The present invention relates generally to cutting blades for lawn mowers and other cutting apparatuses. More particularly, the present invention relates to an improved rotary cutting blade assembly which includes a rotary cutting blade including multiple, generally semicircular blade arms having tapered back blades and winglets to reduce friction, enhance rotational inertia and improve cutting efficiency of the blade.
Various types of lawn mowers, including riding lawn mowers and push mowers, for example, are known in the art. Such mowers typically include a blade assembly having a rotary cutting blade, a mower engine which rotates the cutting blade, and wheels which facilitate transport of the mower. Mowers may also be equipped with a conduit and blower assembly for distributing clippings from the blade assembly to a hopper.
A conventional blade assembly for a lawn mower typically includes an elongated, flat rotary cutting blade the middle of which is mounted to a blade shaft. Each leading edge of the blade is tapered to cut grass. The weight of the blade is substantially evenly distributed along the entire length of the blade. Some blade assemblies may include two or more cutting blades.
As it is rotated on the blade shaft by the mower engine, the flat rotary cutting blade encounters resistance friction from three different sources. First, the blade encounters friction when it initially contacts and cuts the grass or other material being cut. Second, the flat bottom of the blade encounters the upper end of the grass or material which was just cut by the blade. Third, the blade encounters friction from air and cut grass fragments or material which swirls around inside the blade housing of the mower.
The conventional rotary cutting blade suffers from several drawbacks. First, when it encounters friction as described above, the blade loses inertia due to the even weight distribution along the entire length of the blade. This inhibits the cutting efficiency of the blade. Second, due to the shape of the blade, air flow resistance is inherently high. Third, the blade contacts grass at a 90 degree angle and on a 1:1 ratio (the blade typically cuts the grass once each time it contacts the grass), and also tends to smash and tear, rather than cut and slice, the grass.
There is therefore an established need for an improved cutting blade assembly which may be adapted for use in a lawnmower, blender, food processor or other application and which is characterized by substantially increased inertia and reduced friction imparted by a material as the material is cut, mulched, sliced, or blended.
The present invention is directed to an improved rotary cutting blade assembly having a rotary cutting blade which is adaptable for a variety of cutting applications and is characterized by substantially reduced vulnerability to friction and air resistance forces, as well as enhanced rotational inertia, thus resulting in enhanced cutting efficiency.
An object of the present invention is to provide an improved rotary cutting blade assembly which is adaptable for use in a variety of cutting applications including lawnmowers, blenders and food processors, for example.
Another object of the present invention is to provide an improved rotary cutting blade assembly which is characterized by reduced friction and enhanced cutting efficiency.
Still another object of the present invention is to provide an improved rotary cutting blade assembly in which most of the blade weight is distributed toward the outer half of a rotary cutting blade to enhance rotational inertia of the blade during cutting.
Yet another object of the present invention is to provide an improved rotary cutting blade assembly having a rotary cutting blade which includes multiple, swept-back blade arms and a blade winglet at the end of each blade arm to enhance rotational inertia and promote mulching of grass or other material cut by the blade arms.
A still further object of the present invention is to provide an improved rotary cutting blade assembly having a rotary cutting blade which includes multiple, generally semicircular blade arms with minimal surface area to reduce air resistance and friction as the blade is rotated.
Yet another object of the present invention is to provide an improved rotary cutting blade assembly having a rotary cutting blade which may include multiple, swept-back, generally semicircular blade arms that extend from a central blade hub and widen outwardly from the hub to the ends of the blade arms to impart a majority of weight to the outer circumference of the blade and enhance blade inertia during cutting.
A still further object of the present invention is to provide an improved rotary cutting blade assembly having a rotary cutting blade which includes multiple blade arms that may include a tapered rear edge to generate an airfoil effect and reduce friction imparted by cut grass or other material.
Another object of the present invention is to provide a novel rotary cutting blade assembly having a rotary cutting blade including a central blade hub; multiple, swept-back, generally semicircular blade arms extending from the blade hub; and a blade winglet provided on the end of each blade arm to create an airfoil or vortex which promotes the spinning and mulching of cut grass particles or other material as the blade rotates in addition to imparting weight to the extremities of the blade arm to impart a “gyroscopic flywheel effect” or enhance rotational inertia of the rotary cutting blade.
These and other objects, features and advantages of the present invention will become more readily apparent from the attached drawings and the detailed description of the preferred embodiments, which follow.
The invention will be further understood, by way of example, with reference to the accompanying drawings, in which:
Shown throughout the drawings, the present invention is generally directed towards an improved rotary cutting blade assembly which is characterized by reduced friction and enhanced cutting efficiency when used in a lawn mower, blender, food processor or other cutting apparatus.
Referring to
As illustrated in
A blade winglet 14 terminates each blade arm 7. As illustrated in
In the rotary cutting blade 2, more than 50% of the weight of each blade arm 7 is preferably distributed on the outer half of the blade arm 7. This is due to the added weight which each blade winglet 14 applies to the corresponding blade arm 7, as well as the increasing width of each blade arm 7 from the blade hub 3 to the blade winglet 14 and the generally circular configuration of the rotary cutting blade 2. Such a weight distribution imparts a gyroscopic effect to the rotary cutting blade 2 as the rotary cutting blade 2 rotates in a cutting action, which will be hereinafter described. The gyroscopic effect imparts inertia to the blade arms 7 to maintain a constant rotational speed and enhance the cutting efficiency of the rotary cutting blade 2.
While use of the improved rotary cutting blade assembly 1 will be hereinafter described with respect to use in a lawnmower, it will be understood that the improved rotary cutting blade assembly 1 can be adapted for use in any type of cutting implement including but not limited to lawnmowers, blenders and food processors or any application in which it is desired to cut, mince, mulch or chop a material. The improved rotary cutting blade assembly 1 includes a blade shaft (not illustrated) which is typically engaged by a mower engine (not illustrated) on a mower (not illustrated). The rotary cutting blade 2 is mounted on the blade shaft inside the mower housing, with the blade shaft extending through the shaft opening 4 of the blade hub 3. The blade shaft, mower engine and mower housing elements of the mower may be conventional.
The mower engine rotates the blade shaft and the rotary cutting blade 2 in a clockwise direction when viewed from above, as in
The unique design of the rotary cutting blade 2 minimizes air resistance and friction while enhancing rotational inertia of the rotary cutting blade 2 during the mowing operation. Because over 50% of the weight of the rotary cutting blade 2 is typically distributed on the distal half of the blade arms 7 (due to the presence of the blade winglets 14 on the ends of the blade arms 7, gradual widening of each blade arm 7 from the blade hub 3 to the blade winglet 14 and the circular configuration of the rotary cutting blade 2), the rotary cutting blade 2 is subjected to a gyroscopic flywheel effect as it is rotated. This effect maintains the rotational inertia of the rotary cutting blade 2 as it contacts and cuts the grass while the rotational speed of the rotary cutting blade 2 remains constant. Furthermore, because the lower blade surface 11 of each blade arm 7 has a tapered or angled profile, the upper ends of the previously-cut grass blades contact only a relatively small surface area of the blade arm 7 as the rotary cutting blade 2 is rotated. Also, the generally semicircular configuration of each blade arm 7 minimizes the surface area of the upper blade surface 10 and lower blade surface 11 which is available for contact with air, the grass as it is cut and the swirling grass segments inside the mower housing. Moreover, the winglet rear edge 17 of each blade winglet 14 and rear edge 9 of each blade arm 7 are tapered, thus reducing air resistance and friction of the blade winglet 14 and blade arm 7, respectively, against air and the cut grass segments which continue to swirl in the mower housing, respectively. Another design expedient which reduces air resistance on the rotary cutting blade 2 is the swept-back configuration of the blade arms 7. As in the case of the swept-back wings of a jet airplane, the swept-back configuration of the blade arms 7 minimizes drag on the rotating blade 2.
While the preferred embodiments of the invention have been described above, it will be recognized and understood that various modifications can be made in the invention and the appended claims are intended to cover all such modifications which may fall within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1744597 | Vasconcellos | Jan 1930 | A |
2517405 | Moss | Aug 1950 | A |
2857729 | Zoldok | Oct 1958 | A |
3087298 | Phillips Sr. | Apr 1963 | A |
3109275 | Dunlap et al. | Nov 1963 | A |
3183655 | Dunlap et al. | May 1965 | A |
3686841 | Mager et al. | Aug 1972 | A |
4072195 | Carlson | Feb 1978 | A |
4722608 | Salzman et al. | Feb 1988 | A |
5033259 | Adcock | Jul 1991 | A |
5311727 | Fassauer | May 1994 | A |
5345788 | Jerry | Sep 1994 | A |
5566534 | Fassauer | Oct 1996 | A |
6301868 | Siplinger | Oct 2001 | B1 |
6470662 | Burke et al. | Oct 2002 | B1 |
6640449 | Hoffmann et al. | Nov 2003 | B1 |
20020152736 | Hasei et al. | Oct 2002 | A1 |