The present invention relates to a rotary compressor that is incorporated into a refrigerator, an air conditioner or the like.
As shown in
Rotation of the shaft 4 is followed by an orbital motion of the piston 9 and a reciprocating motion of the vane 11, both of which in turn cause a change in volume of the suction chamber 12 and a change in volume of the compression chamber 13. Such volumetric changes compress a working refrigerant, inhaled into the suction chamber 12 through a suction port 17, into a high-temperature and high-pressure refrigerant, which is discharged from the compression chamber 13 into the closed container 1 through a discharge port 18 and a discharge muffler chamber 19. At the same time, oil stored in the oil sump is sucked by an oil pump mounted on a lower end of the shaft 4 and passes through a through-hole defined in the shaft 4. The oil is then supplied to and lubricates sliding surfaces in the compression mechanism A such as, for example, those between the eccentric portion 41 of the shaft 4 and an inner peripheral surface 9B of the piston 9 and those between an outer peripheral surface of the piston 9 and an inner peripheral surface of the cylinder 5 (see, for example, Patent Document 1).
In the above-described conventional rotary compressor, as shown in
Patent Document 1: JP 2008-180178 A
In this conventional disclosure, after the eccentric portion 41 of the shaft 4 has been formed, the piston 9 is mounted on the eccentric portion 41 of the shaft 4 from the side of the auxiliary bearing 8. To this end, a diameter of an auxiliary shaft 43 inserted into the auxiliary bearing 8 is smaller than that of a main shaft 42 inserted into the main hearing 7, and an outer peripheral surface of the eccentric portion 41 of the shaft 4 on the side adjacent to a center of the shaft 4 is flush with or located radially outwardly of an outer peripheral surface of the auxiliary shaft 43 inserted into the auxiliary bearing 8. Accordingly, assuming that a diameter of the eccentric portion 41 of the shaft 4 is represented by φD1, that of the auxiliary shaft 43 inserted into the auxiliary bearing 8 is represented by φD3, and an amount of eccentricity of the eccentric portion 41 is represented by E, the diameter φD1 of the eccentric portion 41 of the shaft 4 is represented by:
φD1≧φD3+2×E (1).
That is, the diameter φD1 of the eccentric portion 41 must be so determined as to satisfy the formula (1). Also, because the diameter φD2 of the main shaft 42 is greater than the diameter of the auxiliary shaft 43, the outer peripheral surface of the eccentric portion 41 on the side adjacent to the center of the shaft 4 is located radially inwardly of an outer peripheral surface of the main shaft 42.
In this conventional disclosure, it is conceivable that the diameter of the eccentric portion 41 is reduced to reduce the area of the sliding surface of the eccentric portion 41, but if the amount of eccentricity of the eccentric portion 41 is the same, the diameter of the auxiliary shaft 43 must be further reduced with a reduction in diameter of the eccentric portion 41. As a result, the strength of the auxiliary shaft 43 in particular becomes insufficient, thus posing a problem of reducing the reliability.
It is also conceivable that the diameter of the entire shaft 4 including the main shaft 42 is reduced, but the strength of the entire shaft 4 similarly becomes insufficient, thus posing a problem of reducing the reliability.
The present invention has been developed to overcome the above-described disadvantages. It is accordingly an objective of the present invention to provide a low-input loss rotary compressor capable of reducing a sliding loss, which is caused by a reciprocating motion of a vane within a vane groove, by reducing a diameter of an eccentric portion of a shaft while maintaining the strength reliability of the shaft.
In order to solve the problems inherent in the prior art, the rotary compressor according to the present invention includes a cylinder, a main bearing and an auxiliary bearing secured respectively to opposite end surfaces of the cylinder to define a cylinder chamber, a shaft having an eccentric portion formed between the main bearing and the auxiliary bearing, a piston mounted on the eccentric portion of the shaft, and a vane loosely inserted in a vane groove defined in the cylinder for a reciprocating motion thereof, the vane partitioning the cylinder chamber into a suction chamber and a compression chamber. An outer peripheral surface of the eccentric portion of the shaft on a side adjacent to a center of the shaft is located radially inwardly of an outer peripheral surface of a main shaft inserted in the main bearing and that of an auxiliary shaft inserted in the auxiliary bearing. Also, a back clearance means used in mounting the piston on the shaft is provided in each of an inner peripheral surface of the piston and the eccentric portion of the shaft.
The above-described configurations can ensure the strength reliability of the shaft and reduce the diameter of the eccentric portion, thus making it possible to reduce areas of sliding surfaces between the eccentric portion of the shaft and the inner peripheral surface of the piston and also reduce a sliding speed of one of the eccentric portion of the shaft and the inner peripheral surface of the piston relative to the other. That is, during rotation of the shaft, it becomes possible to reduce a viscous force of oil acting between the eccentric portion of the shaft and the inner peripheral surface of the piston and also reduce a rotational moment about the center of the eccentric portion of the shaft, which rotational moment is caused by the viscous force of the oil and acts on the piston in a direction of rotation of the shaft. Accordingly, during the reciprocating motion of the vane within the vane groove, it is possible to reduce frictional resistance forces exerted on two contact points between the vane and the vane groove as reaction forces of a support force when the distal end of the vane supports the rotational moment. As a result, a sliding loss caused by the reciprocating motion of the vane within the vane groove can be reduced, thus making it possible to provide a low-input loss rotary compressor.
a) to 6(f) are schematic views to explain operation of the rotary compressor of
A first invention is directed to a rotary compressor that includes a cylinder, a main bearing and an auxiliary bearing secured respectively to opposite end surfaces of the cylinder to define a cylinder chamber, a shaft having an eccentric portion formed between the main bearing and the auxiliary bearing, a piston mounted on the eccentric portion of the shaft, and a vane loosely inserted in a vane groove defined in the cylinder for a reciprocating motion thereof, the vane partitioning the cylinder chamber into a suction chamber and a compression chamber and having a distal end hingedly connected to the piston. An outer peripheral surface of the eccentric portion of the shaft on a side adjacent to a center of the shaft is located radially inwardly of an outer peripheral surface of a main shaft inserted in the main bearing and that of an auxiliary shaft inserted in the auxiliary bearing. Also, a back clearance means used in mounting the piston on the shaft is provided in each of an inner peripheral surface of the piston and the eccentric portion of the shaft.
The above-described configurations can ensure the strength reliability of the shaft and reduce the diameter of the eccentric portion, thus making it possible to reduce areas of sliding surfaces between the eccentric portion of the shaft and the inner peripheral surface of the piston and also reduce a sliding speed of one of the eccentric portion of the shaft and the inner peripheral surface of the piston relative to the other. That is, during rotation of the shaft, it becomes possible to reduce a viscous force of oil acting between the eccentric portion of the shaft and the inner peripheral surface of the piston and also reduce a rotational moment about the center of the eccentric portion of the shaft, which rotational moment is caused by the viscous force of the oil and acts on the piston in a direction of rotation of the shaft. Accordingly, during the reciprocating motion of the vane within the vane groove, it is possible to reduce frictional resistance forces exerted on two contact points between the vane and the vane groove as reaction forces of a support force when the distal end of the vane supports the rotational moment.
In the rotary compressor according to the first invention, a second invention is such that one of an end surface of the main bearing and an end surface of the auxiliary bearing is held in sliding contact with an end surface of the eccentric portion of the shaft to support a thrust load acting on the shaft.
This feature can reduce a gap formed between an outer peripheral surface of the piston, which swings and orbits within the cylinder chamber with one of the end surface of the main bearing and that of the auxiliary bearing as a reference plane of the orbital motion of the piston, and the inner peripheral surface of the cylinder while minimizing whirling of the shaft. Accordingly, leakage of a gas refrigerant from the compression chamber to the suction chamber can be reduced to thereby obtain the effect of the first invention without reducing a volumetric efficiency.
In the rotary compressor according to the first or second invention, a third invention is such that the back clearance means of the piston is formed by cutting away a sliding surface of the inner peripheral surface of the piston confronting the eccentric portion of the shaft on a side of the suction chamber in the cylinder chamber.
Because the cutaway portion formed in the inner peripheral surface of the piston is positioned on the side of the suction chamber in the cylinder chamber, i.e., on a lightly-loaded side, the piston 9 is less affected by the influence of, for example, seizing on the sliding surface thereof confronting the eccentric portion of the shaft and, accordingly, the reliability is not lowered.
In the rotary compressor according to the third invention, a fourth invention is such that the back clearance means of the piston is formed by cutting away a sliding surface of the inner peripheral surface of the piston confronting the eccentric portion of the shaft from a position of 30 degrees in a direction of rotation of the shaft, starting from one of intersections between the inner peripheral surface of the piston and a centerline of the vane in a thickness direction dose to the vane when the vane has been retracted deepest into the vane groove.
Because the starting position of the cutaway portion formed in the inner peripheral surface of the piston is shifted by 30 degrees from a base point of the lightly-loaded portion, sufficient durability can be ensured even if a load is applied to a location adjacent to the base point of the lightly-loaded portion during a discharge process.
In the rotary compressor according to the third or fourth invention, a fifth invention is such that the piston is disposed to perform an orbital motion while swinging on a horizontal plane and the back clearance means thereof is formed by cutting away an upper side of the sliding surface of the inner peripheral surface of the piston confronting the eccentric portion of the shaft.
Because the cutaway portion formed in the sliding surface of the piston confronting the eccentric portion of the shaft functions as an oil sump, poor lubrication that may be caused by a shortage of oil can be avoided, thus making it possible to enhance the reliability.
In the rotary compressor according to any one of the first to fifth inventions, a sixth invention is such that a single-component refrigerant mainly comprising hydrofluoroolefin having a carbon-carbon double bond or a mixture refrigerant containing this refrigerant is used as a refrigerant. When such a refrigerant is used, the lubricating ability is lowered in association with a reduction in chemical stability, in particular, at high temperatures and, hence, the sliding loss caused by the reciprocating motion of the vane within the vane groove can be more effectively reduced.
Embodiments of the present invention are described hereinafter with reference to the drawings, but the present invention is not limited to the embodiments.
The rotary compressor shown in
The electric motor 102 includes a ring-shaped stator 2 secured to an inner peripheral surface of the dosed container 1 at an upper portion thereof and a rotor 3 loosely inserted into the stator 2 with a slight gap therebetween. The rotor 3 is secured to a vertically extending shaft 4 positioned at a central portion thereof.
As shown in
The construction of the shaft 4 and that of the piston 9 are explained hereinafter in detail with reference to the drawings.
In the compression mechanism 101, the shaft 4 is generally made up of the main shaft 42 inserted into the main bearing 7, the eccentric portion 41 on which the piston 9 is mounted, and the auxiliary shaft 43 inserted into the auxiliary bearing 8. As shown in
The piston 9 is so disposed as to perform an orbital motion while swinging on a horizontal plane. As shown in
That is, as shown in
L1>H−L−L2−L3 (2).
Operation of the rotary compressor of the above-described construction is explained with reference to
In the above-described embodiment, the rotary compressor has the following configurations:
the diameter of the auxiliary shaft 43 is smaller than that of the main shaft 42,
the outer peripheral surface of the eccentric portion 41 on the side adjacent to the center of the shaft 4 is located radially inwardly of that of the main shaft 42 and that of the auxiliary shaft 43,
in order to be able to easily mount the piston 9 on the shaft 4, the back clearance 301 is formed in the eccentric portion 41 of the shaft 4 by cutting away an outer peripheral portion of the eccentric portion 41 on the side of the auxiliary bearing 8 radially inwardly from the outer peripheral surface of the eccentric portion 41 and concentrically with the auxiliary shaft 43 in a circular arc shape by a height L1,
the back clearance 302 is formed in the piston 9 by cutting away an inner peripheral portion thereof on the side of the auxiliary bearing 8 concentrically with the inner peripheral surface 9B thereof in a circular shape by a height L2, and
the back clearance 303 is formed in the eccentric portion 41 of the shaft 4 by cutting away a sliding surface thereof on the side of the main bearing 7 confronting the eccentric portion 41 in a circular arc shape around a position shifted a requisite length from the center of the inner peripheral surface 9B of the piston 9 to the eccentric axis side by a height L3.
The above-described configurations can ensure the strength reliability of the shaft 4 and reduce the diameter of the eccentric portion 41, thus making it possible to reduce areas of the sliding surfaces between the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 and also reduce a sliding speed of one of the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 relative to the other. That is, during rotation of the shaft 4, it becomes possible to reduce a viscous force of the oil acting between the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9 and also reduce a rotational moment about the center of the eccentric portion 41 of the shaft 4, which rotational moment is caused by the viscous force of the oil and acts on the piston 9 in a direction of rotation of the shaft 4. Accordingly, during the reciprocating motion of the vane 11 within the vane groove 10, it is possible to reduce frictional resistance forces exerted on the aforementioned two contact points between the vane 11 and the vane groove 10 as reaction forces of a support force when the distal end 11A of the vane 11 supports the rotational moment.
Also, because an end surface of the eccentric portion 41 of the shaft 4 is held in sliding contact with that of the auxiliary bearing 8 to thereby support a thrust load acting on the shaft 4, it is also possible to reduce a gap formed between the outer peripheral surface of the piston 9, which swings and orbits within the cylinder chamber 6 with the end surface of the auxiliary bearing 8 as a reference plane of the orbital motion of the piston 9, and the inner peripheral surface of the cylinder 5 while minimizing whirling of the shaft 4. Accordingly, leakage of a gas refrigerant from the compression chamber 13 to the suction chamber 12 can be reduced to thereby avoid a reduction in volumetric efficiency. Further, because the narrowed portion 9D of the sliding surface of the inner peripheral surface 9B of the piston 9 confronting the eccentric portion 41 of the shaft 4 is positioned on the side of the suction chamber 12 in the cylinder chamber 6, i.e., on the side of a light load, the piston 9 is less affected by the influence of, for example, seizing, thus making it possible to reduce the viscous force of the oil acting between the eccentric portion 41 of the shaft 4 and the inner peripheral surface 9B of the piston 9.
That is, during the orbital motion of the piston 9 from a state of
The above-described construction can ensure the strength reliability of the shaft 4 and reduce the diameter of the eccentric portion 41 without reducing the reliability when one of the inner peripheral surface of the piston and the eccentric portion of the shaft slides relative to the other, thus making it possible to reduce the areas of the sliding surfaces between the eccentric portion of the shaft and the inner peripheral surface of the piston and also reduce the sliding speed of one of the eccentric portion of the shaft and the inner peripheral surface of the piston relative to the other. That is, during rotation of the shaft, it becomes possible to reduce the viscous force of the oil acting between the eccentric portion of the shaft and the inner peripheral surface of the piston and also reduce the rotational moment about the center of the eccentric portion of the shaft, which rotational moment is caused by the viscous force of the oil and acts on the piston in the direction of rotation of the shaft. Accordingly, during the reciprocating motion of the vane within the vane groove, it is possible to reduce frictional resistance forces exerted on the aforementioned two contact points between the vane and the vane groove as reaction forces of a support force when the distal end of the vane supports the rotational moment. As a result, a sliding loss caused by the reciprocating motion of the vane within the vane groove can be reduced, thus making it possible to provide a low-input loss rotary compressor.
In the rotary compressor according to this embodiment, in applications where a single-component refrigerant mainly comprising hydrofluoroolefin having a carbon-carbon double bond or a mixture refrigerant containing this refrigerant is used as a refrigerant, the lubricating ability is lowered in association with a reduction in chemical stability, in particular, at high temperatures and, hence, the sliding loss caused by the reciprocating motion of the vane within the vane groove can be more effectively reduced.
As described above, because the rotary compressor according to the present invention can reduce the input loss, it can be used as a compressor for a water heater or an air compressor.
Number | Date | Country | Kind |
---|---|---|---|
2010-151805 | Jul 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/003717 | 6/29/2011 | WO | 00 | 1/2/2013 |