The present application claims a priority from Japanese Patent Application No. 2015-220676, filed Nov. 10, 2015, which is incorporated herein by reference.
The present invention relates to a rotary carburetor for a two-stroke internal combustion engine and, more particularly, to a rotary carburetor preferably applicable to a stratified scavenging engine. The present invention typically preferably applied to a single cylinder engine mounted on a portable working machine such as a bush cutter, a chain saw, and a power blower.
A stratified scavenging engine is known as one form of two-stoke internal combustion engines (Patent Document 1). The stratified scavenging engine is characterized by a scavenging stroke. In the scavenging stroke of the stratified scavenging engine, a leading air is introduced into a combustion chamber in an early phase thereof. Subsequently, a fuel-air mixture pressurized in a crank chamber is supplied through a scavenging passage to the combustion chamber. Before the scavenging stroke, the scavenging passage is obviously filled with an air through a piston groove. The scavenging passage communicates with the combustion chamber and the crank chamber. The communication between the scavenging passage and the combustion chamber is opened and closed by a piston. The piston groove means a groove formed in a circumferential surface of the piston.
A large number of portable working machines are equipped with carburetors. A fuel-air mixture generated by a carburetor is supplied to a crank chamber of a piston-valve two-stroke engine. The carburetors are roughly classified into a butterfly type and a rotary type depending on a type of an output control valve. A butterfly carburetor includes a butterfly valve. A rotary carburetor includes a rotary valve.
Patent Document 2 discloses a stratified scavenging two-stroke engine and a rotary carburetor incorporated therein. The stratified scavenging two-stroke engine includes an intake system having on the downstream side of the carburetor a fuel-air mixture passage communicating with the crank chamber and an air passage communicating with an upper part of a scavenging passage through a piston groove disposed on a circumferential surface of a piston, and the fuel-air mixture passage and the air passage are sectioned by a dividing wall. The dividing wall extends to a main body of the rotary carburetor. The rotary carburetor is supplied with an outside air filtered by an air cleaner.
Therefore, the outside air supplied to the rotary carburetor goes through the rotary carburetor and is divided to the air passage and the fuel-air mixture passage. The air passage is supplied with the outside air. The scavenging passage is filled with the outside air through the air passage. On the other hand, the fuel-air mixture passage is supplied with the fuel-air mixture generated by the carburetor, and the crank chamber is supplied with the fuel-air mixture through the fuel-air mixture passage.
The rotary carburetor disclosed in Patent Document 2 has a carburetor main body and a columnar rotary valve. The rotary valve has a through-hole with a circular cross section making up a gas passage. This through-hole extends in a direction orthogonal to an axis of the rotary valve. The carburetor main body rotatably accepting the rotary valve has an inlet and an outlet. The inlet of the carburetor main body is made up of a circular opening and the diameter of the circular opening is the same as the diameter of the through-hole of the rotary valve. The outlet of the carburetor main body is sectioned by a body dividing wall into two ports. A first port communicates with the air passage. A second port communicates with the fuel-air mixture passage. The air passage and the fuel-air mixture passage of the intake system are arranged in the extending direction of an axis of an engine cylinder. Describing by using terms “upper” and “lower” based on the top dead center and the bottom dead center of the engine, the air passage is located on the upper side and the fuel-air mixture passage is located on the lower side thereof.
The rotary carburetor disclosed in Patent Document 2 has a nozzle tube coaxial with the rotation axis of the rotary valve as is the case with the conventional carburetor. Fuel is supplied from this nozzle tube into the through-hole. The nozzle tube is fixed to the carburetor main body. Therefore, the rotary valve rotates relatively to the stationary nozzle tube. The rotary carburetor disclosed in Patent Document 2 has the rotation axis of the rotary valve positioned sideways. Therefore, the rotation axis of the rotary valve has an arrangement relation orthogonal to the axis of the engine cylinder. A fuel outlet opened in a circumferential wall of the nozzle tube is oriented to the second port of the carburetor main body, i.e., the port communicating with the fuel-air mixture passage. Describing by using the terms “upper” and “lower”, the fuel outlet of the nozzle tube is oriented toward the lower side and the fuel discharged from this fuel outlet is directed through the second port of the carburetor main body to the fuel-air mixture passage.
A rotary carburetor of Patent Document 3 has a rotation axis of a rotary valve positioned sideways as is the case with the rotary carburetor of Patent Document 2. The rotary carburetor of Patent Document 3 includes a nozzle tube having a guide tube portion extending downward with a slope, and the fuel discharged from the fuel outlet is guided through this guide tube portion to the second port of the carburetor main body. Therefore, the fuel discharged from the fuel outlet of the nozzle tube is guided by the guide tube portion in an integral structure with the nozzle tube and is directed to the second port of the carburetor main body.
In Patent Document 2, since the periphery of the fuel outlet of the nozzle tube is open, a negative pressure generated in the through-hole of the rotary valve advantageously directly acts on the fuel outlet. The fuel outlet of the nozzle tube is formed by cutting out a portion of the circumferential wall of the nozzle tube into an inverted triangle shape. Therefore, the directionality cannot be applied only by the fuel outlet to the fuel discharged from this fuel outlet. Therefore, a portion of the fuel sucked out from the fuel outlet may diffuse into the first port of the outlet of the carburetor main body, i.e., the port communicating with the air passage.
The rotary carburetor of Patent Document 3 has the fuel outlet of the nozzle tube surrounded by the guide tube portion as described above. Therefore, an intake negative pressure generated in the through-hole of the rotary valve does not directly act on the fuel outlet. As a result, an amount of the fuel sucked out through the fuel outlet tends to be unstable.
It is an object of the present invention to provide a rotary carburetor for a two-stroke internal combustion engine capable of allowing an intake negative pressure to directly act on a fuel outlet formed on a nozzle tube and of guiding a fuel discharged from the fuel outlet of the nozzle tube to the fuel-air mixture passage.
According to the present invention, the technical problem described above is solved by a rotary carburetor (100, 200, 300, 400) for a stratified scavenging two-stroke engine first supplying an air filled in a scavenging passage to a combustion chamber and then supplying a fuel-air mixture in a crank chamber through the scavenging passage to the combustion chamber in a scavenging stroke,
the rotary carburetor (100, 200, 300, 400) being applied to the two-stroke engine with an intake system having an air passage (22) supplying an air to the scavenging passage and a fuel-air mixture passage (24) supplying a fuel-air mixture to the crank chamber, the rotary carburetor comprising:
a rotary valve (12) having a through-hole (14) making up a gas passage of the carburetor;
a nozzle tube (28) supplying a fuel to the through-hole (14); and
a guide (102, 402) guiding a fuel discharged from the nozzle tube (28) toward the fuel-air mixture passage (24), wherein
a periphery of a fuel outlet (30) of the nozzle tube (28) is open.
According to the rotary carburetor of the present invention, since the periphery of the fuel outlet (30) of the nozzle tube (28) is open, a negative pressure generated in the through-hole (14) of the rotary valve (12) can be allowed to directly act on the fuel outlet (30). Since the fuel discharged from the fuel outlet (30) is guided by the guide (102, 402) to the fuel-air mixture passage (24), the fuel discharged from the fuel outlet (30) can be restrained from diffusing into the air passage (22).
Preferred embodiments of the present invention will now be described with reference to the accompanying drawings. A rotary carburetor according to the present invention is applied to a stratified scavenging two-cycle internal combustion engine as is the case with the rotary carburetors disclosed in Patent Documents 2 and 3. A basic structure of the rotary carburetor according to the present invention is substantially the same as the rotary carburetors disclosed in Patent Documents 2 and 3. This is the premise of the following description of embodiments and modification examples of the present invention.
The carburetor main body 2 has an inlet 4 and an outlet 6, which are arranged oppositely to each other on the axis of the through-hole 14 of the rotary valve 12, and the inlet 4 and the outlet 6 have a circular shape with the same diameter as the diameter of the cross-sectional circular shape of the through-hole 14.
The rotary carburetor 100 is connected to an air cleaner not shown and the outside air filtered by the air cleaner is supplied to the inlet 4. The rotary carburetor 100 is connected through a flexible insulator 20 to the stratified scavenging engine and makes up a portion of an intake system of the stratified scavenging engine along with the insulator 20. The insulator 20 has an air passage 22 and a fuel-air mixture passage 24, and the air passage 22 and the fuel-air mixture passage 24 are preferably sectioned by a partition wall 20a.
Some of stratified scavenging engines have the air passage 22 and the fuel-air mixture passage 24 made up of respective independent pipelines.
The air passage 22 and the fuel-air mixture passage 24 are arranged in the extending direction of the cylinder axis of the stratified scavenging engine. Defining the extending direction of the rotation axis Ax of the rotary valve 12 in terms of the arrangement direction of the air passage 22 and the fuel-air mixture passage 24, the extending direction of the rotation axis Ax of the rotary valve 12 is the same as the arrangement direction of the air passage 22 and the fuel-air mixture passage 24. The air passage 22 communicates with an upper part of a scavenging passage of the stratified scavenging engine as is the case with the conventional carburetors. The fuel-air mixture passage 24 communicates with a crank chamber of the stratified scavenging engine as is the case with the conventional carburetors.
Defining the extending direction of the rotation axis Ax of the rotary valve 12 in terms of the top dead center and the bottom dead center of the engine, the rotation axis Ax vertically extends. The air passage 22 and the fuel-air mixture passage 24 are vertically arranged. Specifically, the air passage 22 and the fuel-air mixture passage 24 are located on the upper side and the lower side, respectively, across the partition wall 20a.
The outlet 6 of the rotary valve 12 is preferably divided into a first outlet portion 8 and a second outlet portion 10. In this embodiment, the outlet 6 is divided by a first dividing wall 6a into the first outlet portion 8 and the second outlet portion 10. The first outlet portion 8 communicates with the air passage 22 of the insulator 20. The second outlet portion 10 communicates with the fuel-air mixture passage 24 of the insulator 20.
The first dividing wall 6a of the outlet 6 of the carburetor 100 is not essential and the outlet 6 without the first dividing wall 6a may be used. In a modification example of the first dividing wall 6a, the first dividing wall 6a may be formed by extending the partition wall 20a of the insulator 20 described above. In particular, the partition wall 20a of the insulator 20 may be extended to the outlet 6 of the rotary carburetor 100 so that this extended portion makes up the first dividing wall 6a.
The rotary carburetor 100 will generally be described with reference to
An upper part, i.e., a free end portion, of the nozzle tube 28 has an inverted-triangular fuel outlet 30 opened in a peripheral wall of the nozzle tube 28 (
The needle 32 is displaced in accordance with the rotational operation of the lever 34 as is the case with the conventional carburetors. In
As can clearly be seen by reference to
The first guide 102 has a flat plate-shaped guide plate member 42. The guide plate member 42 extends from the nozzle tube 28 to a downstream end of the through-hole 14 and is continuous with the first dividing wall 6a of the carburetor main body 2. Both side edges of the guide plate member 42 are continuous with an inner wall surface 14a of the through-hole 14. An upstream end of the guide plate member 42 may abut on the nozzle tube 28 or may slightly away from the nozzle tube 28.
Since the guide plate member 42 is disposed inside the through-hole 14, the through-hole 14 is sectioned in a portion downstream of the nozzle tube 28 by the guide plate member 42 into two passage potions. A first passage portion 44 communicates through the first outlet portion 8 with the air passage 22 of the insulator 20. A second passage portion 46 communicates through the second outlet portion 10 with the fuel-air mixture passage 24 of the insulator 20.
According to the first embodiment, the fuel discharged from the fuel outlet 30 of the nozzle tube 28 is guided by the guide plate member 42 to the second passage portion 46 and is then supplied through the second passage portion 46 to the fuel-air mixture passage 24. In other words, the fuel discharged from the fuel outlet 30 can be inhibited by the guide plate member 42 from diffusing into the first passage portion 44.
As can most clearly be seen from
Referring to
In the shown example, the supporting members 48 extend downward from the guide plate member 42. In a modification example, the supporting members 48 may extend upward from the guide plate member 42. In other words, a configuration of hanging the guide plate member 42 by the supporting members 48 may be adopted.
By the two supporting members 48 extending downward from the guide plate member 42, the fuel discharged from the fuel outlet 30 can be guided in a concentrated state in a central portion of the second passage portion 46 to the fuel-air mixture passage 24.
Additionally, the carburetor 100 of the first embodiment can effectively guide the fuel discharged from the fuel outlet 30 to the fuel-air mixture passage 24 while suppressing mixture between the air supplied to the stratified scavenging engine and the fuel-air mixture. Since the nozzle tube 28 is in an opened space on the upstream side, the air entering the fuel-air mixture passage 24 can be ensured from the whole air that have entered the inlet 4 of the carburetor 100. Therefore, the engine can be maintained at a good delivery ratio.
With regard to the arrangement of the supporting members 48, as shown in
With regard to the number of the supporting members 48, as indicated by imaginary lines in
Describing modification examples in terms of the shape of the guide plate member 42 in a planar view, as shown in
Also in the rotary carburetor 200 of the second embodiment, the guide plate member 42 is substantially integral with the rotary valve 12 and therefore pivots as the rotary valve 12 pivots. In the rotary carburetor 200 of the second embodiment, particularly at the time or operation with the rotary valve 12 fully-opened, the function effectively works for guiding the fuel discharged from the fuel outlet 30 by the guide plate member 42 to the second passage portion 46. In an idle operation or an operational state in which the rotary valve 12 is partially opened, a portion of the fuel discharged from the fuel outlet 30 enters the first passage portion 44. As a result, the engine operational state is stabilized in the idle operation or the state in which the rotary valve 12 is partially opened, and the engine responsivity can be enhanced at the time of acceleration.
The second embodiment may include the two supporting members 48, and the two supporting members 48 may be arranged in parallel with each other (
The guide plate member 42 included in the third embodiment is disposed with a slope toward the downstream side. In particular, the guide plate member 42 has an upstream end located in the vicinity of the nozzle tube 28 and a downstream end positioned at a position more distant from the first passage portion 44. In other words, when the guide plate member 42 is viewed from the side, the guide plate member 42 has a sloped form or shape with the downstream end located lower than the upstream end. The guide plate member 42 may have the upstream end located at the same height level as the axis of the through-hole 14 (
When the guide plate member 42 is viewed from the side, the sloped guide plate member 42 may have the downstream end located at a height level lower than the axis of the through-hole 14 (
As can be well understood from
The rotary valve 12 included in the fourth embodiment has a second guide 402 made up of the two supporting members 48 included in the first embodiment. In particular, the second guide 402 is made up of two standing plates 404 extending in parallel with each other in a planar view. This second guide 402 (the two standing plates 404) can guide the fuel discharged from the fuel outlet 30 of the nozzle tube 28 to the fuel-air mixture passage 24 while inhibiting the fuel from diffusing in the width direction of the through-hole 14.
Although the second guide 402 depicted in
The embodiments and modification examples of the present invention have been described. The present invention is not limited to these embodiments and modification examples. The embodiments and modification examples can arbitrarily be combined within the scope of the present invention.
The rotary carburetor according to the present invention may have, for example, a Venturi tube in the vicinity of the fuel outlet 30 of the nozzle tube 28 described above. This Venturi tube is disposed with an upstream end opening facing the fuel outlet 30 and a downstream end opening facing the fuel-air mixture passage 24. The Venturi tube may have an opening area larger at the downstream end opening than the upstream end opening.
The present invention is also applicable to the rotary carburetors with the rotation axis Ax of the rotary valve 12 positioned sideways (Patent Documents 2, 3).
Number | Date | Country | Kind |
---|---|---|---|
2015-220676 | Nov 2015 | JP | national |