylinder or drum 7 and a series of impingement and atomizing parts 8 or 9 and 10. The cylinder or drum 7 is mounted to base 5. The first impingement and atomizing part 8 or 9 preferably consists of either concentrically arranged impingement and atomizing rings 8 or impingement and atomizing vanes 9, mounted to a base 5. The rings 8 are generally conical in shape and vanes 9 preferably curved to assist in water droplet impingement. A second atomizing stage 10 consisting of concentrically arranged impingement and atomizing vanes mounted to base 5. The spacing between the rings 8 or vanes 9,10 are arranged, such that to allow radially directed air flow 19 to pass through and to impinge radially directed water droplets 20 that is projected outward from the cylinder or drum 7. The base 5 is provided with air inlet ports 11.
The stationary body preferably consists of a series of concentrically arranged impingement and atomizing parts 15, 16 on a base 12 and also consists of water distribution tubes or channels 4 for supplying water and bearing 13 for supporting a rotating shaft 3. The base 12 has means for mounting to a motor case or other fixed structure and air inlet ports 14. The impingement and atomizing parts 15, 16 most preferably consists of concentrically arranged impingement and atomizing vanes.
In operation, a motor connected to the shaft 3, which is connected to hub 6, causes the said rotating body 1 to rotate 32 relative to the said stationary body, which is attached to the said motor case or structure fixed relative to the motor case. During rotation the impingement and atomizing vanes 10 cause air 18 to be drawn through ports 11, 14, and induce a radially (outwardly) directed airflow 19. Water is preferably directed through water channels or tubes 4 onto the rotating drum 7, which causes water droplets 20, by centrifugal forces to be thrown outward striking the first part impingement and atomizing rings 8 or vanes 9. The water droplets 20 are impinged by either the conical rings 8 or vanes 9 and flatten out under large inertial forces. Water can also be directed onto first part impingement and atomizing rings 8 or vanes 9 to achieve a similar effect. This causes very small droplets to discharge at the outer edge of the conical rings or vanes at high tangential speed by centrifugal force. In addition the radial airflow 19 passes through the said rings or vanes mixing with the water droplets. The high-speed water droplets then strike and are impinged by the stationary body first part impingement and atomizing vanes 15 causing the fine droplets to break up into many smaller droplets, again moving outwardly. While this is occurring significant mixing is occurring with the radial air stream 19. The outwardly projected small droplets continue to move radially outwards and are struck and impinged by the rotating body impingement and atomizing vanes 10, which again further breaks these droplets into smaller water droplets and again combining with the radial air stream 19 and propelling outwardly by centrifugal force. The water droplets, being propelled by the rotating body impingement and atomizing vanes 10, are then preferably impinged by a second impingement and atomizing part 16 of the stationary body.
A multiplication effect is caused by utilizing a series of alternating concentrically arranged rotating and stationary impingement and atomizing parts, whereby each part imparts greater impingement forces as the water droplets propagate radially outwards, thereby increasing the number and density of small droplets, greatly improving the efficiency of the atomizer even at low speeds.
The design is also scalable, by increasing the depth of the impingement and atomizing parts or length of vanes and/or diameters, greater water flow and volume of small droplet water mist generation is possible.
The design of the impingement and atomizing parts, shown in the accompanying drawings presents a most preferable design for enhancing efficiency, but not limited to in its application. Other types of impingement and atomizing parts may be used to replace the said vanes or said rings to effect an impingement surface and/or to cause outwardly directed water droplets by centrifugal force and may include concentrically arranged mesh or various shaped vanes.
Advantages of this Rotary Atomizer are, low cost simple design, high efficiency, high volume and density of small droplets even at lower speeds to conventional rotary atomizers promoting efficient evaporation into surrounding air stream. Also due to the radially generated air flow, may be used with or without additional fan assisted air flow.
While the above describes a typical application of the said rotary atomizer, it is not intended to be exhaustive. The rotary atomizer may be powered by different methods, mounted in various orientations and also may be used in various other fluid atomizing or misting applications other than generally for humidification and cooling.
It is to be understood that the invention is not limited in it's application to the details of an arrangement of the components illustrated in the accompanying drawings, since the invention is capable of other embodiments and of being practiced or carried out in various ways within the scope of the claims. It is also understood that the terminology employed herein is intended for the purpose of description and not limitation. In it's broadest scope, the present invention encompasses many modifications and alternative embodiments, appropriate for different circumstances.
Number | Date | Country | Kind |
---|---|---|---|
2009901013 | Mar 2009 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU10/00236 | 3/2/2010 | WO | 00 | 7/29/2011 |