This invention relates generally to a rotary crop residue chopper for an agricultural combine and a method of making the same, and more particularly to apparatus mountable on a rotatable element of a chopper for chopping crop residue, primarily straw, stalks, and other plant material, received into the chopper from a threshing mechanism of the combine, and for propelling the chopped material outwardly from the combine, which apparatus has at least one integrally formed stiffening element having a capability for generating and/or increasing air flow into, through and from the chopper, the stiffening element being formable by stamping to provide special features, and at least one embodiment of which apparatus can be reversible so as to be mountable in either of two orientations on the rotatable element.
Threshing and chopping crop residue in an agricultural combine can create substantial amounts of small and lightweight crop residue particles, dust and fragments which are desirably discharged from the combine with the larger chopped crop residue. Apparatus having a straight blade portion for performing the chopping, that is, a substantially planar blade portion oriented in a direction of rotation of the rotatable element on which the apparatus is mounted, has been found to provide excellent chopping capability. Reference in this regard, Gronberg et al. U.S. Pat. No. 3,874,604, and Bender U.S. Pat. No. 4,998,679. However, this orientation provides only minimal air flow generation.
Other apparatus are configured to provide greater air flow generation. Reference in this regard, Redekop et al. U.S. Pat. Nos. 5,232,405; 5,482,508; and 6,478,674; and Hammarstrand U.S. Pat. No. 5,042,973. Of these, the blade member shown in U.S. Pat. No. 5,232,405 includes a support plate supporting a symmetrical transverse blade surface for generating a high velocity of air rotating with the chopping assembly. However, the symmetrical nature of the transverse blade about the support plate can be disadvantageous as it prevents the cutting edge of the blade member from being positioned close to fixed knives of the chopper past which the blade members move to perform the chopping action. The transverse blade is also only disclosed as lying in a plane perpendicular to the support plate and parallel to the rotational axis. And, as a result of the orientation of the blade relative to the support plate, the blade member is not reversible.
The apparatus of U.S. Pat. No. 5,482,508 overcomes the disadvantage of not being able to be positioned close to the fixed knives by having a fan blade extending sidewardly in only one direction from a trailing edge of the blade member. However, as a result of the sideward extent of the fan blade, this blade member is also not reversible and thus different blade members must be provided for use on opposite sides of a fixed knife of a chopper to achieve closeness of the cutting edge of the blade to the knife.
U.S. Pat. No. 6,478,674 is different still as it utilizes a twisted blade design. A disadvantage of this is that the cutting edge is oriented at an angle to the direction of rotation of the blade, which has been found to decrease cutting efficiency.
U.S. Pat. No. 5,042,973 discloses a chopper blade which is bent into a V or arch shape transverse cross section over the entire width of the blade, including the cutting edge or edges thereof, for providing a blower action. An observed disadvantage of the extension of the V or arch shape across the entire extent of the blade member is that it orients the cutting edge at an angle to the direction of rotation, thereby reducing cutting efficiency. Also, this makes the cutting efficiency and blower action inversely related. That is, as the angle of the V or degree of curvature is increased to increase the blower action, the angle of attack of the cutting edge of the blade relative to the direction of rotation thereof will also be increased, thereby decreasing cutting efficiency.
Therefore, what is sought is apparatus for a crop residue chopper which overcomes many of the disadvantages and shortcomings set forth above.
According to the present invention, a chopper apparatus for a rotary crop residue chopper of an agricultural combine, which overcomes many of the disadvantages and shortcomings set forth above, is disclosed. The chopper apparatus of the invention includes a substantially planar body having side surfaces which are preferably oriented perpendicular to a direction of rotation of the apparatus, such that a leading cutting edge of the apparatus is optimally oriented substantially directly in the direction of rotation for chopping. It is contemplated that the cutting edge can be smooth, serrated, blunt, or any combination of these. The apparatus has at least one longitudinally extending, integral stiffener extending sidewardly from one of the side surfaces for increasing the strength and rigidity of the chopper apparatus and which, during rotation, can generate an air flow for inducting dust and smaller particles of crop residue into the chopper for discharge from the chopper with the larger elements of the chopped crop residue.
According to one preferred aspect of the invention, the body includes opposite longitudinally extending cutting edges and the at least one stiffener is/are symmetrical about a longitudinal center line, so as to allow usage of the apparatus on opposite sides of mounting apparatus of the chopper. Alternatively, the stiffener or stiffeners can be located closer to one of the longitudinal edges. If more than one stiffener is used, for instance, two stiffeners, the stiffeners can be arranged either symmetrically or asymmetrically, the former advantageously providing easy reversibility when desired.
According to still another preferred aspect of the invention, the stiffener is integrally formed on the chopper apparatus by die stamping, casting, molding, forging, striking, hydroforming or another suitable metal forming method. Alternatively, the stiffener can be attached in place on the chopper apparatus by other suitable means, such as by welding. An advantage of the present stiffener portion is that it can be relatively large, and can be located close to a leading or cutting edge of the chopper apparatus, without affecting the angle of attack of the leading or cutting edge. This should be contrasted with and is an important advantage over the chopper blade construction of U.S. Pat. No. 5,042,973 which as noted above is bent into a V or arch shape for providing a blower action, but which resultantly orients the cutting edge at an angle to the direction of rotation, thereby reducing cutting efficiency, which angle is increased by increasing the angle of the V or arch shape.
A special feature of forming the stiffener portion by stamping is that the stamping process can draw material from the adjacent edge or edges of the chopper apparatus to form a concavity or concave region in the edge or edges. This is advantageous as it makes the radial outer end of the cutting edge effectively extend forwardly of the concave region in the direction of rotation which can serve to retain crop material on the edge in opposition centrifugal force from the rotation acting to sling the material radially outwardly. This effective outward extension or prominence of the radial outer portion of the edge also serves to increase the wearability of that portion of the edge, that is, the useful life thereof, as that portion of the edge has been observed to typically wear at a faster rate compared the more radially inward regions of the edge, and also round off.
According to another preferred aspect, the stiffener has a rounded or bulbous shape such that no portion of the surface thereof is oriented perpendicular (e.g. at a 90 degree angle) to the rotational direction. This has been found to provide beneficial stress optimization because the effects of particle erosion are minimized on the stiffener portion. The non-perpendicular stiffener additionally provides improved air flow generation and crop material flow, and less crop material build up in front of the stiffener compared to other known constructions.
The opposite surface of the chopper apparatus preferably has a depression or concavity corresponding in location, and at least generally in shape, to the stiffener portion.
According to still another aspect, the preferred stiffener does not extend to the radial outer longitudinal end of the chopper apparatus, but instead terminates a distance therefrom sufficient such that if all or a substantial portion of the stiffener wears or abrades away as a result of contact with abrasive crop material and dust, the radial outer leading and trailing edges of the chopper apparatus will remain connected together to maintain the structural integrity and functionality of the chopper apparatus.
If more than one stiffener is used, for instance, two stiffeners are used, the stiffeners can be located all or completely on opposite sides of the longitudinal centerline of the chopper apparatus. The stiffeners can also be offset longitudinally. That is, all or a portion of one stiffener can lie on one side of a longitudinal centerline of the chopper apparatus and all or a portion of the other stiffener can lie on the opposite side of the centerline, and the stiffeners can be located at different or the same longitudinal positions along the chopper apparatus, which longitudinal positions can, for instance, partially coincide or overlap. One or more of the stiffeners can also have a curve shape in the radial direction, and/or can be oriented at an angle to the radial direction, as desired or required for providing a particular or sought after capability or capabilities.
Referring now to the drawings, wherein preferred embodiments of the present invention are shown, in
Referring also to
Referring also to
Chopper apparatus 42 are shown pivotally mounted in pairs adjacent to oppositely facing sides 38 or 40 of each bracket 36, respectively, so as to extend radially outwardly therefrom in spaced, opposed relation as shown. Each apparatus 42 is an elongate member and includes a mounting end portion 48 which is preferably pivotally mounted to bracket 36 by a bolt 50 which passes through a hole 52 through each mounting end portion 48 (
Referring also to
Stiffener portion 64 is located on side surface 66 substantially equidistant from edges 60 and 62, such that each chopper apparatus 42 is reversible, that is, it can be mounted either side 38 or 40 of a mounting bracket 36. Stiffener portion 64 can have any desired longitudinal and/or sideward extent, as required or desired for providing a desired or required stiffness, and/or generating particular air flow characteristics, such as, but not limited to, more or less induction in the inlet region of chopper 22.
Because stiffener portion 64 extends sidewardly from only one side surface 66 of free end portion 58, an opposite side surface 68 of chopper apparatus 42 can be positioned so as to pass in closely spaced relation to a fixed knife such as representative fixed knife 70 (
Each chopper apparatus 42 including stiffener portion 64 is preferably, bot not necessarily of unitary construction, side surfaces 66 and 68 preferably being substantially planar. Stiffener portions 64 can be formed by a suitable metal forming method such as by die stamping, casting, molding, forging, striking, hydroforming, or the like, or can be attached in place on the chopper apparatus, for example, by welding. Particularly if die stamped, forged, or hydroformed, stiffener portion 64 can include a concavity 72 in side surface 68, corresponding generally in shape but smaller in extent compared to the protuberance of stiffener 64 on surface 66, as illustrated.
As an example dimensionally, for a chopper apparatus such as apparatus 42 having an overall length of from about 130 to 250 millimeters (mm) and a width of from about 30 to 80 mm, a suitable stiffener portion 64 can have a length of from about 130 to 235 mm, a width of from about 30 to 80 millimeters, (smaller values for smaller width chopper apparatus), and a sideward extent from side surface 66 of from about 0.0 to 20 mm as represented by distance X (
Stiffener portion 64 preferably has rounded portions 76 (
It has also been found that as a result of the protrusion of stiffener portion 64 into the flow of crop material, dust and air, stiffener portion 64 can be subject to greater or accelerated wear compared to other regions of chopper apparatus 42. As a result, to facilitate adequate service life, stiffener portion 64 preferably terminates a spaced distance Y (
Referring also to
Referring more particularly to
Here, its should be observed that stiffener portion 64 of chopper apparatus 82 is relatively large so as to extend over a larger area of side surface 66, including over longitudinal center line 92, whereas the stiffener portions 64A and 64B of apparatus 82A and 82B, respectively, are shown lying completely on one side or the other of the longitudinal center line 92 of each of those chopper apparatus. An advantage of this latter location is that mirror image stampings, for example for use on opposite sides of a mounting bracket 36 (see
Stiffener portion 64B of chopper apparatus 82B located on the side of center line 92 closer to edge 62, which is the trailing or non-cutting edge, will provide stiffening and air flow generating capabilities, but from a location farther away from the leading cutting edge 60, which may be more desirable for some applications.
Here, it should be observed that
It should also be observed from
It should be appreciated that the above ranges are only exemplary and that additional ranges, both of lesser and greater values, could be implemented.
With regard to the shape of the stiffener portions 64, 64A and 64B, it should be noted that they can have a wide variety of alternative shapes, such as, but not limited to, an angular shape 64C as illustrated in
In
Referring also to
Referring also to
Again, similarly to stiffener portions 64 of chopper apparatus 86 and stiffener portions 64A and 64B of chopper apparatus 82A and 82B discussed above, stiffener portions 90 are preferably formed in chopper apparatus 86 by stamping in such a manner that concave regions 60A and 62A are formed in edges 60 and 62, respectively. This is an inherent qualitative feature of the stamping process. Also again, such concavity in the leading one of edges 60 or 62 has been found to be advantageous, for retaining the crop material on the edge in opposition to centrifugal forces acting on the crop material during rotational movement of the chopper apparatus about rotational axis 32 (
Dimensionally, for an exemplary chopper apparatus 88 having an overall length of from about 130 to 250 millimeters (mm) and a width of from about 30 to 80 mm, a suitable stiffener portion 90 can have a length of from about 130 to 235 mm, a width of from about 15 to 40 millimeters, (smaller values for smaller width chopper apparatus), and a sideward extent from side surface 66 of from about 0.0 to 20 mm as represented by distance X (
Also, it is desirable for stiffener portions 90 to have rounded portions 76 at their interface with surface 66; rounded end portions 78 at their radial inner and outer ends; and an overall rounded sectional shape when viewed from a longitudinal end (
Here, although chopper apparatus 88 is shown including two stiffener portions, other arrangements of multiple stiffener portions are contemplated, such as arrangements including three or more stiffeners of the same or different shapes and/or sizes, and ones which can be longitudinally coextensive, or offset to a desired extent. It should also be observed that edges 60 and 62 are each shown as being sharpened, and include concave regions 60A and 62A, respectively, adjacent to the respective stiffener portions 90, as a result of the stamping process as explained above. Again, such concave regions can facilitate retention of crop material on the leading one of edges 60 and 62 in opposition to centrifugal forces acting thereon during rotation. The greater sideward extent of the radial outermost portion 60B of the leading cutting edge 60 also provides improved wearability as also explained above.
Here, it should additionally be noted that it is contemplated that although stiffener portions 64, 64A, 64B and 90 shown in the drawings and disclosed hereinabove are each oriented so as to extend in the longitudinal direction, any of the stiffener portions can be oriented at an angle to the longitudinal axis of the chopper apparatus, as desired or required for achieving a particular air flow generation or stiffening characteristic or characteristics.
Addressing methods of manufacture of any of the above discussed chopper apparatus so as to have concave regions 60A and/or 60B on respective edges 60 and 62, such features are preferably formed as discussed above as a result of stamping stiffener portions 54, 64A, 64B, 64C or 90 into the chopper apparatus 42, 82, 82A, 82B, 86 or 88. Alternatively, such features can be formed all or in part by grinding.
It will be understood that changes in the details, materials, steps, and arrangements of parts which have been described and illustrated to explain the nature of the invention will occur to and may be made by those skilled in the art upon a reading of this disclosure within the principles and scope of the invention. The foregoing description illustrates the preferred embodiment of the invention; however, concepts, as based upon the description, may be employed in other embodiments without departing from the scope of the invention. Accordingly, the following claims are intended to protect the invention broadly as well as in the specific form shown.
This application claims the benefit of U.S. Provisional Application No. 60/588,684, filed Jul. 16, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1060179 | Gonzalez | Apr 1913 | A |
1121335 | Dilg | Dec 1914 | A |
1479895 | Franklin | Jan 1924 | A |
1758445 | Kay | May 1930 | A |
2081807 | Gabriel | May 1937 | A |
2386729 | Watter | Oct 1945 | A |
2579119 | McDerment | Dec 1951 | A |
2640309 | Benson | Jun 1953 | A |
2990667 | Schwalm | Jul 1961 | A |
3214897 | Phares | Nov 1965 | A |
3309854 | Mitchell et al. | Mar 1967 | A |
3380502 | Grönberg | Apr 1968 | A |
3397525 | Woodring | Aug 1968 | A |
3423920 | Woodring et al. | Jan 1969 | A |
3465507 | Fishaw | Sep 1969 | A |
3477214 | Rogers | Nov 1969 | A |
3604188 | Mott | Sep 1971 | A |
3626456 | Freeborn | Dec 1971 | A |
3690359 | Wenzel et al. | Sep 1972 | A |
3693335 | Mathews | Sep 1972 | A |
3786996 | Richter | Jan 1974 | A |
4046488 | Wickham | Sep 1977 | A |
4292795 | Linn | Oct 1981 | A |
D262734 | Wooden | Jan 1982 | S |
4612941 | Kunde | Sep 1986 | A |
4631910 | Doyen et al. | Dec 1986 | A |
4663713 | Cornell et al. | May 1987 | A |
4998679 | Bender | Mar 1991 | A |
5042973 | Hammarstrand | Aug 1991 | A |
5180342 | Van Ee | Jan 1993 | A |
5192245 | Francis et al. | Mar 1993 | A |
5205667 | Montgomery, Sr. | Apr 1993 | A |
5232405 | Redekop et al. | Aug 1993 | A |
5272861 | Roynberg | Dec 1993 | A |
5482508 | Redekop et al. | Jan 1996 | A |
5673545 | Friesen | Oct 1997 | A |
6244026 | Minnihan et al. | Jun 2001 | B1 |
6478674 | Redekop | Nov 2002 | B2 |
6497376 | Hammarstrand | Dec 2002 | B2 |
6511374 | Van Ee | Jan 2003 | B2 |
6547169 | Matousek et al. | Apr 2003 | B1 |
6554701 | Wolters | Apr 2003 | B1 |
6572035 | Pfeiffer | Jun 2003 | B1 |
6582298 | Wolters | Jun 2003 | B2 |
6602131 | Wolters | Aug 2003 | B2 |
6616528 | Wolters et al. | Sep 2003 | B2 |
6953398 | Turner | Oct 2005 | B1 |
20040259611 | Dow | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
1373770 | Oct 1971 | AU |
2472430 | Dec 2004 | CA |
2155170 | May 1973 | DE |
2801827 | Jul 1978 | DE |
3626456 | Nov 1987 | DE |
0479329 | Apr 1992 | EP |
1479282 | Nov 2004 | EP |
1491084 | Dec 2004 | EP |
1141447 | Sep 1957 | FR |
216834 | Oct 1983 | GB |
368657 | Jul 1974 | SE |
8902215 | Mar 1989 | WO |
0078126 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060025187 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
60588684 | Jul 2004 | US |