1. Field of the Invention
The present invention relates generally to firing mechanisms for pneumatically operated projectile launchers and more particularly to a rotary bolt mechanism for a pneumatically operated projectile launcher.
2. Description of the Related Art
Referring first to
Another variation (not shown) or the pneumatic projectile launcher has its feed aperture open when the bolt is the rest position. However, the loading principle remains the same in that the bolt reciprocates back and forth.
Pneumatic projectile launcher that use reciprocating bolts suffer several disadvantages that inherently limit the maximum rate of fire achievable. First, only one projectile is loaded at a time. Second, any interruption in the flow of projectiles, such as binding in the loading hopper, reduces the cycle speed. Finally, the bolt must reverse direction during the loading cycle, further reducing the maximum possible cycle speed.
Therefore, there is a need for a bolt mechanism that overcomes limitations of a reciprocating bolt in pneumatic projectile launchers of the prior art. There is a further need for a bolt system that has launch rates that are faster than prior art launchers.
There is yet another need for a paintball marker that has launch rates that are faster than prior art markers.
There is a need to make a paintball marker more efficient by reducing bolt movement while improving bolt performance.
The present invention overcomes the limitations of bolt mechanisms of the prior art by providing a novel rotary bolt mechanism, which is capable of achieving higher rates of fire.
The preferred embodiment of the present invention has a preferably cylindrical-shaped bolt assembly, which rotates about a central shaft. Around the circumference of the bolt are a number of chambers or seats, each of which can respectively receive projectiles as it passes proximal to the feed aperture. As the bolt rotates, it transports the projectiles from the feed aperture to a launch position within the breech from where the projectile can be propelled from the projectile launcher.
Accordingly, an object of the present invention is to provide a bolt capable of loading multiple projectiles at a time.
Yet another object of the present invention is to provide a bolt with a rate of fire superior to those found in the prior art.
Yet another object of the present invention is to provide a paintball marker that operates more efficiently than prior art markers and at higher launching rates.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings where:
Referring now to
The projectile launcher 102, such as a paintball marker, has a central breech 104. Extending from the breech 104 is the barrel 106. A feed conduit 105 leads to the breech 104 of the paintball marker 102 forming a feed aperture 107. A hopper (not shown) can also be used to gravity feed paintball projectiles 112 into the feed aperture 107. Projectiles 112 flow down the feed conduit 105 and out the feed aperture 107. The rotary bolt 100 of the present invention receives the projectile 112 from the feed aperture 107 and positions the projectile 112 within the breech 104 for subsequent launching.
The rotary bolt 100 of the present invention preferably has a cylindrical shape, which rotates about a central shaft 130. The central shaft 130 is mounted within a pair of collars 109 of the paintball marker 102. Preferably, the central shaft 130 of the rotary bolt 100 is mounted within the same vertical plane as that of the centerline 103 of the barrel 106, but the centerlines could easily be offset from one another, if desired. Thus the rotary bolt 100 rotates about an axis through shaft 130. Preferably, the axis of central shaft 130 is parallel with the axes of the breech 104 and barrel 106. But axes of the central shaft 130 and breech 104 and barrel 106 could be in any number of relations to the longitudinal axis such as perpendicular in either a vertical or horizontal relationship or anywhere in between.
Around the circumference of the bolt 100 are a number of walls 108 defining chambers or seats 110, each of which can accept a single projectile 112 as it passes proximal to the feed aperture 107 of the paintball marker 102. As the rotary bolt 100 rotates about the central shaft 130, it transports the projectiles 112 from the feed aperture 107 to the breech 104 of the paintball marker 102 from where the projectile 112 can be launched, typically by the rapid discharge of a compressed gas released through the fluid conduit 116. Such launching of paintball projectiles 112 using compressed gas is so well known in the art, it need not be discussed in detail herein.
Although there are four (4) chambers 110 shown, one skilled in the art would appreciate that the present invention could be easily implemented with any number of chambers or seats 110 desired.
Still further,
The rotary bolt 100 of the preferred embodiment and rotary bolt 200 of the alternative embodiment may be driven by a number of different means 124. Preferably, pneumatic power is used to rotate the rotary bolt 100, but electric, electromagnetic, magnetic or even spring power could be used instead. For example, impellors impelled by a gas may be used to rotate the bolt.
A first sensor 118 may also be strategically positioned in order to detect whether a projectile 112 is present within one or more of the chambers or seats 110, 208. Preferably, the sensor 118 is an optoelectronic device, but other kinds of sensors such as of the ultrasonic, inductive, or pressure type could be used equally well. A second sensor 120 may also be positioned in order to detect the rotational position of the bolt 104. Preferably, this device 120 is an optoelectronic component as well, but an inductive or resistive sensor device could also be used with equal effectiveness. Signals from the sensors 118, 120 are passed by means of wires 121 to a controller 122, which determines when to rotate the bolt 104 and at what speed. The controller 122 operates the drive 124, which rotates the bolt 104. Preferably, the controller 122 is an electrical device, but it could also be implemented pneumatically also. Controllers and operating systems of the prior art can be easily adapted from use of a prior art reciprocating bolt to a rotary bolt of the present invention.
Further, an LED or LCD display may be provided in conjunction with the controller 122 to monitor the operation of the paintball marker 102. Optional control elements that interface with the controller 122 may include buttons or levers to modify settings within the marker 102 or an interface means so that the marker can be monitored by a remote device. Finally, the interface means may be through a wired connection or other wireless means that allow both monitoring and control of the marker 102 as well as allowing control programs to be downloaded into the marker 102 as desired.
While there is shown and described herein certain specific structure embodying the invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except insofar as indicated by the scope of the appended claims.
This application claims priority to earlier filed U.S. Provisional Application Ser. No. 60/545,399, filed Feb. 17, 2004, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60545399 | Feb 2004 | US |