The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims.
Referring now to the drawings,
A variety of attachments can be attached to the loader arms 22 toward the free end 30 to tailor the skid steer 20 to a range of different industrial, agricultural, landscaping or other applications. U.S. Pat. Nos. 5,171,124 to Phillip W. Foster and 5,924,155 to John J. Broz, disclose a few of the typical applications for such a skid steer, the teachings and disclosures of which are expressly incorporated herein by reference thereto. Other attachments or implements for a skid steer include forklifts, ground preparatory tools, cold planers, augers for drilling holes, and the like.
The rotary broom attachment 32 includes bucket mounts for pivotally connecting the rotary broom attachment 32 to the bucket 44 of the skid steer 20. In the illustrated embodiment, the bucket mounts are in the form of brackets 46. The brackets 46 extend rearwardly from the broom housing 34 and pivotally connect to the bucket 44 at pivot 48. Pivot 48 is preferably in the form of a removable pin such that the rotary broom attachment 32 may be selectively and easily attached and detached from the bucket 44. The pivoting connection between the bucket 44 and the rotary broom attachment 32 allows the bucket 44 to be tipped and emptied without having to disconnect the rotary broom attachment 32 from the bucket 44, as is illustrated in
As is shown in
The flow splitting manifold 57 separates a single power source output of the skid steer 20 into two outputs for powering two different hydraulic devices. With respect to the illustrated embodiment, the flow splitting manifold 57 allows both the brush motor 53 and a fan motor 76 of a vacuum assembly module 60 to be simultaneously powered, even if a single power source output is provided, as will be more fully described below. Preferably, the flow splitting manifold 57 is a three-way, flow splitting, directional control valve. However, any sufficient device to split the flow of the output may be used.
As the rotary broom attachment 32 is an attachment for a skid steer 20 that may be frequently attached and detached therefrom, power transmission lines 54, 55 include connectors 59 for connecting the power transmission lines 54, 55 to the auxiliary power source output of the skid steer 20. The connectors 59 can be any connector suitable for the auxiliary power system; preferably, the connectors 59 are quick connect connectors for quick, easy and clean connection and disconnection of the power transmission lines 54, 55 to and from the skid steer.
Turning now to an aspect of the present invention,
As is best illustrated and described with reference to
With the vacuum assembly module 60 attached to the top 62 of the broom housing 34, the vacuum assembly module 60 may be activated to draw dust filled air from the interior 66 of the broom housing 34 and through a filter 68. In an embodiment, the filter 68 is pleated filter media preferably including or having a polymer coating such as polytetrafluoroethylene (PTFE), known commercially as Teflon®, that allows the filter to be easily washed or rinsed and then reused. However, filters having paper media or that are disposable may also be used. As dirty air passes through the filter 68, as illustrated by arrow 81 of
Air enters the vacuum assembly module 60 through an inlet 70 in the form of an opening in the bottom 73 of the central frame 64, as is shown in
A fan 74 powered by and operably coupled to a fan motor 76 draws the air through the filter 68 by creating a vacuum or low pressure downstream of the filter 68. In the illustrated embodiment, the fan 74 is a centrifugal fan mounted directly to an output shaft of the fan motor 76 and positioned within a fan housing 75, which is provided in part by a portion of the central frame 64. Preferably, the fan 74 is a shrouded, backward inclined pressure fan. However, the present invention is not limited to a centrifugal fan as other fans and fan types may be used. Preferably, however, the fan 74 and fan motor 76 can move about between 900 and 1000 cubic feet of air per minute.
With reference to
After passing through the filter 68, the filtered air passes across the top of the filter 68 toward air paths 83 and the fan housing 75, as illustrated by air flow arrows 81 in
The fan motor 76 can be any suitable motor for driving the fan 74 but is preferably powered by an auxiliary power source of the skid steer 20 such as a hydraulic, a pneumatic, or an electric system of the skid steer 20 that provides sufficient power to operate the fan motor 76. Preferably, the fan motor 76 is a hydraulic motor as most skid steers and other similar work machines have auxiliary hydraulic power supplies designed to power and operate similar attachments. In the illustrated embodiment, the fan motor 76 is powered by the same auxiliary power source and connected to the same power source output as the brush motor 53. The fan motor 76 is connected to the flow splitting manifold 57 by two power transmission lines 86, 87 such that the single output is shared by the brush motor 53 and the fan motor 76.
Turning to
A check valve 204 arranged in parallel circuit with the fan motor 76 prevents shock loads from being induced on the fan motor 76. The check valve 204 is closed during normal operation and opens when the fan motor 76 is deactivated. The check valve 204 allows the fan 74 to free wheel and naturally come to a stop and prevents hydraulic fluid from reversing through the fan motor 76. A second check valve 205 is positioned within the flow splitting manifold 57 and is connected to the downstream side of the fan motor 76 to further prevent fluid from reversing through the fan motor 76 via power transmission line 86.
The flow splitting manifold 57 includes a flow restriction 207 to control the flow rate to the fan motor 76. The flow splitting manifold 57 further includes a logic element valve 206. The logic element valve 206 opens to allow hydraulic flow to bypass the fan motor 76 by sensing the pressure difference on either side of the flow restrictor 207. The logic element valve 206 communicates with power transmission line 55 to allow bypassing fluid to return to the auxiliary power source 200.
The auxiliary power source 200 of the skid steer includes a control valve 208, a reservoir or sump 210 and a hydraulic pump 212. The control valve 208 includes a control lever 214 positioned within the operator cabin 28 of the skid steer 20 that allows manual control over the control valve 208 to selectively activate and deactivate the rotary broom attachment 32, particularly the fan motor 76 and brush motor 53.
The flow splitting manifold 57 may not be necessary if the skid steer's auxiliary power source includes multiple outputs. In that situation, the brush motor 53 and fan motor 76 may be connected independently of one another to individual control valves.
In an embodiment, the vacuum assembly module 60 further includes a filter basket 90 that carries the filter 68. The filter basket 90 is preferably sized and configured for a removable snug fit receipt of the filter 68 to prevent dirty air and dust from short-circuiting the filter 68. As the filter 68 is removable from the filter basket 90, preferably, a plurality of clips 91 releasably secure the filter 68 within the filter basket 90 and provide tool-free securement of the filter 68. In an embodiment, the clips 68 are rotatable between a locked position where the filter 68 is secured in the filter basket 90 and an unlocked position where there filter 68 may be removed therefrom. In the locked position, as illustrated in
A pliable gasket 94, which can be a flexible membrane, connected to the filter basket 90 flexibly mounts the filter basket 90 to the central frame 64. A plurality of gasket mounting plates 95 help secure the pliable gasket 94 to the filter basket 90 as well as to the central frame 64 and distribute pressure across a larger area of the pliable gasket 94 to prevent tearing or deformation. The pliable gasket 94 suspends the filter basket 90 within the central frame 64 and proximate the inlet 70. Preferably, the pliable gasket 94 is a rubber or rubber-like material sufficient to provide a seal between the filter basket 90 and the central frame 64 to prevent unnecessary vacuum pressure loss or short-circuiting of dirty air. Other benefits of the flexibility of the pliable gasket 94 will be further explained and identified below.
A top cover 98 mounted to the top 102 of the central frame 64 further forms a portion of the air flow passage through which the filtered air travels. The pliable gasket 94 provides a seal and is secured between the central frame 64 and the top cover 98. The top cover 98 forms part of the low pressure zone on the downstream side of the filter 68. To provide access to the filter 68, the top cover 98 includes a hinged door 104 that can be opened for visual inspection and maintenance of the filter 68. The opening in the top cover 98, which is closed by the hinged door 104, is sized large enough for the filter 68 to pass therethrough. As the top cover 98 and hinged door 104 cooperate with the central frame 64 to provide a portion of the sealed air flow passage between the fan 74 and the filter 68, a door gasket 108 (see
Latches 106 maintain the hinged door 104 in a closed condition. In an embodiment, the latches 106 are formed from a resilient flexible rubber material and stretch to engage a clip on the hinged door 104.
In an embodiment, the vacuum assembly module 60 includes a vibrator 116. The vibrator 116 is connected to the filter basket 90 and communicates vibrations to the filter 68 therethrough. The vibrator 116 is mounted to a rod 118 that is connected to the filter basket 90. Activation of the vibrator 116 translates vibrations to the filter 68 to dislodge a portion of the filtered particulates from the filter 68. This provides a temporary cleaning of the filter 68 allowing extended operation of the vacuum assembly module 60 between required maintenance of the filter 68. Preferably, with the fan motor 76 deactivated, the vibrator 116 may be activated dislodging filtered dust from the filter 68 such that it falls downward and into the bucket 44. Alternatively, while the bucket 44 is being emptied of debris 40 collected from sweeping, as illustrated in
The vibrator 116 typically includes a rotating motor having an off-center weight making the vibrator 116 out of balance causing it to shake and vibrate when rotated, which in-turn, vibrates and shakes the filter basket 90 and consequently the filter 68. In an embodiment, the motor 116 of the vibrator is preferably powered by an electrical power source of the skid steer. In another embodiment, the motor of the vibrator 116 is powered by the same power source as the fan motor 76. However, it will be appreciated that the vibrator could be powered by any available power source provided by the skid steer 20 such as pneumatic, hydraulic or electric power sources. The vibrator 116 is connected to the electrical power source of the skid steer by power transmission line 120 that preferably includes a quick connect connector 122. In an embodiment, the vibrator 116 can be activated independently from the fan motor 76, particularly because the vibrator 116 will typically only be activated for brief periods of time and will not be activated during the majority of the sweeping, and as mentioned previously, it is preferable to only activate the vibrator 116 with the fan motor 76 deactivated. Furthermore, in an embodiment, when the vibrator 116 is activated, the fan motor 76 automatically deactivates to prevent activation of the vibrator 116 while the fan motor 76 is activated. In an embodiment where the vibrator 116 and the fan motor 76 are hydraulically powered, the hydraulic system powering the motors 76, 116 may incorporate reverse flow technology that effectuates the automatic deactivation of the fan motor 76.
In this embodiment, the pliable gasket 94 beneficially insulates and isolates the vibrations of the vibrator 116 from the rest of the vacuum assembly module 60 as well as the rest of the rotary broom attachment 32.
The debris collecting bin 160 and support legs 161 mount to the bottom side 73 of the central frame 64. The support legs 161 support the combination of the vacuum assembly module 60 and the debris collecting bin 160. The debris collecting bin 160 collects debris vacuumed by the vacuum assembly module 60 and functions much like the broom housing 34 and bucket 44 of the skid steer 20, as previously disclosed and described. Thus, the debris collecting bin 160 is positioned proximate and below the inlet 70 of the central frame 64. The debris collecting bin 160 collects the larger debris drawn in by the vacuum assembly module 60 and any dust that may be dislodged from the filter of the vacuum assembly module 60 when the vibrator is activated.
The debris collecting bin 160 includes a hinged door 164. The hinged door 164 allows for the debris collecting bin 160 to be emptied and is secured in a closed condition by latches 167. Preferably a seal is provided between the hinged door 164 and the debris collecting bin 160 to prevent any vacuum pressure loss.
A hose connector 166 passing through a side wall of the debris collecting bin 160 is in fluid communication with the interior of the debris collecting bin 160 and allows a flexible hose 168 to be connected thereto. The flexible hose 168 may be any commercially available flexible vacuum hose and is preferably manufactured from plastic. Furthermore, the flexible hose 168 preferably includes a connector 170 for connecting additional attachments to the hose such as nozzles, brushes, hose extensions, and the like. To allow the vacuum assembly module 60 to function as the stand alone industrial vacuum 159, a plate 171 must be added below fan housing 75 to seal the air inlet cavity 80, as explained previously.
In this configuration, power transmission lines 54, 55 and connectors 59 may connect the fan motor 76 to any available auxiliary power source. Typically, this will be a tractor or skid steer. However, a stand alone power supply may be provided to power the fan motor 76 when a separate work machine is not available. Furthermore, an electric power source must be provided to activate the vibrator. Typically, this will be a 12 volt direct current power supply such as a battery of a vehicle, the skid steer, or another piece of work equipment.
The stand alone industrial vacuum 159 may further include a vehicle mount 182, as illustrated in
In the illustrated embodiment, the vehicle mount 182 secures the stand alone industrial vacuum 159 to the three-point hitch 183 of the tractor 184. The three-point hitch 183 functions to allow attachments connected thereto to be raised and lowered. The three-point hitch 183 includes an upper support arm 186 and a pair of laterally spaced apart lower lifting arms 188. The lower lifting arms 188 can be controlled to raise and lower the stand alone industrial vacuum 159. The upper support arm 186 functions to stabilize the stand alone industrial vacuum 159.
The upper support arm 186 connects to an upper pivot 190 of the vehicle mount 182 and the lower lifting arms 188 connect to lower pivots 192 of the vehicle mount 182. Preferably, the upper and lower pivots 190 and 192 are in the form of removable pins for easy connection to the upper support and lower lifting arms 186, 188, respectively. The vehicle mount 182 is connected to the debris collecting bin 160 of the stand alone industrial vacuum 159. By having the vehicle mount 182 attached to the debris collecting bin 160, the vacuum assembly module 60 can be removed for use in other situations, such as with the rotary broom attachment 32 previously described.
The stand alone industrial vacuum 159 was described with reference to mounting to a tractor 184 via a three-point hitch connection. However, the vehicle mount 182 of the vacuum assembly module could be replaced by other mounting structure to mount the industrial fan to other work machines such as the skid steer disclosed previously. Particularly, the vehicle mount 182 could take the form of the mounting structure for securing a bucket or other attachments to the skid steer.
From the foregoing, it is apparent that the present invention has many beneficial aspects. First, the vacuum assembly module may be used to provide dust reduction capabilities to a rotary broom attachment or other work machine attachments by replacing the cumbersome water misting devices. Second, the vacuum assembly module may be used to retrofit existing rotary broom attachments or may be manufactured with the rotary broom attachment. Furthermore, the present invention may be adapted to provide an industrial vacuum.
All references, including publications, patent applications, and patents cited herein, are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.